Protective Effect of Marjoram Against Letrozole-Induced Ovarian Damage in Rats with Polycystic Ovarian Syndrome Entails Activation of Nrf2 and Suppression of NF-κB
Abstract
1. Introduction
2. Results
2.1. Quantitative Analysis of Marjoram Methanolic Extract
2.2. Body and Ovary Weight
2.3. Fasting Blood Glucose (FBG), Fasting Blood Insulin (FBI), and HOMA-IR
2.4. Lipid Profile
2.5. The Levels of Major Sex Hormones in the Serum of All Groups of Rats
2.6. mRNA and Nuclear Levels of NF-κB and Nrf2 in Rat Ovaries
2.7. Levels of Some Inflammatory Mediators in Ovaries of All Experimental Groups
2.8. Levels of Some Antioxidant Mediators in Ovaries of All Experimental Groups
2.9. Levels of Some Markers of Intrinsic Cell Apoptosis in Ovaries of All Experimental Groups
2.10. Ultrastructural Findings
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Preparation of Methanolic Marjoram Extract
4.3. Quantitative Analysis of Major Compounds in Origanum majorana L.
4.4. Drugs
4.5. Experimental Design
4.6. Dose Selection
4.7. Tissue and Blood Collection
4.8. Measurements in the Plasma and the Serum
4.9. Biochemical Analysis in the Tissue Homogenates
4.10. Preparation of Cytoplasmic and Nuclear Fractions and Analysis
Real-Time Polymerase Chain Reaction (q-PCR)
- (1)
- Heating: 1 cycle/98 °C/30 s;
- (2)
- Denaturation: 40 cycles/98 °C/5 s;
- (3)
- Annealing: 40 cycles/60 °C/5 s;
- (4)
- Melting: 1 cycle/95 °C/5 s/step.
4.11. Ultrastructural Study
4.12. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Bax | Bcl-2-associated protein x |
Bcl-2 | B-cell lymphoma 2 |
CHOL | total cholesterol |
FBG | fasting blood glucose |
FBI | fasting blood insulin |
FSH | Follicular-stimulating hormone |
GSH | total glutathione |
HDL | high-density lipoprotein-cholesterol |
HO-1 | heme-oxygenase-1 |
HOMA-IR | homeostasis model of insulin resistance |
ICAM-1 | intracellular cell adhesion molecule-1 |
IL-18 | interleukin-18 |
IL-1β | interleukin-1 beta |
IL-6 | interleukin-6 |
IR | insulin resistance |
LDL-c | low-density lipoprotein-cholesterol |
LH | luteinizing hormone |
MDA | malondialdehyde |
Met | metformin |
MRJ | marjoram (Origanum majorana L.) |
mRNA | messenger RNA |
NF-κB | nuclear factor kappa B |
Nrf2 | nuclear factor erythroid 2-related factor 2 |
OS | oxidative stress |
PCOS | polycystic ovary syndrome |
ROS | reactive oxygen species |
SOD | superoxide dismutase |
T2D | type 2 diabetes |
TGs | total triglycerides |
TLR4 | toll-like receptor |
TNF-α | tumor necrosis factor-α |
References
- Franks, S. Polycystic ovary syndrome in adolescents. Int. J. Obes. 2008, 32, 1035–1041. [Google Scholar] [CrossRef]
- Fauser, B.C.; Tarlatzis, B.C.; Rebar, R.W.; Legro, R.S.; Balen, A.H.; Lobo, R.; Carmina, E.; Chang, J.; Yildiz, B.O.; Laven, J.S.; et al. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): The Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil. Steril. 2012, 97, 28–38.e25. [Google Scholar] [CrossRef]
- Fanelli, F.; Gambineri, A.; Mezzullo, M.; Vicennati, V.; Pelusi, C.; Pasquali, R.; Pagotto, U. Revisiting hyper- and hypo-androgenism by tandem mass spectrometry. Rev. Endocr. Metab. Disord. 2013, 14, 185–205. [Google Scholar] [CrossRef]
- Shaaban, Z.; Khoradmehr, A.; Amiri-Yekta, A.; Jafarzadeh Shirazi, M.R.; Tamadon, A. Pathophysiologic mechanisms of obesity- and chronic inflammation-related genes in etiology of polycystic ovary syndrome. Iran. J. Basic Med. Sci. 2019, 22, 1378–1386. [Google Scholar]
- Che, Y.; Yu, J.; Li, Y.S.; Zhu, Y.C.; Tao, T. Polycystic Ovary Syndrome: Challenges and Possible Solutions. J. Clin. Med. 2023, 12, 1500. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.; Mateen, S.; Ahmad, R.; Moin, S. A brief insight into the etiology, genetics, and immunology of polycystic ovarian syndrome (PCOS). J. Assist. Reprod. Genet. 2022, 39, 2439–2473. [Google Scholar] [CrossRef]
- Unfer, V.; Kandaraki, E.; Pkhaladze, L.; Roseff, S.; Vazquez-Levin, M.H.; Laganà, A.S.; Shiao-Yng, C.; Yap-Garcia, M.I.M.; Greene, N.D.E.; Soulage, C.O.; et al. When one size does not fit all: Reconsidering PCOS etiology, diagnosis, clinical subgroups, and subgroup-specific treatments. Endocr. Metab. Sci. 2024, 14, 100159. [Google Scholar] [CrossRef]
- Deligeoroglou, E.; Vrachnis, N.; Athanasopoulos, N.; Iliodromiti, Z.; Sifakis, S.; Iliodromiti, S.; Siristatidis, C.; Creatsas, G. Mediators of chronic inflammation in polycystic ovarian syndrome. Gynecol. Endocrinol. 2012, 28, 974–978. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Dunaif, A. Insulin resistance and the polycystic ovary syndrome revisited: An update on mechanisms and implications. Endocr. Rev. 2012, 33, 981–1030. [Google Scholar] [CrossRef] [PubMed]
- Stener-Victorin, E.; Deng, Q. Epigenetic inheritance of polycystic ovary syndrome—Challenges and opportunities for treatment. Nat. Rev. Endocrinol. 2021, 17, 521–533. [Google Scholar] [CrossRef]
- Franks, S. Polycystic ovary syndrome. N. Engl. J. Med. 1995, 333, 853–861. [Google Scholar] [CrossRef]
- Kadowaki, T.; Yamauchi, T. Adiponectin and adiponectin receptors. Endocr. Rev. 2005, 26, 439–451. [Google Scholar] [CrossRef]
- Escobar-Morreale, H.F.; Villuendas, G.; Botella-Carretero, J.I.; Alvarez-Blasco, F.; Sanchon, R.; Luque-Ramirez, M.; San Millan, J.L. Adiponectin and resistin in PCOS: A clinical, biochemical and molecular genetic study. Hum. Reprod. 2006, 21, 2257–2265. [Google Scholar] [CrossRef]
- Singh, S.; Pal, N.; Shubham, S.; Sarma, D.K.; Verma, V.; Marotta, F.; Kumar, M. Polycystic Ovary Syndrome: Etiology, Current Management, and Future Therapeutics. J. Clin. Med. 2023, 12, 1454. [Google Scholar] [CrossRef]
- Luo, E.D.; Jiang, H.M.; Chen, W.; Wang, Y.; Tang, M.; Guo, W.M.; Diao, H.Y.; Cai, N.Y.; Yang, X.; Bian, Y.; et al. Advancements in lead therapeutic phytochemicals polycystic ovary syndrome: A review. Front. Pharmacol. 2023, 13, 1065243. [Google Scholar] [CrossRef]
- Rudnicka, E.; Suchta, K.; Grymowicz, M.; Calik-Ksepka, A.; Smolarczyk, K.; Duszewska, A.M.; Smolarczyk, R.; Meczekalski, B. Chronic low grade inflammation in pathogenesis of PCOS. Int. J. Mol. Sci. 2021, 22, 3789. [Google Scholar] [CrossRef]
- Kim, J.; Cha, Y.N.; Surh, Y.J. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat. Res. 2010, 690, 12–23. [Google Scholar] [CrossRef]
- Badawy, A.; Elnashar, A. Treatment options for polycystic ovary syndrome. Int. J. Women’s Health 2011, 3, 25–35. [Google Scholar] [CrossRef]
- Morgante, G.; Massaro, M.G.; Di Sabatino, A.; Cappelli, V.; De Leo, V. Therapeutic approach for metabolic disorders and infertility in women with PCOS. Gynecol. Endocrinol. 2018, 34, 4–9. [Google Scholar] [CrossRef]
- Sam, S.; Ehrmann, D.A. Metformin therapy for the reproductive and metabolic consequences of polycystic ovary syndrome. Diabetologia 2017, 60, 1656–1661. [Google Scholar] [CrossRef]
- Rababa’h, A.M.; Matani, B.R.; Ababneh, M.A. The ameliorative effects of marjoram in dehydroepiandrosterone induced polycystic ovary syndrome in rats. Life Sci. 2020, 261, 118353. [Google Scholar] [CrossRef]
- Rababa’h, A.M.; Matani, B.R.; Yehya, A. An update of polycystic ovary syndrome: Causes and therapeutics options. Heliyon 2022, 8, e11010. [Google Scholar] [CrossRef]
- Pratama, S.; Lauren, B.C.; Wisnu, W. The efficacy of vitamin B12 supplementation for treating vitamin B12 deficiency and peripheral neuropathy in metformin-treated type 2 diabetes mellitus patients: A systematic review. Diabetes Metab. Syndr. 2022, 16, 102634. [Google Scholar] [CrossRef]
- Gupta, K.; Jain, A.; Rohatgi, A. An observational study of vitamin b12 levels and peripheral neuropathy profile in patients of diabetes mellitus on metformin therapy. Diabetes Metab. Syndr. 2018, 12, 51–58. [Google Scholar] [CrossRef]
- Howlett, H.C.; Bailey, C.J. A risk-benefit assessment of metformin in type 2 diabetes mellitus. Drug Saf. 1999, 20, 489–503. [Google Scholar] [CrossRef]
- Adaramoye, O.; Akanni, O.; Adesanoye, O.; Labo-Popoola, O.; Olaremi, O. Evaluation of toxic effects of metformin hydrochloride and glibenclamide on some organs of male rats. Niger. J. Physiol. Sci. 2012, 27, 137–144. [Google Scholar]
- Balasubramanian, A.; Pachiappan, S.; Mohan, S.; Adhikesavan, H.; Karuppasamy, I.; Ramalingam, K. Therapeutic exploration of polyherbal formulation against letrozole induced PCOS rats: A mechanistic approach. Heliyon 2023, 9, e15488. [Google Scholar] [CrossRef]
- Smith, C.A.; Bateson, D.J.; Weisberg, E. A survey describing the use of complementary therapies and medicines by women attending a family planning clinic. BMC Complement. Altern. Med. 2013, 13, 224. [Google Scholar] [CrossRef]
- Holden, S.; Davis, R.; Yeh, G. Pregnant Women’s Use of Complementary & Alternative Medicine in the United States. J. Altern. Complement. Med. 2014, 20, A120. [Google Scholar]
- Stankiewicz, M.; Smith, C.; Alvino, H.; Norman, R. The use of complementary medicine and therapies by patients attending a reproductive medicine unit in South Australia: A prospective survey. Aust. N. Z. J. Obstet. Gynaecol. 2007, 47, 145–149. [Google Scholar] [CrossRef]
- Miller, L.G.; Murray, W.J. Herbal Medicinals: A Clinician’s Guide; Routledge: London, UK, 1998; p. 326. [Google Scholar]
- Chan, C.C.; Koo, M.W.; Ng, E.H.; Tang, O.S.; Yeung, W.S.; Ho, P.C. Effects of Chinese green tea on weight, and hormonal and biochemical profiles in obese patients with polycystic ovary syndrome—A randomized placebo-controlled trial. J. Soc. Gynecol. Investig. 2006, 13, 63–68. [Google Scholar] [CrossRef]
- Dou, L.; Zheng, Y.; Li, L.; Gui, X.; Chen, Y.; Yu, M.; Guo, Y. The effect of cinnamon on polycystic ovary syndrome in a mouse model. Reprod. Biol. Endocrinol. 2018, 16, 99. [Google Scholar] [CrossRef]
- Alaee, S.; Bagheri, M.J.; Ataabadi, M.S.; Koohpeyma, F. Capacity of Mentha spicata (spearmint) Extracts in Alleviating Hormonal and Folliculogenesis Disturbances in a Polycystic Ovarian Syndrome Rat Model. World Vet. J. 2020, 10, 451–456. [Google Scholar] [CrossRef]
- Kwon, C.Y.; Cho, I.H.; Park, K.S. Therapeutic Effects and Mechanisms of Herbal Medicines for Treating Polycystic Ovary Syndrome: A Review. Front. Pharmacol. 2020, 11, 1192. [Google Scholar] [CrossRef]
- Elfiky, A.M.; Ibrahim, R.S.; Khattab, A.R.; Kadry, M.O.; Ammar, N.M.; Shawky, E. Exploring the therapeutic potential of marjoram (Origanum majorana L.) in polycystic ovary syndrome: Insights from serum metabolomics, network pharmacology and experimental validation. BMC Complement. Med. Ther. 2025, 25, 67. [Google Scholar] [CrossRef]
- Al-Howiriny, T.; Alsheikh, A.; Alqasoumi, S.; Al-Yahya, M.; ElTahir, K.; Rafatullah, S. Protective effect of Origanum majorana L. ‘Marjoram’ on various models of gastric mucosal injury in rats. Am. J. Chin. Med. 2009, 37, 531–545. [Google Scholar] [CrossRef]
- Uppadhyay, P.; Uppalwar, S.V.; Thakare, H. Marjoram in Menstrual Cycle Regulation: Traditional Uses and Potential Benefits. Int. J. Res. Publ. Rev. 2024, 5, 780–792. [Google Scholar] [CrossRef]
- Haj-Husein, I.; Tukan, S.; Alkazaleh, F. The effect of marjoram (Origanum majorana) tea on the hormonal profile of women with polycystic ovary syndrome: A randomised controlled pilot study. J. Hum. Nutr. Diet. 2016, 29, 105–111. [Google Scholar] [CrossRef]
- Arranz, E.; Jaime, L.; López de las Hazas, M.C.; Reglero, G.; Santoyo, S. Supercritical fluid extraction as an alternative process to obtain essential oils with anti-inflammatory properties from marjoram and sweet basil. Ind. Crops Prod. 2015, 67, 121–129. [Google Scholar] [CrossRef]
- Vasudeva, N.; Singla, P.; Das, S.; Sharma, S.K. Antigout and antioxidant activity of stem and root of Origanum majorana Linn. Am. J. Drug Discov. Dev. 2014, 4, 102–112. [Google Scholar] [CrossRef]
- Painuli, S.; Rai, N.; Kumar, N. GC-MS analysis of methanolic extract of leaves of Rhododendron arboreum. Asian J. Pharm. Clin. Res. 2016, 9, 101–104. [Google Scholar]
- Rawat, P.; Bachheti, R.K.; Kumar, N.; Rai, N. Phytochemical analysis and evaluation of in vitro immunomodulatory activity of Rhododendron arboreum leaves. Asian J. Pharm. Clin. Res. 2018, 11, 123–128. [Google Scholar] [CrossRef]
- Vanitha, V.; Vijayakumar, S.; Nilavukkarasi, M.; Punitha, V.N.; Vidhya, E.; Praseetha, P.K. Heneicosane—A novel microbicidal bioactive alkane identified from Plumbago zeylanica L. Ind. Crops Prod. 2020, 154, 112748. [Google Scholar] [CrossRef]
- Saxena, S.; Rao, P.B. Pharmacological and phytochemical assessment of Anagallis arvensis L. leaf extracts. Asian J. Chem. 2021, 33, 1831–1841. [Google Scholar] [CrossRef]
- Jeruto, P.; Mutai, C.; Catherine, L.; Ouma, G. Phytochemical constituents of some medicinal plants used by the Nandis of South Nandi district, Kenya. J. Anim. Plant Sci. 2011, 9, 1201–1210. [Google Scholar]
- Zhang, H.; Jiang, Z.; Shen, C.; Zou, H.; Zhang, Z.; Wang, K.; Bai, R.; Kang, Y.; Ye, X.Y.; Xie, T. 5-Hydroxymethylfurfural Alleviates Inflammatory Lung Injury by Inhibiting Endoplasmic Reticulum Stress and NLRP3 Inflammasome Activation. Front. Cell Dev. Biol. 2021, 9, 782427. [Google Scholar] [CrossRef]
- Kafali, H.; Iriadam, M.; Ozardali, I.; Demir, N. Letrozole-induced poly cystic ovaries in the rat: A new model for cystic ovarian disease. Arch. Med. Res. 2004, 35, 103–108. [Google Scholar] [CrossRef]
- Lee, Y.H.; Yang, H.; Lee, S.R. Welsh onion root (Allium fistulosum) restores ovarian functions from letrozole induced-polycystic ovary syndrome. Nutrients 2018, 10, 1430. [Google Scholar] [CrossRef]
- Maharjan, R.; Nagar, P.S.; Nampoothiri, L. Effect of Aloe barbadensis Mill. formulation on Letrozole induced polycystic ovarian syndrome rat model. J. Ayurveda Integr. Med. 2010, 1, 273–279. [Google Scholar] [CrossRef]
- Arroyo, M.A.M.; Santos, P.R.S.; Oliveira, M.F.; Assis Neto, A.C. Prolonged use of letrozole causes morphological changes on gonads in Galea spixii. Anim. Reprod. 2021, 18, e20200029. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, A.S.; Thackray, V.G.; Ryan, G.E.; Tolson, K.P.; Glidewell-Kenney, C.A.; Semaan, S.J.; Poling, M.C.; Iwata, N.; Breen, K.M.; Duleba, A.J.; et al. A Novel Letrozole Model Recapitulates Both the Reproductive and Metabolic Phenotypes of Polycystic Ovary Syndrome in Female Mice. Biol. Reprod. 2015, 93, 69. [Google Scholar] [CrossRef] [PubMed]
- Diamanti-Kandarakis, E.; Papavassiliou, A.G.; Kandarakis, S.A.; Chrousos, G.P. Pathophysiology and types of dyslipidemia in PCOS. Trends Endocrinol. Metab. 2007, 18, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, Y.F.; Alorabi, M.; Abdelzaher, W.Y.; Toni, N.D.; Thabet, K.; Hegazy, A.; Bahaa, H.A.; Batiha, G.E.; Welson, N.N.; Morsy, M.A.; et al. Diacerein ameliorates letrozole-induced polycystic ovarian syndrome in rats. Biomed. Pharmacother. 2022, 149, 112870. [Google Scholar] [CrossRef]
- Rau, O.; Wurglics, M.; Dingermann, T.H.; Abdel-Tawab, M.; Schubert-Zsilavecz, M. Screening of herbal extracts for activation of the human peroxisome proliferator-activated receptor. Pharmazie 2006, 61, 952–956. [Google Scholar]
- Manneras-Holm, L.; Leonhardt, H.; Kullberg, J.; Jennische, E.; Oden, A.; Holm, G.; Hellstrom, M.; Lonn, L.; Olivecrona, G.; Stener-Victorin, E.; et al. Adipose tissue has aberrant morphology and function in PCOS: Enlarged adipocytes and low serum adiponectin, but not circulating sex steroids, are strongly associated with insulin resistance. J. Clin. Endocrinol. Metab. 2011, 96, E304–E311. [Google Scholar] [CrossRef]
- Stepto, N.K.; Cassar, S.; Joham, A.E.; Hutchison, S.K.; Harrison, C.L.; Goldstein, R.F.; Teede, H.J. Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulaemic clamp. Hum. Reprod. 2013, 28, 777–784. [Google Scholar] [CrossRef]
- Wang, J.; Wu, D.; Guo, H.; Li, M.X. Hyperandrogenemia and insulin resistance: The chief culprit of polycystic ovary syndrome. Life Sci. 2019, 236, 116940. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, V.; Verduci, E.; Cena, H.; Magenes, V.C.; Todisco, C.F.; Tenuta, E.; Gregorio, C.; De Giuseppe, R.; Bosetti, A.; Di Profio, E.; et al. Polycystic ovary syndrome in insulin-resistant adolescents with obesity: The role of nutrition therapy and food supplements as a strategy to protect fertility. Nutrients 2021, 13, 1848. [Google Scholar] [CrossRef]
- Hajam, Y.A.; Rather, H.A.; Kumar, R.; Basheer, M.; Reshi, M.S. A review on critical appraisal and pathogenesis of polycystic ovarian syndrome. Endocr. Metab. Sci. 2024, 14, 100162. [Google Scholar] [CrossRef]
- Barrea, L.; Marzullo, P.; Muscogiuri, G.; Di Somma, C.; Scacchi, M.; Orio, F.; Aimaretti, G.; Colao, A.; Savastano, S. Source and amount of carbohydrate in the diet and inflammation in women with polycystic ovary syndrome. Nutr. Res. Rev. 2018, 31, 291–301. [Google Scholar] [CrossRef]
- Zuo, T.; Zhu, M.; Xu, W. Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxid. Med. Cell. Longev. 2016, 2016, 8589318. [Google Scholar] [CrossRef]
- Bulsara, J.; Patel, P.; Soni, A.; Acharya, S. A review: Brief insight into Polycystic Ovarian syndrome. Endocr. Metab. Sci. 2021, 3, 100085. [Google Scholar] [CrossRef]
- Rakic, D.; Joksimovic Jovic, J.; Jakovljevic, V.; Zivkovic, V.; Nikolic, M.; Sretenovic, J.; Nikolic, M.; Jovic, N.; Bicanin Ilic, M.; Arsenijevic, P.; et al. High Fat Diet Exaggerate Metabolic and Reproductive PCOS Features by Promoting Oxidative Stress: An Improved EV Model in Rats. Medicina 2023, 59, 1104. [Google Scholar] [CrossRef]
- Jahan, S.; Munir, F.; Razak, S.; Mehboob, A.; Ain, Q.U.; Ullah, H.; Afsar, T.; Shaheen, G.; Almajwal, A. Ameliorative effects of rutin against metabolic, biochemical and hormonal disturbances in polycystic ovary syndrome in rats. J. Ovarian Res. 2016, 9, 86. [Google Scholar] [CrossRef]
- Doi, S.A.; Al-Zaid, M.; Towers, P.A.; Scott, C.J.; Al-Shoumer, K.A. Irregular cycles and steroid hormones in polycystic ovary syndrome. Hum. Reprod. 2005, 20, 2402–2408. [Google Scholar] [CrossRef]
- Mendonça, H.C.; Montenegro, R.M., Jr.; Foss, M.C.; Silva de Sá, M.F.; Ferriani, R.A. Positive correlation of serum leptin with estradiol levels in patients with polycystic ovary syndrome. Braz. J. Med. Biol. Res. 2004, 37, 729–736. [Google Scholar] [CrossRef]
- Singh, B.; Panda, S.; Nanda, R.; Pati, S.; Mangaraj, M.; Sahu, P.K.; Mohapatra, P.C. Effect of Metformin on Hormonal and Biochemical Profile in PCOS before and after Therapy. Ind. J. Clin. Biochem. 2010, 25, 367–370. [Google Scholar] [CrossRef]
- Sander, V.; Luchetti, C.G.; Solano, M.E.; Elia, E.; Di Girolamo, G.; Gonzalez, C.; Motta, A.B. Role of the N,N′-dimethylbiguanide metformin in the treatment of female prepuberal BALB/c mice hyperandrogenized with dehydroepiandrosterone. Reproduction 2006, 131, 591–602. [Google Scholar] [CrossRef]
- Johnson, N. Metformin is a reasonable first-line treatment option for non-obese women with infertility related to anovulatory polycystic ovary syndrome—A meta-analysis of randomised trials. Aust. N. Z. J. Obstet. Gynaecol 2011, 51, 125–129. [Google Scholar] [CrossRef]
- Liu, S.; Navarro, G.; Mauvais-Jarvis, F. Androgen excess produces systemic oxidative stress and predisposes to beta-cell failure in female mice. PLoS ONE 2010, 5, e11302. [Google Scholar]
- Suleiman, M.A.; Al-Farsi, Y.M.; Al-Khaduri, M.M.; Saleh, J.; Waly, M.I. Polycystic ovarian syndrome is linked to increased oxidative stress in Omani women. Int. J. Women’s Health 2018, 10, 763–771. [Google Scholar] [CrossRef]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef]
- Sandhu, J.K.; Waqar, A.; Jain, A.; Joseph, C.; Srivastava, K.; Ochuba, O.; Alkayyali, T.; Ruo, S.W.; Poudel, S. Oxidative Stress in Polycystic Ovarian Syndrome and the Effect of Antioxidant N-Acetylcysteine on Ovulation and Pregnancy Rate. Cureus 2021, 13, e17887. [Google Scholar] [CrossRef]
- Mohammadi, M. Oxidative stress and polycystic ovary syndrome: A brief review. Int. J. Prev. Med. 2019, 10, 86. [Google Scholar] [CrossRef]
- Wang, Y.; Li, N.; Zeng, Z.; Tang, L.; Zhao, S.; Zhou, F.; Zhou, L.; Xia, W.; Zhu, C.; Rao, M. Humanin regulates oxidative stress in the ovaries of polycystic ovary syndrome patients via the Keap1/Nrf2 pathway. Mol. Hum. Reprod. 2021, 27, gaaa081. [Google Scholar] [CrossRef]
- Laher, I. (Ed.) Systems Biology of Free Radicals and Antioxidants; Springer: Berlin/Heidelberg, Germany, 2014; Volume 5, 4178p. [Google Scholar] [CrossRef]
- Agarwal, A.; Aponte-Mellado, A.; Premkumar, B.J.; Shaman, A.; Gupta, S. The effects of oxidative stress on female reproduction: A review. Reprod. Biol. Endocrinol. 2012, 10, 49. [Google Scholar] [CrossRef]
- Rashidi, B.; Haghollahi, F.; Shariat, M.; Zayerii, F. The effects of calcium-vitamin D and metformin on polycystic ovary syndrome: A pilot study. Taiwan. J. Obstet. Gynecol. 2009, 48, 142–147. [Google Scholar] [CrossRef]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2016, 1863, 2977–2992. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Z.; Cao, J.; Chen, Y.; Dong, Y. A novel and compact review on the role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 2018, 16, 80. [Google Scholar] [CrossRef]
- Sun, Y.; Li, S.; Liu, H.; Gong, Y.; Bai, H.; Huang, W.; Liu, Q.; Guan, L.; Fan, P. Association of GPx1 P198L and CAT C-262T genetic variations with polycystic ovary syndrome in Chinese women. Front. Endocrinol. 2019, 10, 771. [Google Scholar] [CrossRef]
- Huang, Y.; Li, W.; Su, Z.-Y.; Kong, A.-N.T. The complexity of the Nrf2 pathway: Beyond the antioxidant response. J. Nutr. Biochem. 2015, 26, 1401–1413. [Google Scholar] [CrossRef]
- Nezu, M.; Suzuki, N.; Yamamoto, M. Targeting the KEAP1-NRF2 system to prevent kidney disease progression. Am. J. Nephrol. 2017, 45, 473–483. [Google Scholar] [CrossRef]
- Wang, K.; Li, Y. Signaling pathways and targeted therapeutic strategies for polycystic ovary syndrome. Front. Endocrinol. 2023, 14, 1191759. [Google Scholar] [CrossRef]
- Li, W.; Khor, T.O.; Xu, C.; Shen, G.; Jeong, W.S.; Yu, S.; Kong, A.N. Activation of Nrf2-antioxidant signaling attenuates NF-κB inflammatory response and elicits apoptosis. Biochem. Pharmacol. 2008, 76, 1485–1489. [Google Scholar] [CrossRef]
- Niture, S.K.; Jaiswal, A.K. Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis. J. Biol. Chem. 2012, 287, 9873–9886. [Google Scholar] [CrossRef]
- Wardyn, J.D.; Ponsford, A.H.; Sanderson, C.M. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem. Soc. Trans. 2015, 43, 621–626. [Google Scholar] [CrossRef]
- Hennig, P.; Garstkiewicz, M.; Grossi, S.; Di Filippo, M.; French, L.E.; Beer, H.-D. The crosstalk between Nrf2 and inflammasomes. Int. J. Mol. Sci. 2018, 19, 562. [Google Scholar] [CrossRef]
- Gao, W.; Guo, L.; Yang, Y.; Wang, Y.; Xia, S.; Gong, H.; Zhang, B.K.; Yan, M. Dissecting the Crosstalk Between Nrf2 and NF-κB Response Pathways in Drug-Induced Toxicity. Front. Cell Dev. Biol. 2022, 9, 809952. [Google Scholar] [CrossRef]
- Biswas, S.K. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid. Med. Cell. Longev. 2016, 2016, 5698931. [Google Scholar] [CrossRef]
- Vaziri, N.D.; Rodríguez-Iturbe, B. Mechanisms of disease: Oxidative stress and inflammation in the pathogenesis of hypertension. Nat. Clin. Pract. Nephrol. 2006, 2, 582–593. [Google Scholar] [CrossRef]
- Artimani, T.; Karimi, J.; Mehdizadeh, M.; Yavangi, M.; Khanlarzadeh, E.; Ghorbani, M.; Asadi, S.; Kheiripour, N. Evaluation of pro-oxidant-antioxidant balance (PAB) and its association with inflammatory cytokines in polycystic ovary syndrome (PCOS). Gynecol. Endocrinol. 2018, 34, 148–152. [Google Scholar] [CrossRef]
- Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants- superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- Mossa, A.T.; Nawwar, G.A. Free radical scavenging and antiacetylcholinesterase activities of Origanum majorana L. essential oil. Hum. Exp. Toxicol. 2011, 30, 1501–1513. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, S.; Qu, J.; Zhou, H.; Attia Fatma, A.K.K.; Kang, W.; Xi, X.; Liu, Z. Anti-Inflammatory Phytoconstituents of Origanum majorana. J. Food Qual. 2022, 1, 3888075. [Google Scholar]
- Food and Drug Administration (FDA). Estimating the Safe Starting Dose in Clinical Trials for Therapeutics in Adult Healthy Volunteers; Guidance for Industry and Reviewers; FDA: Rockville, MD, USA, 2005. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/estimating-maximum-safe-starting-dose-initial-clinical-trials-therapeutics-adult-healthy-volunteers (accessed on 8 August 2025).
- Al-Harbi, L.N.; Alshammari, G.M.; Al-Dossari, A.M.; Subash-Babu, P.; Binobead, M.A.; Alhussain, M.H.; AlSedairy, S.A.; Al-Nouri, D.M.; Shamlan, G. Beta vulgaris L. (beetroot) methanolic extract prevents hepatic steatosis and liver damage in T2DM rats by hypoglycemic, insulin-sensitizing, antioxidant effects, and upregulation of PPARA. Biology 2021, 10, 1306. [Google Scholar] [CrossRef]
- Ibrahim, Y.F.; Nisreen, D.; Toni, M.; Thabet, K.; Hegazy, A.R.; Bahaa, H.A. Ameliorating effect of tocilizumab in letrozole induced polycystic ovarian syndrome in rats via improving insulin resistance and down-regulation of VEGF/ANGPT/PDGF. MJMR Minia J. Med. Res. 2020, 31, 336–353. [Google Scholar] [CrossRef]
- Xu, J.; Dun, J.; Yang, J.; Zhang, J.; Lin, Q.; Huang, M.; Ji, F.; Huang, L.; You, X.; Lin, Y. Letrozole Rat Model Mimics Human Polycystic Ovarian Syndrome and Changes in Insulin Signal Pathways. Med. Sci. Monit. 2020, 26, e923073. [Google Scholar] [CrossRef]
- Mirazi, N.; Hesami, S.; Nourian, A.; Hosseini, A. Protective efficacy of dark chocolate in letrozole-induced ovary toxicity model rats: Hormonal, biochemical, and histopathological investigation. J. Tradit. Chin. Med. 2022, 42, 741–748. [Google Scholar]
- Kim, C.H.; Chon, S.J.; Lee, S.H. Effects of lifestyle modification in polycystic ovary syndrome compared to metformin only or metformin addition: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 7802. [Google Scholar] [CrossRef]
- Majid, H.; Masood, Q.; Khan, A.H. Homeostatic Model Assessment for Insulin Resistance (HOMA-IR): A Better Marker for Evaluating Insulin Resistance than Fasting Insulin in Women with Polycystic Ovarian Syndrome. J. Coll. Physicians Surg. Pak. 2017, 27, 123–126. [Google Scholar]
- Al-Hussan, R.; Albadr, N.A.; Alshammari, G.M.; Almasri, S.A.; Yahya, M.A. Phloretamide Prevent Hepatic and Pancreatic Damage in Diabetic Male Rats by Modulating Nrf2 and NF-κB. Nutrients 2023, 15, 1456. [Google Scholar] [CrossRef] [PubMed]
Sr. No | Retention Time (min) | Area (m2) | Name | Molecular Weight | Percentage (%) |
---|---|---|---|---|---|
1 | 5.20 | 72,500 | 5-Hydroxymethylfurfural | 126 | 2.28 |
2 | 12.35 | 62,500 | Dodecanoic acid | 200 | 1.96 |
3 | 18.60 | 107,000 | Deca-4,6-diyn-1-yl 3-methylbutanoate | 234 | 3.36 |
4 | 19 | 98,000 | (E)-Deca-8-en-4,6-diyn-1-yl 3-methylbutanoate | 232 | 3.08 |
5 | 19.15 | 65,000 | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 296 | 2.04 |
6 | 19.25 | 67,000 | 2-Pentadecanone, 6,10,14-trimethyl- | 268 | 2.10 |
7 | 21.25 | 73,000 | Hexadecanoic acid, methyl ester | 270 | 2.29 |
8 | 22.5 | 115,000 | n-Hexadecanoic acid | 256 | 3.61 |
9 | 24.90 | 74,500 | 7,10-Octadecadienoic acid, methyl ester | 294 | 2.34 |
10 | 25 | 74,000 | 9,12,15-Octadecatrienoic acid, ethyl ester, (Z,Z,Z)- | 306 | 2.32 |
11 | 25.25 | 66,000 | [1,1-Bicyclopropyl]-2-octanoic acid, 2′-hexyl-, methyl ester | 322 | 2.07 |
12 | 25.85 | 125,000 | Linoleyl acetate | 308 | 3.93 |
13 | 26 | 139,000 | 9,12,15-Octadecatrienoic acid, (Z,Z,Z) | 278 | 4.37 |
14 | 26.30 | 112,000 | Octadecanoic acid | 284 | 3.52 |
15 | 26.60 | 78,000 | Cyclopropanetetradecanoic acid, 2-octyl-, methyl ester | 394 | 2.45 |
16 | 27.40 | 66,000 | d-Mannitol, 1-O-(22-hydroxydocosyl)- | 506 | 2.07 |
17 | 27.55 | 73,000 | 1b,4a-Epoxy-2H-cyclopenta[3,4]cyclopropa[8,9]cycloundec[1,2-b]oxiren-5(6H)-one, 7-(acetyloxy)decahydro-2,9,10-trihydroxy-3,6,8,8,10a-pentamethyl- | 424 | 2.29 |
18 | 28.20 | 116,000 | Tetrapentacontane | 758 | 3.64 |
19 | 29 | 95,000 | Eicosanoic acid | 312 | 2.98 |
20 | 29.10 | 150,000 | Henicosane-6,8-dione | 324 | 4.71 |
21 | 30.6 | 91,000 | Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester | 330 | 2.86 |
22 | 30.75 | 76,000 | Butylaldehyde, 4-benzyloxy-4-[2,2,-dimethyl-4-dioxolanyl]- | 278 | 2.39 |
23 | 32.45 | 85,000 | Linoleyl myristate | 476 | 2.67 |
24 | 32.55 | 94,000 | 9,12,15-Octadecatrienoic acid, 2,3-dihydroxypropyl ester, (Z,Z,Z) | 352 | 2.95 |
25 | 33.35 | 105,000 | Pentacosane-6,8-dione | 380 | 3.30 |
26 | 33.45 | 90,000 | Tricosane-4,6-dione | 352 | 2.83 |
27 | 33.65 | 78,000 | 2,2,4-Trimethyl-3-(3,8,12,16-tetramethyl-heptadeca-3,7,11,15-tetraenyl)-cyclohexan-1-ol | 428 | 2.45 |
28 | 35.30 | 142,000 | Heptacosane-6,8-dione | 408 | 4.46 |
29 | 36.85 | 106,000 | DL-alpha-Tocopherol | 430 | 3.33 |
30 | 37.75 | 102,000 | Nonacosane-6,8-dione | 436 | 3.20 |
31 | 38.65 | 120,000 | Stigmasterol | 412 | 3.77 |
32 | 39.05 | 151,000 | 1,1,6-Trimethyl-3-methylene-2-(3,6,9,13-tetramethyl-6-ethenye-10,14-dimethylene-pentadec-4-enyl)cyclohexane | 452 | 4.74 |
33 | 39.70 | 115,000 | gamma-Sitosterol | 414 | 3.61 |
Final Body Weight (g) | Right Ovary Weight (mg) | Left Ovary Weight (mg) | Right Ovary Length (mg) | Left Ovary Length (mg) | |
---|---|---|---|---|---|
Control | 232.1 ± 24.5 | 46.4 ± 4.7 | 47.2 ± 3.2 | 4.5 ± 0.4 | 4.7 ± 0.3 |
Letrozole | 364.5± 29.4 a | 65.4 ± 6.1 a | 66.0 ± 6.0 a | 6.4 ± 0.51 a | 6.8 ± 0.6 a |
Letrozole + Met | 284.3± 14.5 ab | 57.2 ± 4.2 ab | 55.5 ± 3.8 ab | 5.8 ± 0.3 ab | 5.9 ± 0.5 ab |
Letrozole+ MRJ (20 mg/kg) | 367.5± 27.8 ac | 57.8 ± 5.8 ab | 57.5 ± 3.8 ab | 5.7 ± 0.4 ab | 5.7 ± 0.3 ab |
Letrozole + MRJ (40 mg/kg) | 381.3 ± 34.5 ac | 50.8 ± 4.1 abcd | 52.3 ± 2.5 abcd | 5.1 ± 0.3 abcd | 5.2 ± 0.3 abcd |
Letrozole + MRJ (60 mg/kg) | 378.1 ± 40.1 ac | 43.7 ± 3.2 bcde | 46.6 ± 3.0 bcde | 4.2 ± 0.4 bcde | 4.6 ± 0.5 bcde |
FBG (mg/dL) | FBI (mIU/mL) | HOMA-IR | |
---|---|---|---|
Control | 98.5 ± 10.1 | 4.1 ± 0.73 | 0.93 ± 0.11 |
Letrozole (PCOS) | 171.3 ± 19.4 a | 6.9 ± 0.61 a | 2.91± 0.31 a |
Letrozole + Met | 131.3 ± 14.3 ab | 4.9 ± 0.6 ab | 1.68 ± 0.21 ab |
Letrozole + MRJ (20 mg/kg) | 169.1 ± 17.5 ac | 6.3 ± 0.6 ac | 2.52 ± 0.45 ac |
Letrozole + MRJ (40 mg/kg) | 184.3 ± 20.1 ac | 6.1 ± 0.6 ac | 2.71 ± 0.71 ac |
Letrozole+ MRJ (60 mg/kg) | 177.3 ± 16.5 ac | 6.5± 0.7 ac | 2.88 ± 0.41 ac |
CHOL (mg/dL) | TGs (mg/dL) | LDL-c (mg/dL) | HDL-c (mg/dL) | |
---|---|---|---|---|
Control | 68.9 ± 9.1 | 88.5 ± 9.9 | 34.5 ± 3.1 | 20.1± 2.3 |
Letrozole (PCOS) | 181.2 ± 20.1 a | 144.3 ± 12.1 a | 102.2 ± 9.5 a | 8.5 ± 0.79 a |
PCOS + met | 137.2 ± 14.6 ab | 119.3 ± 10.3 ab | 76.5 ± 5.5 ab | 15.4 ± 1.9 ab |
PCOS + MRJ (20 mg/kg) | 146.3 ± 12.1 abc | 124.5 ± 10.4 ab | 78.4 ± 7.8 ab | 12.5 ± 1.1 ab |
PCOS + MRJ (40 mg/kg) | 118.3 ± 11.6 abcd | 102.1 ± 8.5 abcd | 64.3 ± 5.1 abcd | 16.5 ± 1.2 abcd |
PCOS + MRJ (60 mg/kg) | 81.3 ± 8.5 abcde | 83.5 ± 6.9 bcde | 39.6 ± 4.7 bcde | 22.4 ± 1.8 bcde |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Harbi, L.N.; ALSedairy, S.A.; Alshammari, G.M.; Binobead, M.A.; Arzoo, S. Protective Effect of Marjoram Against Letrozole-Induced Ovarian Damage in Rats with Polycystic Ovarian Syndrome Entails Activation of Nrf2 and Suppression of NF-κB. Pharmaceuticals 2025, 18, 1291. https://doi.org/10.3390/ph18091291
Al-Harbi LN, ALSedairy SA, Alshammari GM, Binobead MA, Arzoo S. Protective Effect of Marjoram Against Letrozole-Induced Ovarian Damage in Rats with Polycystic Ovarian Syndrome Entails Activation of Nrf2 and Suppression of NF-κB. Pharmaceuticals. 2025; 18(9):1291. https://doi.org/10.3390/ph18091291
Chicago/Turabian StyleAl-Harbi, Laila Naif, Sahar Abdulaziz ALSedairy, Ghedeir M. Alshammari, Manal Abdulaziz Binobead, and Shaista Arzoo. 2025. "Protective Effect of Marjoram Against Letrozole-Induced Ovarian Damage in Rats with Polycystic Ovarian Syndrome Entails Activation of Nrf2 and Suppression of NF-κB" Pharmaceuticals 18, no. 9: 1291. https://doi.org/10.3390/ph18091291
APA StyleAl-Harbi, L. N., ALSedairy, S. A., Alshammari, G. M., Binobead, M. A., & Arzoo, S. (2025). Protective Effect of Marjoram Against Letrozole-Induced Ovarian Damage in Rats with Polycystic Ovarian Syndrome Entails Activation of Nrf2 and Suppression of NF-κB. Pharmaceuticals, 18(9), 1291. https://doi.org/10.3390/ph18091291