Antioxidant Potential and Oxidative Stress Modulation of Geranium macrorrhizum L. Oil Extract in Gentamicin-Induced Nephrotoxicity
Abstract
1. Introduction
2. Results
2.1. G. macrorrhizum Oil Chemical Composition
2.2. Kidney Histopathology
2.3. Analysis of Kidney Injury Molecule-1 (KIM-1), Cystatin C (Cys C) and Glutathione-S-Transferase (GST) in Kidneys
2.4. Analysis of Hydroxyproline (Hyp), 5-MSL, MDA and 8-OHdG in Kidneys
2.5. Determination of Renal Oxidative Remodeling
2.6. Determination of Antioxidant Enzymes
2.7. Analysis of Pro-Oxidant Status of the Kidneys
2.8. Determination of Interleukin Production by Kidneys
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Gas Chromatography-Mass Spectrometric Analysis (GC FID/MS)
4.3. Animals, Experimental Design and Ethical Approval
- (1)
- The control group was administered via oral gavage 0.1 mL of isotonic NaCl solution (0.9%) for 10 days;
- (2)
- The gentamicin (GM)-induced nephrotoxicity group’s animals received GM (administration of GM 200 mg kg−1 day−1 i.p.) for a duration of 10 days;
- (3)
- The G.macrorrhizum oil-only group’s animals were treated with a dose of 50 mg kg−1 day−1 b.w., p.o. for 10 days;
- (4)
- The GM + G.macrorrhizum oil combination group’s animals were treated with G. macrorrhizum oil (50 mg kg−1 day−1, p.o.) and GM (200 mg kg−1 day−1, i.p.) for 10 days.
4.4. Histopathological Analysis
4.5. Renal Hydroxyproline (Hyp) Measurement
4.6. Electron Paramagnetic Resonance (EPR) Measurement of Oxidative Stress
4.6.1. Renal ROS Production
4.6.2. Renal Nitric Oxide (NO•), Superoxide (O2•−) and Ascorbate (Asc•) Radical Generation
4.6.3. Renal 3-Maleimido Proxyl (5-MSL) Protein Oxidation
4.6.4. 4-Hydroxy-2,2,6,6-Tetramethylpiperidine 1-Oxyl (TEMPOL)
4.7. Renal Protein Carbonyl Content (PCC) and Advanced Glycation End Products (AGEs)
4.8. Kidney Functional Parameters
4.9. Renal Lipid Peroxidation and Endogenous Antioxidant Activity
4.10. Measurement of Pro-Inflammatory Parameters in Renal Tissue and Serum
4.11. Statistical Analysis
4.12. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garneau-Tsodikova, S.; Labby, K.J. Mechanisms of Resistance to Aminoglycoside Antibiotics: Overview and Perspectives. MedChemComm 2016, 7, 11–27. [Google Scholar] [CrossRef]
- Greber, B.J.; Ban, N. Structure and Function of the Mitochondrial Ribosome. Annu. Rev. Biochem. 2016, 85, 103–132. [Google Scholar] [CrossRef]
- Randjelovic, P.; Veljkovic, S.; Stojiljkovic, N.; Sokolovic, D.; Ilic, I. Gentamicin nephrotoxicity in animals: Current knowledge and future perspectives. EXCLI J. 2017, 16, 388–399. [Google Scholar] [CrossRef]
- Gamaan, M.A.; Zaky, H.S.; Ahmed, H.I. Gentamicin-induced nephrotoxicity: A mechanistic approach. Azhar Int. J. Pharm. Med. Sci. 2023, 3, 11–19. [Google Scholar] [CrossRef]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef]
- Li, C.; Deng, X.; Xie, X.; Liu, Y.; Friedmann Angeli, J.P.; Lai, L. Activation of Glutathione Peroxidase 4 as a Novel Anti-inflammatory Strategy. Front. Pharmacol. 2018, 9, 1120. [Google Scholar] [CrossRef]
- Friedmann Angeli, J.P.; Schneider, M.; Proneth, B.; Tyurina, Y.Y.; Tyurin, V.A.; Hammond, V.J.; Herbach, N.; Aichler, M.; Walch, A.; Eggenhofer, E.; et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 2014, 16, 1180–1191. [Google Scholar] [CrossRef]
- Linkermann, A.; Skouta, R.; Himmerkus, N.; Mulay, S.R.; Dewitz, C.; De Zen, F.; Prokai, A.; Zuchtriegel, G.; Krombach, F.; Welz, P.S.; et al. Synchronized renal tubular cell death involves ferroptosis. Proc. Natl. Acad. Sci. USA 2014, 111, 16836–16841. [Google Scholar] [CrossRef] [PubMed]
- Martin-Sanchez, D.; Ruiz-Andres, O.; Poveda, J.; Carrasco, S.; Cannata-Ortiz, P.; Sanchez-Niño, M.D.; Ruiz Ortega, M.; Egido, J.; Linkermann, A.; Ortiz, A.; et al. Ferroptosis, but Not Necroptosis, Is Important in Nephrotoxic Folic Acid-Induced AKI. J. Am. Soc. Nephrol. 2017, 28, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Tang, D.; Zhao, L.; Li, W.; Han, J.; Hu, B.; Nie, G.; He, Y. Liproxstatin-1 Protects Hair Cell-Like HEI-OC1 Cells and Cochlear Hair Cells against Neomycin Ototoxicity. Oxid. Med. Cell. Longev. 2020, 2020, 1782659, Erratum in Oxid. Med. Cell. Longev. 2021, 2021, 9873282. [Google Scholar] [CrossRef]
- Georgiev, T.; Nikolova, G.; Dyakova, V.; Karamalakova, Y.; Georgieva, E.; Ananiev, J.; Ivanov, V.; Hadzhibozheva, P. Vitamin E and Silymarin Reduce Oxidative Tissue Damage during Gentamycin-Induced Nephrotoxicity. Pharmaceuticals 2023, 16, 1365. [Google Scholar] [CrossRef]
- Petkova-Parlapanska, K.; Stefanov, I.; Ananiev, J.; Georgiev, T.; Hadzhibozheva, P.; Petrova-Tacheva, V.; Kaloyanov, N.; Georgieva, E.; Nikolova, G.; Karamalakova, Y. Sambucus nigra-Lyophilized Fruit Extract Attenuated Acute Redox-Homeostatic Imbalance via Mutagenic and Oxidative Stress Modulation in Mice Model on Gentamicin-Induced Nephrotoxicity. Pharmaceuticals 2025, 18, 85. [Google Scholar] [CrossRef] [PubMed]
- Jado, J.C.; Humanes, B.; González-Nicolás, M.Á.; Camaño, S.; Lara, J.M.; López, B.; Cercenado, E.; García-Bordas, J.; Tejedor, A.; Lázaro, A. Nephroprotective Effect of Cilastatin against Gentamicin-Induced Renal Injury In Vitro and In Vivo without Altering Its Bactericidal Efficiency. Antioxidants 2020, 9, 821. [Google Scholar] [CrossRef]
- Abarova, S.; Alexova, R.; Dragomanova, S.; Solak, A.; Fagone, P.; Mangano, K.; Petralia, M.C.; Nicoletti, F.; Kalfin, R.; Tancheva, L. Emerging Therapeutic Potential of Polyphenols from Geranium sanguineum L. in Viral Infections, Including SARS-CoV-2. Biomolecules 2024, 14, 130. [Google Scholar] [CrossRef]
- Radulović, N.S.; Stojković, M.B.; Mitić, S.S.; Randjelović, P.J.; Ilić, I.R.; Stojanović, N.M.; Stojanović-Radić, Z.Z. Exploitation of the antioxidant potential of Geranium macrorrhizum (Geraniaceae): Hepatoprotective and antimicrobial activities. Nat. Prod. Commun. 2012, 7, 1609–1614. [Google Scholar] [CrossRef] [PubMed]
- Ilić, M.D.; Marčetić, M.D.; Zlatković, B.K.; Lakušić, B.S.; Kovačević, N.N.; Drobac, M.M. Chemical Composition of Volatiles of Eight Geranium L. Species from Vlasina Plateau (South Eastern Serbia). Chem. Biodivers. 2020, 17, e1900544. [Google Scholar] [CrossRef]
- Venskutonis, P.R.; Dedonyte, V.; Lazutka, J.; Slapsyte, G.; Maroziene, A.; Nemeikaite-Ceniene, A.; Cenas, N.; Miliauskas, G. A preliminary assessment of singlet oxygen scavenging, cytotoxic and genotoxic properties of Geranium macrorrhizum extracts. Acta Biochim. Pol. 2010, 57, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Tzanova, M.T.; Grozeva, N.H.; Gerdzhikova, M.A.; Todorova, M.H. Composition and antioxidant potential of essential oil of Geranium macrorrhizum L. from different regions of Bulgaria. Bulg. Chem. Commun. 2024, 56, 32–37. [Google Scholar] [CrossRef]
- Wu, L.; Wang, L.; Tian, X.; Zhang, J.; Feng, H. Germacrone exerts anti-cancer effects on gastric cancer through induction of cell cycle arrest and promotion of apoptosis. BMC Complement. Med. Ther. 2020, 20, 21. [Google Scholar] [CrossRef] [PubMed]
- Khajevand-Khazaei, M.R.; Mohseni-Moghaddam, P.; Hosseini, M.; Gholami, L.; Baluchnejadmojarad, T.; Roghani, M. Rutin, a quercetin glycoside, alleviates acute endotoxemic kidney injury in C57BL/6 mice via suppression of inflammation and up-regulation of antioxidants and SIRT1. Eur. J. Pharmacol. 2018, 833, 307–313. [Google Scholar] [CrossRef]
- Soodvilai, S.; Meetam, P.; Siangjong, L.; Chokchaisiri, R.; Suksamrarn, A.; Soodvilai, S. Germacrone Reduces Cisplatin-Induced Toxicity of Renal Proximal Tubular Cells via Inhibition of Organic Cation Transporter. Biol. Pharm. Bull. 2020, 43, 1693–1698. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, S.C.; Siddiqui, M.S.; Athar, M.; Alam, M.S. Geraniol inhibits murine skin tumorigenesis by modulating COX-2 expression, Ras-ERK1/2 signaling pathway and apoptosis. J. Appl. Toxicol. 2013, 33, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Zeima, N.M.; EL-Gawish, A.M. The Prophylactic Effect of some herbs extract on Gentamicin Induced Nephrotoxicity in Albino Rats. Egypt. J. Nutr. Health 2021, 16, 35–52. [Google Scholar] [CrossRef]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Abu Almaaty, A.H.; Elmasry, R.A.; Farrag, M.S.; Althobaiti, F.; Aldhahrani, A.; Fayad, E.; Hussain, M.A. Impact of Human Umbilical Cord Blood Mononuclear Cells on Gentamicin-Induced Renal Injury and Genotoxicity in Rats. Front. Med. 2021, 8, 689691. [Google Scholar] [CrossRef]
- Solanki, S.; Modi, C.M.; Patel, H.B.; Patel, U.D.; Singh, V. Protective Effect of Polyherbal Extract on Gentamicin-Induced Renal Injury in Wistar Rats. Indian. J. Pharm. Sci. 2022, 84, 369–379. [Google Scholar] [CrossRef]
- Guerreiro, Í.; Ferreira-Pêgo, C.; Carregosa, D.; Santos, C.N.; Menezes, R.; Fernandes, A.S.; Costa, J.G. Polyphenols and Their Metabolites in Renal Diseases: An Overview. Foods 2022, 11, 1060. [Google Scholar] [CrossRef]
- Albalawi, R.S.; Binmahfouz, L.S.; Hareeri, R.H.; Shaik, R.A.; Bagher, A.M. Parthenolide Phytosomes Attenuated Gentamicin-Induced Nephrotoxicity in Rats via Activation of Sirt-1, Nrf2, OH-1, and NQO1 Axis. Molecules 2023, 28, 2741. [Google Scholar] [CrossRef]
- M’hamdi, Z.; Davì, F.; Elhourri, M.; Amechrouq, A.; Mondello, F.; Cacciola, F.; Laganà Vinci, R.; Mondello, L.; Miceli, N.; Taviano, M.F. Phytochemical Investigations, Antioxidant and Insecticidal Properties of Essential Oil and Extracts from the Aerial Parts of Pelargonium graveolens from Morocco. Molecules 2024, 29, 4036. [Google Scholar] [CrossRef] [PubMed]
- Zor, A. Genotoxicity Testing of Geranium macrorrhizum Extracts. Master’s Thesis, Vilniaus Universitetas, Vilnius, Lithuania, 2020. [Google Scholar]
- Baker, B.P.; Grant, J.A. Geranium Oil Profile. 2018. Available online: https://hdl.handle.net/1813/56128 (accessed on 24 August 2025).
- Chaudhary, P.; Janmeda, P.; Docea, A.O.; Yeskaliyeva, B.; Abdull Razis, A.F.; Modu, B.; Calina, D.; Sharifi-Rad, J. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Front. Chem. 2023, 11, 1158198. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, N.M.; Ranđelović, P.J.; Simonović, M.; Radić, M.; Todorović, S.; Corrigan, M.; Harkin, A.; Boylan, F. Essential Oil Constituents as Anti-Inflammatory and Neuroprotective Agents: An Insight through Microglia Modulation. Int. J. Mol. Sci. 2024, 25, 5168. [Google Scholar] [CrossRef]
- Ben Slima, A.; Ali, M.B.; Barkallah, M.; Traore, A.I.; Boudawara, T.; Allouche, N.; Gdoura, R. Antioxidant properties of Pelargonium graveolens L’Her essential oil on the reproductive damage induced by deltamethrin in mice as compared to alpha-tocopherol. Lipids Health Dis. 2013, 12, 30. [Google Scholar] [CrossRef]
- Džamić, A.M.; Soković, M.D.; Ristić, M.S.; Grujić, S.M.; Mileski, K.S.; Marin, P.D. Chemical composition, antifungal and antioxidant activity of Pelargonium graveolens essential oil. J. Appl. Pharm. Sci. 2014, 3, 1–5. [Google Scholar] [CrossRef]
- Lu, Y.; Foo, L.Y. Antioxidant activities of polyphenol from sage (Salvia officinalis). Food Chem. 2001, 75, 197–202. [Google Scholar] [CrossRef]
- Nivitabishekam, S.N.; Asad, M.; Prasad, V.S. Pharmacodynamic interaction of Momordica charantia with rosiglitazone in rats. Chem. Biol. Interact. 2009, 177, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Brito, R.G.; Guimarães, A.G.; Quintans, J.S.; Santos, M.R.; De Sousa, D.P.; Badaue-Passos, D., Jr.; de Lucca, W., Jr.; Brito, F.A.; Barreto, E.O.; Oliveira, A.P.; et al. Citronellol, a monoterpene alcohol, reduces nociceptive and inflammatory activities in rodents. J. Nat. Med. 2012, 66, 637–644. [Google Scholar] [CrossRef]
- Lohani, A.; Mishra, A.K.; Verma, A. Cosmeceutical potential of geranium and calendula essential oil: Determination of antioxidant activity and in vitro sun protection factor. J. Cosmet. Dermatol. 2019, 18, 550–557. [Google Scholar] [CrossRef]
- Chalchat, J.C.; Petrovic, S.D.; Maksimovic, Z.A.; Gorunovic, M.S. A Comparative Study on Essential Oils of Geranium macrorrhizum L. and Geranium phaeum L., Geraniaceae from Serbia. J. Essent. Oil Res. 2002, 14, 333–335. [Google Scholar] [CrossRef]
- Ameline, A.; Dorland, J.; Werrie, P.Y.; Couty, A.; Fauconnier, M.L.; Lateur, M.; Doury, G. Geranium macrorrhizum, a potential novel companion plant affecting preference and performance of Myzus persicae on sweet pepper. J. Pest Sci. 2023, 96, 671–682. [Google Scholar] [CrossRef]
- Koutsaviti, A.; Antonopoulou, V.; Vlassi, A.; Antonatos, S.; Michaelakis, A.; Papachristos, D.P.; Tzakou, O. Chemical composition and fumigant activity of essential oils from six plant families against Sitophilus oryzae (Col: Curculionidae). J. Pest Sci. 2018, 91, 873–886. [Google Scholar] [CrossRef]
- Kashyap, D.; Mittal, S.; Sak, K.; Singhal, P.; Tuli, H.S. Molecular mechanisms of action of quercetin in cancer: Recent advances. Tumor Biol. 2016, 37, 12927–12939. [Google Scholar] [CrossRef]
- Dai, L.; Watanabe, M.; Qureshi, A.R.; Mukai, H.; Machowska, A.; Heimbürger, O.; Barany, P.; Lindholm, B.; Stenvinkel, P. Serum 8-hydroxydeoxyguanosine, a marker of oxidative DNA damage, is associated with mortality independent of inflammation in chronic kidney disease. Eur. J. Intern. Med. 2019, 68, 60–65. [Google Scholar] [CrossRef]
- Wang, Y.; He, X.; Xue, M.; Sun, W.; He, Q.; Jin, J. Germacrone protects renal tubular cells against ferroptotic death and ROS release by re-activating mitophagy in diabetic nephropathy. Free Radic. Res. 2023, 57, 413–429. [Google Scholar] [CrossRef] [PubMed]
- Ragab, E. Geranium Plant Extracts Modulates Gamma Radiation-Induced Biochemical Hazardous Changes in Rats. Isot. Radiat. Res. 2007, 39, 805–813. [Google Scholar]
- Kennedy, L.; Sandhu, J.K.; Harper, M.E.; Cuperlovic-Culf, M. Role of Glutathione in Cancer: From Mechanisms to Therapies. Biomolecules 2020, 10, 1429. [Google Scholar] [CrossRef]
- Boadi, W.Y.; Amartey, P.K.; Lo, A. Effect of quercetin, genistein and kaempferol on glutathione and glutathione-redox cycle enzymes in 3T3-L1 preadipocytes. Drug Chem. Toxicol. 2016, 39, 239–247. [Google Scholar] [CrossRef]
- Zhuang, S.; Liu, B.; Guo, S.; Xue, Y.; Wu, L.; Liu, S.; Zhang, C.; Ni, X. Germacrone alleviates neurological deficits following traumatic brain injury by modulating neuroinflammation and oxidative stress. BMC Complement. Med. Ther. 2021, 21, 6. [Google Scholar] [CrossRef]
- Jin, J.; Wang, Y.; Zheng, D.; Liang, M.; He, Q. A Novel Identified Circular RNA, mmu_mmu_circRNA_0000309, Involves in Germacrone-Mediated Improvement of Diabetic Nephropathy Through Regulating Ferroptosis by Targeting miR-188-3p/GPX4 Signaling Axis. Antioxid. Redox Signal. 2022, 36, 740–759. [Google Scholar] [CrossRef]
- Zhao, L.P.; Wang, H.J.; Hu, D.; Hu, J.H.; Guan, Z.R.; Yu, L.H.; Jiang, Y.P.; Tang, X.Q.; Zhou, Z.H.; Xie, T.; et al. β-Elemene induced ferroptosis via TFEB-mediated GPX4 degradation in EGFR wide-type non-small cell lung cancer. J. Adv. Res. 2024, 62, 257–272. [Google Scholar] [CrossRef]
- Xie, J.; Wang, H.; Xie, W.; Liu, Y.; Chen, Y. Gallic acid promotes ferroptosis in hepatocellular carcinoma via inactivating Wnt/β-catenin signaling pathway. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 397, 2437–2445. [Google Scholar] [CrossRef]
- Li, L.; Wang, K.; Jia, R.; Xie, J.; Ma, L.; Hao, Z.; Zhang, W.; Mo, J.; Ren, F. Ferroportin-dependent ferroptosis induced by ellagic acid retards liver fibrosis by impairing the SNARE complexes formation. Redox Biol. 2022, 56, 102435. [Google Scholar] [CrossRef]
- Benoit, S.W.; Ciccia, E.A.; Devarajan, P. Cystatin C as a biomarker of chronic kidney disease: Latest developments. Expert Rev. Mol. Diagn. 2020, 20, 1019–1026. [Google Scholar] [CrossRef]
- Song, J.; Yu, J.; Prayogo, G.W.; Cao, W.; Wu, Y.; Jia, Z.; Zhang, A. Understanding kidney injury molecule 1: A novel immune factor in kidney pathophysiology. Am. J. Transl. Res. 2019, 11, 1219–1229. [Google Scholar] [PubMed]
- Brilland, B.; Boud’hors, C.; Wacrenier, S.; Blanchard, S.; Cayon, J.; Blanchet, O.; Piccoli, G.B.; Henry, N.; Djema, A.; Coindre, J.P.; et al. Kidney injury molecule 1 (KIM-1): A potential biomarker of acute kidney injury and tubulointerstitial injury in patients with ANCA-glomerulonephritis. Clin. Kidney J. 2023, 16, 1521–1533. [Google Scholar] [CrossRef]
- Hewitson, T.D.; Smith, E.R.; Samuel, C.S. Qualitative and quantitative analysis of fibrosis in the kidney. Nephrology 2014, 19, 721–726. [Google Scholar] [CrossRef]
- Georgieva, E.; Atanasov, V.; Kostandieva, R.; Tsoneva, V.; Mitev, M.; Arabadzhiev, G.; Yovchev, Y.; Karamalakova, Y.; Nikolova, G. Direct Application of 3-Maleimido-PROXYL for Proving Hypoalbuminemia in Cases of SARS-CoV-2 Infection: The Potential Diagnostic Method of Determining Albumin Instability and Oxidized Protein Level in Severe COVID-19. Int. J. Mol. Sci. 2023, 24, 5807. [Google Scholar] [CrossRef]
- Ibrahim, Y.F.; Hammady, S.H.; Rifaai, R.A.; Waz, S.; Ibrahim, M.A.; Hafez, H.M. Dose-dependent ameliorating effect of lipoxin A4 on gentamicin-induced nephrotoxicity in rats: The role of TNFα, TGF-β, ICAM-1, and JNK signaling. Chem. Biol. Interact. 2022, 366, 110139. [Google Scholar] [CrossRef]
- Abu Shelbayeh, O.; Arroum, T.; Morris, S.; Busch, K.B. PGC-1α Is a Master Regulator of Mitochondrial Lifecycle and ROS Stress Response. Antioxidants 2023, 12, 1075. [Google Scholar] [CrossRef]
- Fontecha-Barriuso, M.; Martín-Sánchez, D.; Martinez-Moreno, J.M.; Carrasco, S.; Ruiz-Andrés, O.; Monsalve, M.; Sanchez-Ramos, C.; Gómez, M.J.; Ruiz-Ortega, M.; Sánchez-Niño, M.D.; et al. PGC-1α deficiency causes spontaneous kidney inflammation and increases the severity of nephrotoxic AKI. J. Pathol. 2019, 249, 65–78. [Google Scholar] [CrossRef]
- Li, J.; Xu, F.; Li, S.; Xie, M.; Li, N. Gentamicin promoted the production of CD4+CD25+ Tregs via the STAT5 signaling pathway in mice sepsis. BMC Immunol. 2022, 23, 47. [Google Scholar] [CrossRef]
- Tsuji-Takayama, K.; Suzuki, M.; Yamamoto, M.; Harashima, A.; Okochi, A.; Otani, T.; Inoue, T.; Sugimoto, A.; Toraya, T.; Takeuchi, M.; et al. The production of IL-10 by human regulatory T cells is enhanced by IL-2 through a STAT5-responsive intronic enhancer in the IL-10 locus. J. Immunol. 2008, 181, 3897–3905. [Google Scholar] [CrossRef]
- Chatterjee, P.K.; Cuzzocrea, S.; Brown, P.A.; Zacharowski, K.; Stewart, K.N.; Mota-Filipe, H.; Thiemermann, C. Tempol, a membrane-permeable radical scavenger, reduces oxidant stress-mediated renal dysfunction and injury in the rat. Kidney Int. 2000, 58, 658–673. [Google Scholar] [CrossRef]
- Collin, F. Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases. Int. J. Mol. Sci. 2019, 20, 2407. [Google Scholar] [CrossRef]
- Azzam, S.M.; Elsanhory, H.M.A.; Abd El-Slam, A.H.; Diab, M.S.M.; Ibrahim, H.M.; Yousef, A.M.; Sabry, F.M.; Khojah, E.Y.; Bokhari, S.A.; Salem, G.E.M.; et al. Protective effects of Pelargonium graveolens (geranium) oil against cefotaxime-induced hepato-renal toxicity in rats. Front. Toxicol. 2024, 6, 1489310. [Google Scholar] [CrossRef]
- Graça, V.C.; Ferreira, I.C.F.R.; Santos, P.F. Bioactivity of the Geranium Genus: A Comprehensive Review. Curr. Pharm. Des. 2020, 26, 1838–1865. [Google Scholar] [CrossRef]
- El-Shamy, K.A.; Koriem, K.M.M.; Fadl, N.N.; El-Azma, M.H.A.; Arbid, M.S.S.; Morsy, F.A.; El-Zayat, S.R.; Hosny, E.N.; Youness, E.R. Oral supplementation with geranium oil or anise oil ameliorates depressed rat-related symptoms through oils antioxidant effects. J. Complement. Integr. Med. 2019, 17, 20190028. [Google Scholar] [CrossRef]
- Petkova-Parlapanska, K.; Draganova, V.; Georgieva, E.; Goycheva, P.; Nikolova, G.; Karamalakova, Y. Systematic Inflammation and Oxidative Stress Elevation in Diabetic Retinopathy and Diabetic Patients with Macular Edema. Int. J. Mol. Sci. 2025, 26, 3810. [Google Scholar] [CrossRef]
- Gielis, J.F.; Boulet, G.A.; Briedé, J.J.; Horemans, T.; Debergh, T.; Kussé, M.; Cos, P.; Van Schil, P.E. Longitudinal quantification of radical bursts during pulmonary ischaemia and reperfusion. Eur. J. Cardiothorac. Surg. 2015, 48, 622–629. [Google Scholar] [CrossRef]
- Perrone, S.; Santacroce, A.; Longini, M.; Proietti, F.; Bazzini, F.; Buonocore, G. The Free Radical Diseases of Prematurity: From Cellular Mechanisms to Bedside. Oxid. Med. Cell. Longev. 2018, 2018, 7483062. [Google Scholar] [CrossRef]
- Bailey, D.M. Ascorbate, blood-brain barrier function and acute mountain sickness: A radical hypothesis. Wilderness Environ. Med. 2004, 15, 231–233. [Google Scholar] [CrossRef]
- Goycheva, P.; Petkova-Parlapanska, K.; Georgieva, E.; Karamalakova, Y.; Nikolova, G. Biomarkers of Oxidative Stress in Diabetes Mellitus with Diabetic Nephropathy Complications. Int. J. Mol. Sci. 2023, 24, 13541. [Google Scholar] [CrossRef]
№ | Compound or Family | MS Sim. | RI Ref. | RI Exp. | Rel. % |
---|---|---|---|---|---|
Monoterpenes | |||||
1 | α-Pinene | 93 | 933 | 935 | tr |
2 | β-Pinene | 96 | 978 | 975 | 0.1 |
3 | Mycrene | 96 | 991 | 989 | 0.1 |
4 | p-Cymene | 97 | 1020 | 1018 | 0.5 |
5 | Limonene | 98 | 1024 | 1022 | 0.2 |
6 | (E)-β-Ocimene | 95 | 1046 | 1041 | 0.2 |
7 | γ-Terpinene | 97 | 1058 | 1058 | 0.5 |
Sesquiterpenes/cycloalkene class | |||||
8 | Terpinolene | 97 | 1086 | 1083 | 0.4 |
9 | δ-Elemene | 92 | 1335 | 1340 | tr. |
10 | β-Elemene | 93 | 1390 | 1390 | 1.4 |
11 | Italicene | 97 | 1410 | 1403 | 0.1 |
12 | γ-Elemene | 91 | 1432 | 1431 | 4.9 |
13 | γ-Curcumene | 95 | 1482 | 1482 | 0.9 |
14 | Germacrene D | 94 | 1485 | 1484 | 0.5 |
15 | Germacrene A | 97 | 1511 | 1514 | 0.2 |
16 | Germacrene B | 97 | 1557 | 1552 | 3.3 |
Oxygenated sesquiterpenes | |||||
17 | (E)-β-Elemenone | 92 | 1600 | 1601 | 35.3 |
18 | Germacrone | 90 | 1698 | 1695 | 20.7 |
Long-chain alkane hydrocarbon | |||||
19 | n-Nonadecane | 97 | 1900 | 1901 | 0.3 |
20 | n-Heneicosane | 97 | 2100 | 2100 | 0.1 |
Groups (n = 6) | GPX4 | Degeneration | Necrosis | Inflammation | Hyperemia |
---|---|---|---|---|---|
Control | 3+ | 0 | 0 | 0 | 0 |
GM (200 mg kg−1) | 2+ | 1 | 0 | 1 | 1 |
G. macrorrhizum oil (50 mg kg−1) | 0/1+ | 0 | 0 | 0 | 1 |
GM (200 mg kg−1) + G. macrorrhizum oil (50 mg kg−1) | 0+ | 0/1 | 0 | 0/1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgiev, T.; Nikolova, G.; Dyakova, V.; Zlateva, S.; Karamalakova, Y.; Georgieva, E.; Petkova-Parlapanska, K.; Ananiev, J.; Dobreva, A.; Hadzhibozheva, P. Antioxidant Potential and Oxidative Stress Modulation of Geranium macrorrhizum L. Oil Extract in Gentamicin-Induced Nephrotoxicity. Pharmaceuticals 2025, 18, 1283. https://doi.org/10.3390/ph18091283
Georgiev T, Nikolova G, Dyakova V, Zlateva S, Karamalakova Y, Georgieva E, Petkova-Parlapanska K, Ananiev J, Dobreva A, Hadzhibozheva P. Antioxidant Potential and Oxidative Stress Modulation of Geranium macrorrhizum L. Oil Extract in Gentamicin-Induced Nephrotoxicity. Pharmaceuticals. 2025; 18(9):1283. https://doi.org/10.3390/ph18091283
Chicago/Turabian StyleGeorgiev, Tsvetelin, Galina Nikolova, Viktoriya Dyakova, Silvia Zlateva, Yanka Karamalakova, Ekaterina Georgieva, Kamelia Petkova-Parlapanska, Julian Ananiev, Ana Dobreva, and Petya Hadzhibozheva. 2025. "Antioxidant Potential and Oxidative Stress Modulation of Geranium macrorrhizum L. Oil Extract in Gentamicin-Induced Nephrotoxicity" Pharmaceuticals 18, no. 9: 1283. https://doi.org/10.3390/ph18091283
APA StyleGeorgiev, T., Nikolova, G., Dyakova, V., Zlateva, S., Karamalakova, Y., Georgieva, E., Petkova-Parlapanska, K., Ananiev, J., Dobreva, A., & Hadzhibozheva, P. (2025). Antioxidant Potential and Oxidative Stress Modulation of Geranium macrorrhizum L. Oil Extract in Gentamicin-Induced Nephrotoxicity. Pharmaceuticals, 18(9), 1283. https://doi.org/10.3390/ph18091283