Synthesis, Computational Studies, and Structural Analysis of 1-(3,5-Dimethoxyphenyl)azetidin-2-ones with Antiproliferative Activity in Breast Cancer and Chemoresistant Colon Cancer
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis of β-Lactam Compounds
2.2. Single Crystal X-Ray Crystallography Study of Azetidine-2-ones 12i, 12k, 12o, 12p and 12u
2.3. Antiproliferative Evaluation of Azetidine-2-ones 12a–12e, 12l–12r with 3,5-Dimethoxyphenyl Ring A in MCF-7 Human Breast Cancer Cells
Compound | MCF-7 IC50 (nM) a | LogP e | |
---|---|---|---|
12a | R1 = C6H5, R2 = H, X = OCH3 | 25 ± 3 | 3.97 |
12b | R1 = C6H5, R2 = H, X = OCH2CH3 | 36 ± 10 | 4.29 |
12c | R1 = C6H5, R2 = H, X = SCH3 | 244 ± 60 | 4.51 |
12d | R1 = OC6H5, R2 = H, X = OCH3 | 54 ± 10 | 3.69 |
12e | R1 = OC6H5, R2 = H, X = OCH2CH3 | 273 ± 10 | 4.02 |
12k d | R1 = OH, R2 = H, X = OCH3. | 1.5 ± 0.7 | 2.02 |
12l | R1 = OH, R2 = H, X = OCH2CH3 | 10.5 ± 0.9 | 2.40 |
12m | R1 = OH, R2 = H, X = SCH3 | 23 ± 2 | 2.54 |
12n | R1 = OH, R2 = H, X = SCH2CH3 | 31 ± 6 | 2.94 |
12o | R1 = H, R2 = H, X = OCH3 | 55 ± 10 | 2.75 |
12p | R1 = H, R2 = H, X = OCH2CH3 | 75 ± 6 | 3.11 |
12q | R1 = H, R2 = H, X = SCH3 | 150 ± 40 | 3.27 |
12r | R1 = H, R2 = H, X = SCH2CH3 | 11,360 ± 800 | 3.60 |
12s b | R1 = OCH3, R2 = H | 4 ± 0.4 | 2.02 |
12t d | R1 = OCH2CH3, R2 = H | 7 ± 0.9 | 2.28 |
12u c | R1 = OCH3, R2 = CH3 | 5 ± 1 | 2.31 |
CA-4 f | 4.6 ±0.32 | 3.27 |
Compound | HT-29 IC50 (nM) a | Relative Potency b MCF-7/HT-29 | |
---|---|---|---|
12b | R1 = C6H5, R2 = H, X = OCH2CH3 | 114 ± 10 | 0.316 |
12c | R1 = C6H5, R2 = H, X = SCH3 | 115 ± 20 | 2.122 |
12k | R1 = OH, R2 = H, X = OCH3 | 12 ± 3.0 | 0.167 |
12l | R1 = OH, R2 = H, X = OCH2CH3 | 3 ± 0.9 | 3.088 |
12m | R1 = OH, R2 = H, X = SCH3 | 26 ± 4.0 | 0.885 |
12o | R1 = H, R2 = H, X = OCH3 | 89 ± 10 | 0.618 |
12p | R1 = H, R2 = H, X = OCH2CH3 | 85± 20 | 0.873 |
12q | R1 = H, R2 = H, X = SCH3 | 747 ± 0.0 c | 0.200 |
12s | R1 = OCH3, R2 = H | 12 ± 2.0 | 0.333 |
12t d | R1 = OCH2CH3, R2 = H | 15 ± 1 | 0.466 |
12u e | R1 = OCH3, R2 = CH3 | 7 ± 2 | 0.714 |
CA-4 f | 3814 ± 100 | 0.0012 |
2.4. Evaluation of In Vitro Cytotoxicity of β-Lactam Compounds
2.5. Predicted Physicochemical Properties, Cheminformatics, and In Vitro ADME Properties for β-Lactams 12a–u
2.6. Molecular Modelling Study of β-Lactams
3. Materials and Methods
3.1. Chemistry
3.1.1. General Method I: Preparation of Imines 11a–11d
3.1.2. General Method II: Synthesis of Azetidine-2-ones 12a–12j
3.1.3. General Method III: Synthesis of 3-Unsubstituted Azetidine-2-ones 12o–12r
3.1.4. General Method IV: Preparation of 3-Hydroxyazetidin-2-ones (12k–12n)
3.2. Biochemical Evaluation: Materials and Methods
3.2.1. Cell Culture
3.2.2. Cell Viability Assay
3.2.3. Lactate Dehydrogenase Cytotoxicity Assay
3.3. Crystallography
3.4. 3D Protein–Ligand Modelling
3.4.1. Structure Preparation
3.4.2. Molecular Docking
3.4.3. Molecular Dynamics (MD) Simulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | Antibody–drug conjugate |
ADME | Absorption, distribution, metabolism, and excretion |
BBB | Blood–brain barrier |
CA-4 | Combretastatin A-4 |
CBSI | Colchicine binding site inhibitor |
CCDC | Cambridge Crystallographic Data Centre |
CDK | Cyclin-dependent kinase |
CRC | Colorectal cancer |
CYP2D6 | Cytochrome P450 2D6 |
DAMA-colchicine | N-deacetyl-N-(2-mercaptoacetyl)-colchicine |
DCM | Dichloromethane |
DMEM | Dulbecco’s modified Eagle’s medium |
ECACC | European Collection of Animal Cell Cultures |
ESI | Electrospray Ionisation |
EGF | Endothelial growth factor |
ER | Estrogen receptor |
FBS | Foetal bovine serum |
GI | Gastrointestinal |
HER2 | Human epidermal growth factor receptor 2 |
HPLC | High Performance Liquid Chromatography |
HRMS | High Resolution Mass Spectrometry |
HR | Hormone Receptor |
IC | Inhibitory concentration |
IR | Infrared |
LDH | Lactate dehydrogenase |
mCRC | Metastatic colorectal cancer |
MD | Molecular Dynamics |
NMR | Nuclear Magnetic Resonance |
PAINS | Pan-Assay Interference Compounds |
PARP | Poly(adenosine diphosphate–ribose) polymerase |
PD-1 | Programmed cell death protein 1 |
P-gp | P-glycoprotein |
PR | Progesterone receptor |
RNS | Reactive nitrogen species |
ROS | Reactive oxygen species |
SAR | Structure–activity relationship |
SERD | Selective estrogen receptor degrader |
SERM | Selective estrogen receptor modulator |
SIRT1 | Sirtuin 1 |
TBNC | Triple-negative breast cancer |
TEA | Triethylamine |
TLC | Thin layer chromatography |
TMS | Tetramethylsilane |
TPSA | Topological Polar Surface Area |
UGT | UDP-glucuronosyltransferase |
VEGF | Vascular endothelial growth factor |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Chaurasia, M.; Singh, R.; Sur, S.; Flora, S.J.S. A review of FDA approved drugs and their formulations for the treatment of breast cancer. Front. Pharmacol. 2023, 14, 1184472. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, S.; Xin, Q.; Zhang, Y.; Wang, K.; Li, M. Recent progress of CDK4/6 inhibitors’ current practice in breast cancer. Cancer Gene Ther. 2024, 31, 1283–1291. [Google Scholar] [CrossRef]
- Downton, T.; Zhou, F.; Segara, D.; Jeselsohn, R.; Lim, E. Oral selective estrogen receptor degraders (SERDs) in breast cancer: Advances, challenges, and current status. Drug Des. Dev. Ther. 2022, 16, 2933–2948. [Google Scholar] [CrossRef]
- Swain, S.M.; Shastry, M.; Hamilton, E. Targeting HER2-positive breast cancer: Advances and future directions. Nat. Rev. Drug Discov. 2023, 22, 101–126. [Google Scholar] [CrossRef] [PubMed]
- Schlam, I.; Swain, S.M. HER2--positive breast cancer and tyrosine kinase inhibitors: The time is now. NPJ Breast Cancer 2021, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhou, H.; Tan, L.; Siu, K.T.H.; Guan, X.Y. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct. Target. Ther. 2024, 9, 175. [Google Scholar] [CrossRef]
- Zagami, P.; Carey, L.A. Triple negative breast cancer: Pitfalls and progress. NPJ Breast Cancer 2022, 8, 95. [Google Scholar] [CrossRef] [PubMed]
- Xiong, N.; Wu, H.; Yu, Z. Advancements and challenges in triple-negative breast cancer: A comprehensive review of therapeutic and diagnostic strategies. Front. Oncol. 2024, 14, 1405491. [Google Scholar] [CrossRef]
- Kumar, S.; Chatterjee, M.; Ghosh, P.; Ganguly, K.K.; Basu, M.; Ghosh, M.K. Targeting PD-1/PD-L1 in cancer immunotherapy: An effective strategy for treatment of triple-negative breast cancer (TBNC) patients. Genes Dis. 2023, 10, 1318–1350. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Y.; Xue, J.; Li, J.; Yi, J.; Bu, J.; Zhang, Z.; Qiu, P.; Gu, X. Advances in immunotherapy for triple-negative breast cancer. Mol. Cancer 2023, 22, 145. [Google Scholar] [CrossRef]
- Tung, N.; Garber, J.E. PARP inhibition in breast cancer: Progress made and future hopes. NPJ Breast Cancer 2022, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Pont, M.; Marques, M.; Sorolla, A. Latest therapeutical approaches for triple-negative breast cancer: From preclinical to clinical research. Int. J. Mol. Sci. 2024, 25, 13518. [Google Scholar] [CrossRef] [PubMed]
- Brenner, H.; Kloor, M.; Pox, C.P. Colorectal cancer. Lancet 2014, 383, 1490–1502. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Shen, X.; Chen, G.; Du, J. Drug resistance in colorectal cancer: From mechanism to clinic. Cancers 2022, 14, 2928. [Google Scholar] [CrossRef]
- Jeffers, M.; Kappeler, C.; Kuss, I.; Beckmann, G.; Mehnert, D.H.; Fredebohm, J.; Teufel, M. Broad spectrum of regorafenib activity on mutant KIT and absence of clonal selection in gastrointestinal stromal tumor (GIST): Correlative analysis from the GRID trial. Gastric Cancer 2022, 25, 598–608. [Google Scholar] [CrossRef]
- Kita, K.; Burdowski, A. Recent clinical trials and optical control as a potential strategy to develop microtubule-targeting drugs in colorectal cancer management. World J. Gastroenterol. 2024, 30, 1780–1790. [Google Scholar] [CrossRef]
- Steinmetz, M.O.; Prota, A.E. Structure-based discovery and rational design of microtubule-targeting agents. Curr. Opin. Struct. Biol. 2024, 87, 102845. [Google Scholar] [CrossRef]
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020, 20, 651–668. [Google Scholar] [CrossRef] [PubMed]
- Wordeman, L.; Vicente, J.J. Microtubule targeting agents in disease: Classic drugs, novel roles. Cancers 2021, 13, 5650. [Google Scholar] [CrossRef]
- Muhlethaler, T.; Gioia, D.; Prota, A.E.; Sharpe, M.E.; Cavalli, A.; Steinmetz, M.O. Comprehensive analysis of binding sites in tubulin. Angew. Chem. Int. Ed. Engl. 2021, 60, 13331–13342. [Google Scholar] [CrossRef]
- Ravelli, R.B.; Gigant, B.; Curmi, P.A.; Jourdain, I.; Lachkar, S.; Sobel, A.; Knossow, M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 2004, 428, 198–202. [Google Scholar] [CrossRef]
- Nainwal, L.M.; Alam, M.M.; Shaquiquzzaman, M.; Marella, A.; Kamal, A. Combretastatin-based compounds with therapeutic characteristics: A patent review. Expert Opin. Ther. Patents 2019, 29, 703–731. [Google Scholar] [CrossRef] [PubMed]
- McNamara, D.E.; Senese, S.; Yeates, T.O.; Torres, J.Z. Structures of potent anticancer compounds bound to tubulin. Protein Sci. 2015, 24, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Pecyna, P.; Wargula, J.; Murias, M.; Kucinska, M. More than resveratrol: New insights into stilbene-based compounds. Biomolecules 2020, 10, 1111. [Google Scholar] [CrossRef]
- Csuk, R.; Albert, S.; Siewert, B.; Schwarz, S. Synthesis and biological evaluation of novel (E) stilbene-based antitumor agents. Eur. J. Med. Chem. 2012, 54, 669–678. [Google Scholar] [CrossRef]
- Pettit, G.R.; Singh, S.B.; Hamel, E.; Lin, C.M.; Alberts, D.S.; Garcia-Kendall, D. Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia 1989, 45, 209–211. [Google Scholar] [CrossRef]
- Greene, L.M.; Meegan, M.J.; Zisterer, D.M. Combretastatins: More than just vascular targeting agents? J. Pharmacol. Exp. Ther. 2015, 355, 212–227. [Google Scholar] [CrossRef] [PubMed]
- Faustino, C.; Francisco, A.P.; Isca, V.M.S.; Duarte, N. Cytotoxic stilbenes and derivatives as promising antimitotic leads for cancer therapy. Curr. Pharm. Des. 2018, 24, 4270–4311. [Google Scholar] [CrossRef]
- McLoughlin, E.C.; O’Boyle, N.M. Colchicine-binding site inhibitors from chemistry to clinic: A review. Pharmaceuticals 2020, 13, 8. [Google Scholar] [CrossRef]
- Hawash, M. Recent advances of tubulin inhibitors targeting the colchicine binding site for cancer therapy. Biomolecules 2022, 12, 1843. [Google Scholar] [CrossRef] [PubMed]
- Malebari, A.M.; Fayne, D.; Nathwani, S.M.; O’Connell, F.; Noorani, S.; Twamley, B.; O’Boyle, N.M.; O’Sullivan, J.; Zisterer, D.M.; Meegan, M.J. Beta-lactams with antiproliferative and antiapoptotic activity in breast and chemoresistant colon cancer cells. Eur. J. Med. Chem. 2020, 189, 112050. [Google Scholar] [CrossRef]
- Wang, S.; Malebari, A.M.; Greene, T.F.; O’Boyle, N.M.; Fayne, D.; Nathwani, S.M.; Twamley, B.; McCabe, T.; Keely, N.O.; Zisterer, D.M.; et al. 3-vinylazetidin-2-ones: Synthesis, antiproliferative and tubulin destabilizing activity in MCF-7 and MDA-MB-231 breast cancer cells. Pharmaceuticals 2019, 12, 56. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Carr, M.; Greene, L.M.; Bergin, O.; Nathwani, S.M.; McCabe, T.; Lloyd, D.G.; Zisterer, D.M.; Meegan, M.J. Synthesis and evaluation of azetidinone analogues of combretastatin A-4 as tubulin targeting agents. J. Med. Chem. 2010, 53, 8569–8584. [Google Scholar] [CrossRef]
- Zhou, P.; Liang, Y.; Zhang, H.; Jiang, H.; Feng, K.; Xu, P.; Wang, J.; Wang, X.; Ding, K.; Luo, C.; et al. Design, synthesis, biological evaluation and cocrystal structures with tubulin of chiral β-lactam bridged combretastatin A-4 analogues as potent antitumor agents. Eur. J. Med. Chem. 2018, 144, 817–842. [Google Scholar] [CrossRef]
- Tripodi, F.; Pagliarin, R.; Fumagalli, G.; Bigi, A.; Fusi, P.; Orsini, F.; Frattini, M.; Coccetti, P. Synthesis and biological evaluation of 1,4-diaryl-2-azetidinones as specific anticancer agents: Activation of adenosine monophosphate activated protein kinase and induction of apoptosis. J. Med. Chem. 2012, 55, 2112–2124. [Google Scholar] [CrossRef]
- Arya, N.; Jagdale, A.Y.; Patil, T.A.; Yeramwar, S.S.; Holikatti, S.S.; Dwivedi, J.; Shishoo, C.J.; Jain, K.S. The chemistry and biological potential of azetidin-2-ones. Eur. J. Med. Chem. 2014, 74, 619–656. [Google Scholar] [CrossRef] [PubMed]
- Gaspari, R.; Prota, A.E.; Bargsten, K.; Cavalli, A.; Steinmetz, M.O. Structural basis of cis- and trans-combretastatin binding to tubulin. Chem 2017, 2, 102–113. [Google Scholar] [CrossRef]
- Sargsyan, A.; Sahakyan, H.; Nazaryan, K. Effect of colchicine binding site inhibitors on the tubulin intersubunit interaction. ACS Omega 2023, 8, 29448–29454. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.H.; Sethi, G.; Um, J.Y.; Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Bishayee, A.; Ahn, K.S. The role of resveratrol in cancer therapy. Int. J. Mol. Sci. 2017, 18, 2589. [Google Scholar] [CrossRef]
- Mikstacka, R.; Stefanski, T.; Rozanski, J. Tubulin-interactive stilbene derivatives as anticancer agents. Cell. Mol. Biol. Lett. 2013, 18, 368–397. [Google Scholar] [CrossRef]
- Schneider, Y.; Chabert, P.; Stutzmann, J.; Coelho, D.; Fougerousse, A.; Gosse, F.; Launay, J.F.; Brouillard, R.; Raul, F. Resveratrol analog (Z)-3,5,4′-trimethoxystilbene is a potent anti-mitotic drug inhibiting tubulin polymerization. Int. J. Cancer 2003, 107, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, R.; Ebrahimzadeh, M.A. Resveratrol—A comprehensive review of recent advances in anticancer drug design and development. Eur. J. Med. Chem. 2020, 200, 112356. [Google Scholar] [CrossRef] [PubMed]
- Elshaer, M.; Chen, Y.; Wang, X.J.; Tang, X. Resveratrol: An overview of its anti-cancer mechanisms. Life Sci. 2018, 207, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444, 337–342. [Google Scholar] [CrossRef]
- Agbadua, O.G.; Kusz, N.; Berkecz, R.; Vass, E.; Csampai, A.; Toth, G.; Balogh, G.T.; Marcourt, L.; Wolfender, J.L.; Queiroz, E.F.; et al. New insights into the French paradox: Free radical scavenging by resveratrol yields cardiovascular protective metabolites. J. Med. Chem. 2025, 68, 10031–10047. [Google Scholar] [CrossRef]
- Cai, Y.C.; Zou, Y.; Ye, Y.L.; Sun, H.Y.; Su, Q.G.; Wang, Z.X.; Zeng, Z.L.; Xian, L.J. Anti-tumor activity and mechanisms of a novel vascular disrupting agent, (Z)-3,4′,5-trimethoxylstilbene-3′-O-phosphate disodium (M410). Investig. New Drugs 2011, 29, 300–311. [Google Scholar] [CrossRef]
- Fuggetta, M.P.; Lanzilli, G.; Tricarico, M.; Cottarelli, A.; Falchetti, R.; Ravagnan, G.; Bonmassar, E. Effect of resveratrol on proliferation and telomerase activity of human colon cancer cells in vitro. J. Exp. Clin. Cancer Res. 2006, 25, 189–193. [Google Scholar]
- Chen, R.J.; Kuo, H.C.; Cheng, L.H.; Lee, Y.H.; Chang, W.T.; Wang, B.J.; Wang, Y.J.; Cheng, H.C. Apoptotic and nonapoptotic activities of pterostilbene against cancer. Int. J. Mol. Sci. 2018, 19, 287. [Google Scholar] [CrossRef]
- Hu, W.H.; Dai, D.K.; Zheng, B.Z.; Duan, R.; Dong, T.T.; Qin, Q.W.; Tsim, K.W. Piceatannol, a natural analog of resveratrol, exerts anti-angiogenic efficiencies by blockage of vascular endothelial growth factor binding to its receptor. Molecules 2020, 25, 3769. [Google Scholar] [CrossRef]
- Su, D.; Cheng, Y.; Liu, M.; Liu, D.; Cui, H.; Zhang, B.; Zhou, S.; Yang, T.; Mei, Q. Comparision of piceid and resveratrol in antioxidation and antiproliferation activities in vitro. PLoS ONE 2013, 8, e54505. [Google Scholar] [CrossRef] [PubMed]
- Robb, E.L.; Stuart, J.A. The stilbenes resveratrol, pterostilbene and piceid affect growth and stress resistance in mammalian cells via a mechanism requiring estrogen receptor beta and the induction of Mn-superoxide dismutase. Phytochemistry 2014, 98, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Miller, D.D.; Li, W. Molecular interactions at the colchicine binding site in tubulin: An X-ray crystallography perspective. Drug Discov. Today 2022, 27, 759–776. [Google Scholar] [CrossRef]
- da Silva, W.P.C.; Caiana, R.R.A.; Barros, M.E.S.B.; Freitas, J.C.R.; da Silva, P.B.N.; Militao, G.G.C.; Oliveira, R.A.; Menezes, P.H. Design, stereoselective synthesis, and antitumoral activity of combretastatin A-4 analogs. Results Chem. 2024, 7, 101539. [Google Scholar] [CrossRef]
- Madadi, N.R.; Zong, H.; Ketkar, A.; Zheng, C.; Penthala, N.R.; Janganati, V.; Bommagani, S.; Eoff, R.L.; Guzman, M.L.; Crooks, P.A. Synthesis and evaluation of a series of resveratrol analogues as potent anti-cancer agents that target tubulin. MedChemComm 2015, 6, 788–794. [Google Scholar] [CrossRef]
- Pettit, G.R.; Minardi, M.D.; Rosenberg, H.J.; Hamel, E.; Bibby, M.C.; Martin, S.W.; Jung, M.K.; Pettit, R.K.; Cuthbertson, T.J.; Chapuis, J.C. Antineoplastic agents. 509: Synthesis of fluorcombstatin phosphate and related 3-halostilbenes(1). J. Nat. Prod. 2005, 68, 1450–1458. [Google Scholar] [CrossRef]
- Valtorta, S.; Nicolini, G.; Tripodi, F.; Meregalli, C.; Cavaletti, G.; Avezza, F.; Crippa, L.; Bertoli, G.; Sanvito, F.; Fusi, P.; et al. A novel AMPK activator reduces glucose uptake and inhibits tumor progression in a mouse xenograft model of colorectal cancer. Investig. New Drugs 2014, 32, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- McLoughlin, E.C.; Twamley, B.; O’Brien, J.E.; Hannon Barroeta, P.; Zisterer, D.M.; Meegan, M.J.; O’Boyle, N.M. Synthesis by diastereomeric resolution, biochemical evaluation and molecular modelling of chiral 3-hydroxyl β-lactam microtubule-targeting agents for the treatment of triple negative breast and chemoresistant colorectal cancers. Bioorg. Chem. 2023, 141, 106877. [Google Scholar] [CrossRef]
- Sun, L.; Vasilevich, N.I.; Fuselier, J.A.; Hocart, S.J.; Coy, D.H. Examination of the 1,4-disubstituted azetidinone ring system as a template for combretastatin A-4 conformationally restricted analogue design. Bioorg. Med. Chem. Lett. 2004, 14, 2041–2046. [Google Scholar] [CrossRef]
- Bhagat, S.; Sharma, N.; Chundawat, T.S. Synthesis of some salicylaldehyde-based Schiff bases in aqueous media. J. Chem. 2013, 2013, 909217. [Google Scholar] [CrossRef]
- Malebari, A.M.; Wang, S.; Greene, T.F.; O’Boyle, N.M.; Fayne, D.; Khan, M.F.; Nathwani, S.M.; Twamley, B.; McCabe, T.; Zisterer, D.M.; et al. Synthesis and antiproliferative evaluation of 3-chloroazetidin-2-ones with antimitotic activity: Heterocyclic bridged analogues of combretastatin A-4. Pharmaceuticals 2021, 14, 1119. [Google Scholar] [CrossRef] [PubMed]
- Walsh, O.M.; Meegan, M.J.; Prendergast, R.M.; Al Nakib, T. Synthesis of 3-acetoxyazetidin-2-ones and 3-hydroxyazetidin-2-ones with antifungal and antibacterial activity. Eur. J. Med. Chem. 1996, 31, 989–1000. [Google Scholar] [CrossRef]
- Carr, M.; Greene, L.M.; Knox, A.J.; Lloyd, D.G.; Zisterer, D.M.; Meegan, M.J. Lead identification of conformationally restricted beta-lactam type combretastatin analogues: Synthesis, antiproliferative activity and tubulin targeting effects. Eur. J. Med. Chem. 2010, 45, 5752–5766. [Google Scholar] [CrossRef] [PubMed]
- Malebari, A.M.; Greene, L.M.; Nathwani, S.M.; Fayne, D.; O’Boyle, N.M.; Wang, S.; Twamley, B.; Zisterer, D.M.; Meegan, M.J. Beta-lactam analogues of combretastatin A-4 prevent metabolic inactivation by glucuronidation in chemoresistant HT-29 colon cancer cells. Eur. J. Med. Chem. 2017, 130, 261–285. [Google Scholar] [CrossRef]
- Combes, S.; Barbier, P.; Douillard, S.; McLeer-Florin, A.; Bourgarel-Rey, V.; Pierson, J.T.; Fedorov, A.Y.; Finet, J.P.; Boutonnat, J.; Peyrot, V. Synthesis and biological evaluation of 4-arylcoumarin analogues of combretastatins. Part 2. J. Med. Chem. 2011, 54, 3153–3162. [Google Scholar] [CrossRef]
- Lara-Ochoa, F.; Espinosa-Perez, G. A new synthesis of combretastatins A-4 and A-4 and AVE-8062A. Tetrahedron Lett. 2007, 48, 7007–7010. [Google Scholar] [CrossRef]
- Twamley, B.; O’Boyle, N.M.; Meegan, M.J. Azetidin-2-ones: Structures of anti-mitotic compounds based on the 1-(3,4,5-trimethoxyphenyl)azetidin-2-one core. Acta Crystallogr. E Crystallogr. Commun. 2020, 76, 1187–1194. [Google Scholar] [CrossRef]
- Spek, A.L.; Vandersteen, F.H.; Jastrzebski, J.T.B.H.; Vankoten, G. Trans-3-amino-1-methyl-4-phenyl-2-azetidinone, C10H12N2O. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1994, 50, 1933–1935. [Google Scholar] [CrossRef]
- Kabak, M.; Senoz, H.; Elmali, A.; Adar, V.; Svoboda, I.; Dusek, M.; Fejfarova, K. Synthesis and X-ray crystal structure determination of N-p-methylphenyl-4-benzoyl-3,4-diphenyl-2-azetidinone. Crystallogr. Rep. 2010, 55, 1220–1222. [Google Scholar] [CrossRef]
- Vaske, Y.S.; Mahoney, M.E.; Konopelski, J.P.; Rogow, D.L.; McDonald, W.J. Enantiomerically pure trans-beta-lactams from alpha-amino acids via compact fluorescent light (CFL) continuous-flow photolysis. J. Am. Chem. Soc. 2010, 132, 11379–11385. [Google Scholar] [CrossRef] [PubMed]
- Page, M.I. The Chemistry of β-Lactams; Springer Science + Business Media: Dordrecht, The Netherlands, 1992. [Google Scholar]
- Aprile, S.; Del Grosso, E.; Grosa, G. Identification of the human UDP-glucuronosyltransferases involved in the glucuronidation of combretastatin A-4. Drug Metab. Dispos. 2010, 38, 1141–1146. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Cushman, M.; Nagarathnam, D.; Gopal, D.; He, H.M.; Lin, C.M.; Hamel, E. Synthesis and evaluation of analogues of (Z)-1-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethene as potential cytotoxic and antimitotic agents. J. Med. Chem. 1992, 35, 2293–2306. [Google Scholar] [CrossRef]
- Flynn, B.L.; Flynn, G.P.; Hamel, E.; Jung, M.K. The synthesis and tubulin binding activity of thiophene-based analogues of combretastatin A-4. Bioorganic Med. Chem. Lett. 2001, 11, 2341–2343. [Google Scholar] [CrossRef] [PubMed]
- Promega Corporation, CytoTox 96® Non-Radioactive Cytotoxicity Assay; Promega CytoTox 96 Nonradioactive Cytotoxicity Assay Protocol. 2016. Available online: https://worldwide.promega.com/products/cell-health-assays/cell-viability-and-cytotoxicity-assays/cytotox-96-non_radioactive-cytotoxicity-assay/?Catnum=g1780 (accessed on 6 February 2025).
- Mallepally, R.R.; Chintakuntla, N.; Putta, V.R.; Nagasuryaprasad, K.; Vuradi, R.K.; Madhuri, P.; Singh, S.S.; Chitumalla, R.K.; Jang, J.; Penumaka, N.; et al. Synthesis, spectral properties and DFT calculations of new ruthenium (II) polypyridyl complexes; DNA binding affinity and in vitro cytotoxicity activity. J. Fluoresc. 2017, 27, 1513–1530. [Google Scholar] [CrossRef] [PubMed]
- Molinspiration Cheminformatics Free Web Services. Molinspiration Cheminformatics, SK-900 26 Slovensky Grob, Slovak Republic, Slovakia. Available online: https://www.molinspiration.com (accessed on 28 February 2025).
- DeGoey, D.A.; Chen, H.J.; Cox, P.B.; Wendt, M.D. Beyond the rule of 5: Lessons learned from Abbvie’s drugs and compound collection. J. Med. Chem. 2018, 61, 2636–2651. [Google Scholar] [CrossRef]
- Lloyd, D.G.; Golfis, G.; Knox, A.J.; Fayne, D.; Meegan, M.J.; Oprea, T.I. Oncology exploration: Charting cancer medicinal chemistry space. Drug Discov. Today 2006, 11, 149–159. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef]
- Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 2000, 43, 3714–3717. [Google Scholar] [CrossRef]
- Davis, A.; Ward, S.E. The Handbook of Medicinal Chemistry: Principles and Practice; Royal Society of Chemistry: London, UK, 2014. [Google Scholar]
- Daina, A.; Zoete, V. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Baell, J.B.; Nissink, J.W.M. Seven year itch: Pan-assay interference compounds (PAINS) in 2017-utility and limitations. ACS Chem. Biol. 2018, 13, 36–44. [Google Scholar] [CrossRef]
- Gigant, B.; Wang, C.; Ravelli, R.B.; Roussi, F.; Steinmetz, M.O.; Curmi, P.A.; Sobel, A.; Knossow, M. Structural basis for the regulation of tubulin by vinblastine. Nature 2005, 435, 519–522. [Google Scholar] [CrossRef]
- Pronk, S.; Pall, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; van der Spoel, D.; et al. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013, 29, 845–854. [Google Scholar] [CrossRef]
- McGann, M. FRED pose prediction and virtual screening accuracy. J. Chem. Inf. Model. 2011, 51, 578–596. [Google Scholar] [CrossRef]
- Bruker. SAINT v8.34a, Bruker AXS Inc.: Madison, WI, USA, 2013.
- Bruker. SADABS 2014/2, Bruker AXS Inc.: Madison, WI, USA, 2014.
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Rigaku. REQAB, Rigaku Corporation: Tokyo, Japan, 1998. Available online: https://rigaku.com (accessed on 29 August 2025).
- Rigaku. Crystalclear, Rigaku Corporation: Tokyo, Japan, 2011. Available online: https://rigaku.com (accessed on 29 August 2025).
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge structural database. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Molecular Operating Environment Integrated Computer-Aided Molecular Design Platfom; MOE version 2022.02; Chemical Computing Group Inc.: Montreal, QC, Canada, 2022; Available online: https://www.chemcomp.Com/EN/products.htm (accessed on 12 May 2025).
- Hawkins, P.C.; Skillman, A.G.; Warren, G.L.; Ellingson, B.A.; Stahl, M.T. Conformer generation with OMEGA: Algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J. Chem. Inf. Model. 2010, 50, 572–584. [Google Scholar] [CrossRef]
- OpenEye, Make Receptor; OEDOCKING 4.3.2.1.; Cadence Molecular Sciences, Inc.: Santa Fe, NM, USA, 2025; Available online: http://www.eyesopen.com (accessed on 12 May 2025).
- Best, R.B.; Zhu, X.; Shim, J.; Lopes, P.E.; Mittal, J.; Feig, M.; Mackerell, A.D., Jr. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J. Chem. Theory Comput. 2012, 8, 3257–3273. [Google Scholar] [CrossRef] [PubMed]
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2010, 31, 671–690. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.J. XMGRACE, Version 5.1. 19.; Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology: Beaverton, OR, USA, 2005.
- Pymol Molecular Graphics System; Version 3.0; Schrödinger, LLC.: San Diego, CA, USA. Available online: https://www.Schrodinger.Com/life-science/learn/education/courses/pymol/ (accessed on 12 May 2025).
12i R1 = R2 = Cl, R3 = OCH2CH3, R4 = H, R5 = H 12k R1 = OH, R2 = H, R3 = OCH3, R4 = H, R5 = H 12o R1 = R2 = H, R3 = OCH3, R4 = H, R5 = H 12p R1 = R2 = H, R3 = OCH2CH3, R4 = H, R5 = H 12u R1 = OH, R2 = H, R3 = OCH3, R4 = CH3, R5 = OCH3 | CA-4 | ||||||
Compound | Ring Plane Normal AB Angle (°) a | Ring Plane Normal BC Angle (°) a | Ring Plane Normal AC Angle (°) a | Ring A to Central Torsion (°) a,b | Ring B to Central Torsion (°) a,c | Ring AB Torsion (°) a,d | Ring BC Torsion (°) a,e |
12i | 73.84(3) | 72.30(4) | 4.50(7) | 4.75(10) | −159.42(11) | 63.36(16) | −117.16(10) |
12k | 80.66(3) | 76.92(4) | 6.02(8) | −3.39(19) | −149.88(11) | −62.89(16) | 120.74(11) |
12o | 76.14(5) | 78.93(6) | 7.23(10) | −1.9(2) | 147.69(11) | −57.13(16) | 130.58(12) |
12p | 89.98(3) | 89.65(3) | 7.700(8) | 10.83(16) | −123.83(10) | 62.53(11) | −127.59(10) |
12u | 77.81(3) | 79.45(5) | 5.25(11) | 2.1(2) | −145.76(11) | 60.46(16) | −116.87(12) |
CA-4 | 53.0(1) | - | - | 144.0(4) | −9.4(8) |
12i (Å) | 12k (Å) | 12o (Å) | 12p (Å) | 12u (Å) | |
---|---|---|---|---|---|
C=O | 1.2023(15) | 1.2181(14) | 1.2104(16) | 1.2140(12) | 1.2222(16) |
C-2/C-3 | 1.5415(16) | 1.5428(16) | 1.5260(19) | 1.5244(14) | 1.5354(17) |
N1/C-4 | 1.4859(15) | 1.4860(14) | 1.4874(16) | 1.4910(12) | 1.4951(15) |
C-2/N1 | 1.3689(15) | 1.3661(14) | 1.3772(16) | 1.3754(12) | 1.3589(16) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malebari, A.M.; Kandwal, S.; Ali, A.; Fayne, D.; Twamley, B.; Zisterer, D.M.; Meegan, M.J. Synthesis, Computational Studies, and Structural Analysis of 1-(3,5-Dimethoxyphenyl)azetidin-2-ones with Antiproliferative Activity in Breast Cancer and Chemoresistant Colon Cancer. Pharmaceuticals 2025, 18, 1330. https://doi.org/10.3390/ph18091330
Malebari AM, Kandwal S, Ali A, Fayne D, Twamley B, Zisterer DM, Meegan MJ. Synthesis, Computational Studies, and Structural Analysis of 1-(3,5-Dimethoxyphenyl)azetidin-2-ones with Antiproliferative Activity in Breast Cancer and Chemoresistant Colon Cancer. Pharmaceuticals. 2025; 18(9):1330. https://doi.org/10.3390/ph18091330
Chicago/Turabian StyleMalebari, Azizah M., Shubhangi Kandwal, Abdirahman Ali, Darren Fayne, Brendan Twamley, Daniela M. Zisterer, and Mary J. Meegan. 2025. "Synthesis, Computational Studies, and Structural Analysis of 1-(3,5-Dimethoxyphenyl)azetidin-2-ones with Antiproliferative Activity in Breast Cancer and Chemoresistant Colon Cancer" Pharmaceuticals 18, no. 9: 1330. https://doi.org/10.3390/ph18091330
APA StyleMalebari, A. M., Kandwal, S., Ali, A., Fayne, D., Twamley, B., Zisterer, D. M., & Meegan, M. J. (2025). Synthesis, Computational Studies, and Structural Analysis of 1-(3,5-Dimethoxyphenyl)azetidin-2-ones with Antiproliferative Activity in Breast Cancer and Chemoresistant Colon Cancer. Pharmaceuticals, 18(9), 1330. https://doi.org/10.3390/ph18091330