Liposomal Formulations for Efficient Delivery of a Novel, Highly Potent Pyrimidine-Based Anticancer Drug
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis of Hit Drug PP
2.2. Characterization of Drug-Loaded Liposomes
2.3. Drug Encapsulation Efficiency and Release Profiles
2.4. Anticancer Activity
3. Materials and Methods
3.1. Chemistry
3.1.1. Synthesis of N-(4-Imino-8-((4-(trifluoromethoxy)phenyl)amino)pyrimido[5,4-d]pyrimidin-3(4H)-yl)benzamide 9
3.1.2. Synthesis of N’-(8-((4-(Trifluoromethoxy)phenyl)amino)pyrimido[5,4-d]pyrimidin-4-yl)benzohydrazide PP
3.2. Liposomal Nanoformulations
3.2.1. Drug-Loaded Liposome Preparation and Characterization
3.2.2. Drug Encapsulation and Release
Equipment
Determination of Encapsulation Efficiency
Drug Release Assays
3.3. Anticancer Activity
3.3.1. Cell Culture and Buffer Solutions
3.3.2. Cytotoxicity Assays
3.3.3. Uptake Experiments
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PP | Pyrimido[5,4-d]pyrimidine compound |
5-FU | 5-Fluorouracil |
DBU | 1,8-Diazabicyclo[5.4.0]undec-7-ene |
L | Liposomes |
PC | Phosphatidylcholine |
EggPC | Egg yolk |
DPPC | Dipalmitoylphosphatidylcholine |
Tc | Transition temperature |
Chol | Cholesterol |
PDI | Polydispersity |
DLS | Dynamic light scattering |
EE | Encapsulation efficiency |
PBS | Phosphate-buffered saline |
References
- Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; et al. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023, 10, 1367–1401. [Google Scholar] [CrossRef]
- Masci, D.; Naro, C.; Puxeddu, M.; Urbani, A.; Sette, C.; La Regina, G.; Silvestri, R. Recent Advances in Drug Discovery for Triple-Negative Breast Cancer Treatment. Molecules 2023, 28, 7513. [Google Scholar] [CrossRef]
- Hossain, M.S.; Karuniawati, H.; Jairoun, A.A.; Urbi, Z.; Ooi, D.J.; John, A.; Lim, Y.C.; Kibria, K.M.K.; Mohiuddin, A.K.M.; Ming, L.C.; et al. Colorectal Cancer: A Review of Carcinogenesis, Global Epidemiology, Current Challenges, Risk Factors, Preventive and Treatment Strategies. Cancers 2022, 14, 1732. [Google Scholar] [CrossRef]
- Iorga, C.; Iorga, C.R.; Grigorescu, A.; Bengulescu, I.; Constantin, T.; Strambu, V. Synchronous Breast and Colorectal Malignant Tumors—A Systematic Review. Life 2024, 14, 1008. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.-H.; Chen, Y.-X.; Fang, J.-Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther. 2020, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- Padma, V.V. An overview of targeted cancer therapy. BioMedicine 2015, 5, 19. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhan, Z.; Yin, X.; Fu, S.; Deng, X. Targeted Therapeutic Strategies for Triple-Negative Breast Cancer. Front. Oncol. 2021, 11, 731535. [Google Scholar] [CrossRef]
- Zhao, M.; Lin, Y.; Zeng, Y.; Lv, Z.; Liang, J.; Tang, P.; Zhen, X.; Han, L. Biomimetic membrane-coated nanoparticles specially permeate the inflammatory blood-brain barrier to deliver plasmin therapy for brain metastases. J. Control. Release 2025, 378, 763–775. [Google Scholar] [CrossRef]
- Balboni, A.; Ailuno, G.; Baldassari, S.; Drava, G.; Petretto, A.; Grinovero, N.; Cavalleri, O.; Angeli, E.; Lagomarsino, A.; Canepa, P.; et al. Human glioblastoma-derived cell membrane nanovesicles: A novel, cell-specific strategy for boron neutron capture therapy of brain tumors. Sci. Rep. 2024, 14, 19225. [Google Scholar] [CrossRef]
- Meng, Y.; Yao, Z.; Ke, X.; Hu, M.; Ren, H.; Gao, S.; Zhang, H. Extracellular vesicles-based vaccines: Emerging immunotherapies against cancer. J. Control. Release 2025, 378, 438–459. [Google Scholar] [CrossRef]
- Haque, M.; Shakil, M.S.; Mahmud, K.M. The Promise of Nanoparticles-Based Radiotherapy in Cancer Treatment. Cancers 2023, 15, 1892. [Google Scholar] [CrossRef]
- Effects of MK-3475 (Pembrolizumab) on the Breast Tumor Microenvironment in Triple Negative Breast Cancer with and Without Intra-Operative RT: A Window of Opportunity Study. Available online: https://clinicaltrials.gov/study/NCT02977468 (accessed on 13 January 2025).
- Rahman, M.; Afzal, O.; Ullah, S.N.M.N.; Alshahrani, M.Y.; Alkhathami, A.G.; Altamimi, A.S.A.; Almujri, S.S.; Almalki, W.H.; Shorog, E.M.; Alossaimi, M.A.; et al. Nanomedicine-Based Drug-Targeting in Breast Cancer: Pharmacokinetics, Clinical Progress, and Challenges. ACS Omega 2023, 8, 48625–48649. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.; Song, P.; Wang, D.; Wang, Y. Colorectal cancer therapy mediated by nanomedicines. Chem. Commun. 2023, 59, 4423–4435. [Google Scholar] [CrossRef] [PubMed]
- Badawi, W.A.; Samir, M.; Fathy, H.M.; Okda, T.M.; Noureldin, M.H.; Atwa, G.M.K.; AboulWafa, O.M. Design, synthesis and molecular docking study of new pyrimidine-based hydrazones with selective anti-proliferative activity against MCF-7 and MDA-MB-231 human breast cancer cell lines. Bioorg. Chem. 2023, 138, 106610. [Google Scholar] [CrossRef]
- Ben Hassen, M.; Msalbi, D.; Jismy, B.; Elghali, F.; Aifa, S.; Allouchi, H.; Abarbri, M.; Chabchoub, F. Three Component One-Pot Synthesis and Antiproliferative Activity of New [1,2,4]Triazolo[4,3-a]pyrimidines. Molecules 2023, 28, 3917. [Google Scholar] [CrossRef]
- Wilding, B.; Woelflingseder, L.; Baum, A.; Chylinski, K.; Vainorius, G.; Gibson, N.; Waizenegger, I.C.; Gerlach, D.; Augsten, M.; Spreitzer, F.; et al. Zongertinib (BI 1810631), an Irreversible HER2 TKI, Spares EGFR Signaling and Improves Therapeutic Response in Preclinical Models and Patients with HER2-Driven Cancers. Cancer Discov. 2025, 15, 119–138. [Google Scholar] [CrossRef] [PubMed]
- Ghildiyal, R.; Dixit, D.; Sen, E. EGFR Inhibitor BIBU Induces Apoptosis and Defective Autophagy in Glioma Cells. Mol. Carcinog. 2013, 982, 970–982. [Google Scholar] [CrossRef]
- Solca, F.F.; Baum, A.; Langkopf, E.; Dahmann, G.; Heider, K.H.; Himmelsbach, F.; Van Meel, J.C.A. Inhibition of epidermal growth factor receptor activity by two pyrimidopyrimidine derivatives. J. Pharmacol. Exp. Ther. 2004, 311, 502–509. [Google Scholar] [CrossRef]
- Saravanan, K.; Barlow, H.C.; Barton, M.; Calvert, A.H.; Golding, B.T.; Newell, D.R.; Northen, J.S.; Curtin, N.J.; Thomas, H.D.; Griffin, R.J. Nucleoside Transport Inhibitors: Structure−Activity Relationships for Pyrimido[5,4-d]pyrimidine Derivatives That Potentiate Pemetrexed Cytotoxicity in the Presence of α 1-Acid Glycoprotein. J. Med. Chem. 2011, 54, 1847–1859. [Google Scholar] [CrossRef]
- Feng, P.; Lee, K.N.; Lee, J.W.; Zhan, C.; Ngai, M.-Y. Access to a new class of synthetic building blocks via trifluoromethoxylation of pyridines and pyrimidines. Chem. Sci. 2016, 7, 424–429. [Google Scholar] [CrossRef]
- Ferreira de Freitas, R.; Schapira, M. A systematic analysis of atomic protein–ligand interactions in the PDB. Medchemcomm 2017, 8, 1970–1981. [Google Scholar] [CrossRef]
- Fernandes, J.F.S. Evaluation of the Anticancer Potential of New Nitrogen Heterocycles in Human Colon Cancer Cells. Master’s Thesis, University of Minho, Braga, Portugal, 2013. Available online: https://core.ac.uk/download/pdf/55628911.pdf (accessed on 31 March 2025).
- Teixeira, S.; Carvalho, M.A.; Castanheira, E.M.S. Functionalized Liposome and Albumin-Based Systems as Carriers for Poorly Water-Soluble Anticancer Drugs: An Updated Review. Biomedicines 2022, 10, 486. [Google Scholar] [CrossRef]
- Bilia, A.; Piazzini, V.; Risaliti, L.; Vanti, G.; Casamonti, M.; Wang, M.; Bergonzi, M. Nanocarriers: A Successful Tool to Increase Solubility, Stability and Optimise Bioefficacy of Natural Constituents. Curr. Med. Chem. 2019, 26, 4631–4656. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Chen, H.; Jiang, Y.; Yan, Q.; Zheng, S.; Wu, M. Co-Delivery of 5-Fluorouracil and Paclitaxel in Mitochondria-Targeted KLA-Modified Liposomes to Improve Triple-Negative Breast Cancer Treatment. Pharmaceuticals 2022, 15, 881. [Google Scholar] [CrossRef]
- Lee, M.-K. Liposomes for Enhanced Bioavailability of Water-Insoluble Drugs: In Vivo Evidence and Recent Approaches. Pharmaceutics 2020, 12, 264. [Google Scholar] [CrossRef]
- Barenholz, Y. Doxil®—The first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012, 160, 117–134. [Google Scholar] [CrossRef] [PubMed]
- Olusanya, T.; Haj Ahmad, R.; Ibegbu, D.; Smith, J.; Elkordy, A. Liposomal Drug Delivery Systems and Anticancer Drugs. Molecules 2018, 23, 907. [Google Scholar] [CrossRef]
- Alavi, M.; Karimi, N.; Safaei, M. Application of various types of liposomes in drug delivery systems. Adv. Pharm. Bull. 2017, 7, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Qu, N.; Song, K.; Ji, Y.; Liu, M.; Chen, L.; Lee, R.; Teng, L. Albumin Nanoparticle-Based Drug Delivery Systems. Int. J. Nanomed. 2024, 19, 6945–6980. [Google Scholar] [CrossRef]
- Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 2017, 9, 12. [Google Scholar] [CrossRef]
- Bennett, W.F.D.; MacCallum, J.L.; Tieleman, D.P. Thermodynamic Analysis of the Effect of Cholesterol on Dipalmitoylphosphatidylcholine Lipid Membranes. J. Am. Chem. Soc. 2009, 131, 1972–1978. [Google Scholar] [CrossRef]
- Kondratowicz, A.; Weiss, M.; Juzwa, W.; Majchrzycki, Ł.; Lewandowicz, G. Characteristics of liposomes derived from egg yolk. Open Chem. 2019, 17, 763–778. [Google Scholar] [CrossRef]
- Crisma, M.; Barazza, A.; Formaggio, F.; Kaptein, B.; Broxterman, Q.B.; Kamphuis, J.; Toniolo, C. Peptaibolin: Synthesis, 3D-structure, and membrane modifying properties of the natural antibiotic and selected analogues. Tetrahedron 2001, 57, 2813–2825. [Google Scholar] [CrossRef]
- Monier, M.; Abdel-Latif, D.; El-Mekabaty, A.; Elattar, K.M. Bicyclic 6 + 6 systems: The chemistry of pyrimido[4,5-d]pyrimidines and pyrimido[5,4-d]pyrimidines. RSC Adv. 2019, 9, 30835–30867. [Google Scholar] [CrossRef] [PubMed]
- Virgilio, A.; Spano, D.; Esposito, V.; Di Dato, V.; Citarella, G.; Marino, N.; Maffia, V.; De Martino, D.; De Antonellis, P.; Galeone, A.; et al. Novel pyrimidopyrimidine derivatives for inhibition of cellular proliferation and motility induced by h-prune in breast cancer. Eur. J. Med. Chem. 2012, 57, 41–50. [Google Scholar] [CrossRef]
- Curtin, N.J.; Barlow, H.C.; Bowman, K.J.; Calvert, A.H.; Davison, R.; Golding, B.T.; Huang, B.; Loughlin, P.J.; Newell, D.R.; Smith, P.G.; et al. Resistance-modifying agents. 11. Pyrimido[5,4-d]pyrimidine modulators of antitumor drug activity. Synthesis and structure-activity relationships for nucleoside transport inhibition and binding to α 1-acid glycoprotein. J. Med. Chem. 2004, 47, 4905–4922. [Google Scholar] [CrossRef]
- Rewcastle, G.W.; Bridges, A.J.; Fry, D.W.; Rubin, J.R.; Denny, W.A. Tyrosine Kinase Inhibitors. 12. Synthesis and Structure−Activity Relationships for 6-Substituted 4-(Phenylamino)pyrimido[5,4-d]pyrimidines Designed as Inhibitors of the Epidermal Growth Factor Receptor. J. Med. Chem. 1997, 40, 1820–1826. [Google Scholar] [CrossRef]
- Ohtsuka, Y. Chemistry of diaminomaleonitrile. 3. Reaction with isocyanate: A novel pyrimidine synthesis. J. Org. Chem. 1978, 43, 3231–3234. [Google Scholar] [CrossRef]
- Sheykhi-Estalkhjani, A.; Mahmoodi, N.O.; Yahyazadeh, A.; Pasandideh Nadamani, M.; Taherpour Nahzomi, H. Design, two-directional synthesis, DFT study of new pyrimido[5,4-d]pyrimidine-2,8-dione derivatives. Tetrahedron 2019, 75, 749–756. [Google Scholar] [CrossRef]
- Westover, J.D.; Revankar, G.R.; Robins, R.K.; Madsen, R.D.; Ogden, J.R.; North, J.A.; Mancuso, R.W.; Rousseau, R.J.; Stephen, E.L. Synthesis and antiviral activity of certain 9-.beta.-D-ribofuranosylpurine-6-carboxamides. J. Med. Chem. 1981, 24, 941–946. [Google Scholar] [CrossRef]
- Northen, J.S.; Boyle, F.T.; Clegg, W.; Curtin, N.J.; Edwards, A.J.; Griffin, R.J.; Golding, B.T. Controlled stepwise conversion of 2,4,6,8-tetrachloropyrimido-[5,4-d]pyrimidine into 2,4,6,8-tetrasubstituted pyrimido[5,4-d]pyrimidines. J. Chem. Soc. Perkin Trans. 1 2002, 2, 108–115. [Google Scholar] [CrossRef]
- Brown, D.J.; Ford, P.W.; Paddon-Row, M.N. Mechanisms of Molecular Migration; Thyagarajan, B.S., Ed.; Interscience Publishers: Hoboken, NJ, USA, 1968. [Google Scholar]
- Ribeiro, A.; Carvalho, M.A.; Proença, M.F. A Mild Approach to the Synthesis of 4-Amino-8-(arylamino)pyrimido[5,4-d]pyrimidine 3-Oxides. Eur. J. Org. Chem. 2009, 2009, 4867–4872. [Google Scholar] [CrossRef]
- Rocha, A.; Bacelar, A.H.; Fernandes, J.; Proenca, M.F.; Carvalho, M.A. 6-Carbohydrazonamidepurines: Convenient Precursors for 4,8-Disubstituted Pyrimido[5,4-d]pyrimidines. Synlett 2014, 25, 343–348. [Google Scholar] [CrossRef]
- Rocha, A.; Lopes, A.; Teixeira, S.; Carvalho, M.A. A Tandem Reaction in the Synthesis of New 4,8-Disubstituted-pyrimido[5,4-d]pyrimidine Derivatives. Asian J. Org. Chem. 2023, 12, e202300251. [Google Scholar] [CrossRef]
- Alves, M.J.; Carvalho, M.A.; Proença, M.F.J.R.P.; Booth, B.L.; Pritchard, R.G. Synthesis of 6-cyanopurines and the isolation and X-ray structure of novel 2H-pyrroles. J. Heterocycl. Chem. 1997, 34, 739–743. [Google Scholar] [CrossRef]
- Al-Azmi, A.; Booth, B.L.; Carpenter, R.A.; Carvalho, A.; Marrelec, E.; Pritchard, R.G.; Proença, M.F.J.R.P. Facile synthesis of 6-cyano-9-substituted-9H-purines and their ring expansion to 8-(arylamino)-4-imino-3-methylpyrimidino[5,4-d]pyrimidines. J. Chem. Soc. Perkin Trans. 2001, 1, 2532–2537. [Google Scholar] [CrossRef]
- Carvalho, M.A.; Esperança, S.; Esteves, T.; Proença, M.F. An Efficient Synthesis of 7,8-Dihydropyrimido[5,4-d]pyrimidines. Eur. J. Org. Chem. 2007, 2007, 1324–1331. [Google Scholar] [CrossRef]
- Bacelar, A.H.; Carvalho, M.A.; Proença, M.F. Synthesis and in vitro evaluation of substituted pyrimido[5,4-d]pyrimidines as a novel class of Antimycobacterium tuberculosis agents. Eur. J. Med. Chem. 2010, 45, 3234–3239. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Zhang, T.; Wang, C.; Huang, Z.; Luo, X.; Deng, Y. A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci. 2015, 10, 81–98. [Google Scholar] [CrossRef]
- Vincent, J.S.; Revak, S.D.; Cochrane, C.D.; Levin, I.W. Interactions of model human pulmonary surfactants with a mixed phospholipid bilayer assembly: Raman spectroscopic studies. Biochemistry 1993, 32, 8228–8238. [Google Scholar] [CrossRef]
- Large, D.E.; Abdelmessih, R.G.; Fink, E.A.; Auguste, D.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev. 2021, 176, 113851. [Google Scholar] [CrossRef]
- Deshpande, P.P.; Biswas, S.; Torchilin, V.P. Current Trends in The Use of Liposomes for Tumor Targeting. Nanomedicine 2013, 8, 1509–1528. [Google Scholar] [CrossRef]
- Baranov, M.V.; Kumar, M.; Sacanna, S.; Thutupalli, S.; van den Bogaart, G. Modulation of Immune Responses by Particle Size and Shape. Front. Immunol. 2021, 11, 607945. [Google Scholar] [CrossRef]
- Di, J.; Gao, X.; Du, Y.; Zhang, H.; Gao, J.; Zheng, A. Size, shape, charge and “stealthy” surface: Carrier properties affect the drug circulation time in vivo. Asian J. Pharm. Sci. 2021, 16, 444–458. [Google Scholar] [CrossRef] [PubMed]
- Crommelin, D.J.A.; van Bommel, E.M.G. Stability of Liposomes on Storage: Freeze Dried, Frozen or as an Aqueous Dispersion. Pharm. Res. 1984, 1, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.S.; Hussein, S.A.; Ali, A.H.; Korma, S.A.; Lipeng, Q.; Jinghua, C. Liposome: Composition, characterisation, preparation, and recent innovation in clinical applications. J. Drug Target. 2019, 27, 742–761. [Google Scholar] [CrossRef] [PubMed]
- Doskocz, J.; Dałek, P.; Foryś, A.; Trzebicka, B.; Przybyło, M.; Mesarec, L.; Iglič, A.; Langner, M. The effect of lipid phase on liposome stability upon exposure to the mechanical stress. Biochim. Biophys. Acta (BBA) Biomembr. 2020, 1862, 183361. [Google Scholar] [CrossRef]
- Garcia-Manyes, S.; Redondo-Morata, L.; Oncins, G.; Sanz, F. Nanomechanics of Lipid Bilayers: Heads or Tails? J. Am. Chem. Soc. 2010, 132, 12874–12886. [Google Scholar] [CrossRef]
- Prislan, I.; Lokar, M.; Zirdum, M.; Valant, J.; Poklar Ulrih, N. Contribution of headgroup and chain length of glycerophospholipids to thermal stability and permeability of liposomes loaded with calcein. Chem. Phys. Lipids 2019, 225, 104807. [Google Scholar] [CrossRef]
- O’Driscoll, K.; Sanayei, R.A. Chain-length dependence of the glass transition temperature. Macromolecules 1991, 24, 4479–4480. [Google Scholar] [CrossRef]
- Nsairat, H.; Khater, D.; Sayed, U.; Odeh, F.; Al Bawab, A.; Alshaer, W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022, 8, e09394. [Google Scholar] [CrossRef]
- Mohammady, M.; Mohammadi, Y.; Yousefi, G. Freeze-Drying of Pharmaceutical and Nutraceutical Nanoparticles: The Effects of Formulation and Technique Parameters on Nanoparticles Characteristics. J. Pharm. Sci. 2020, 109, 3235–3247. [Google Scholar] [CrossRef]
- Noyes, A.A.; Whitney, W.R. The rate of solution of solid substances in their own solutions. J. Am. Chem. Soc. 1897, 19, 930–934. [Google Scholar] [CrossRef]
- Papadopoulou, V.; Kosmidis, K.; Vlachou, M.; Macheras, P. On the use of the Weibull function for the discernment of drug release mechanisms. Int. J. Pharm. 2006, 309, 44–50. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization—Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 1 December 2024).
- Gbian, D.L.; Omri, A. Lipid-Based Drug Delivery Systems for Diseases Managements. Biomedicines 2022, 10, 2137. [Google Scholar] [CrossRef] [PubMed]
- Sankaram, M.B.; Thompson, T.E. Modulation of Phospholipid Acyl Chain Order by Cholesterol. A Solid-State 2H Nuclear Magnetic Resonance Study. Biochemistry 1990, 29, 10676–10684. [Google Scholar] [CrossRef] [PubMed]
- Silvius, J.R. Role of cholesterol in lipid raft formation: Lessons from lipid model systems. Biochim. Biophys. Acta (BBA) Biomembr. 2003, 1610, 174–183. [Google Scholar] [CrossRef]
- Róg, T.; Pasenkiewicz-Gierula, M.; Vattulainen, I.; Karttunen, M. Ordering effects of cholesterol and its analogues. Biochim. Biophys. Acta (BBA) Biomembr. 2009, 1788, 97–121. [Google Scholar] [CrossRef]
- Lentz, B.R. Membrane “fluidity” as detected by diphenylhexatriene probes. Chem. Phys. Lipids 1989, 50, 171–190. [Google Scholar] [CrossRef]
- Regen, S.L. Cholesterol’s Condensing Effect: Unpacking a Century-Old Mystery. JACS Au 2022, 2, 84–91. [Google Scholar] [CrossRef]
- Wu, H.; Yu, M.; Miao, Y.; He, S.; Dai, Z.; Song, W.; Liu, Y.; Song, S.; Ahmad, E.; Wang, D.; et al. Cholesterol-tuned liposomal membrane rigidity directs tumor penetration and anti-tumor effect. Acta Pharm. Sin. B 2019, 9, 858–870. [Google Scholar] [CrossRef]
- Welsh, J. Chapter 40—Animal Models for Studying Prevention and Treatment of Breast Cancer. In Animal Models for the Study of Human Disease; Conn, P.M., Ed.; Academic Press: Boston, MA, USA, 2013; pp. 997–1018. ISBN 978-0-12-415894-8. [Google Scholar]
- Jaafar-Maalej, C.; Diab, R.; Andrieu, V.; Elaissari, A.; Fessi, H. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J. Liposome Res. 2010, 20, 228–243. [Google Scholar] [CrossRef]
- Coelho, C.M.M.; Pereira, R.B.; Vieira, T.F.; Teixeira, C.M.; Fernandes, M.J.G.; Rodrigues, A.R.O.; Pereira, D.M.; Sousa, S.F.; Gil Fortes, A.; Castanheira, E.M.S.; et al. Synthesis, computational and nanoencapsulation studies on eugenol-derived insecticides. New J. Chem. 2022, 46, 14375–14387. [Google Scholar] [CrossRef]
Liposomal Formulations | Hydrodynamic Diameter ± SD (nm) | PDI ± SD | Zeta Potential ± SD (mV) |
---|---|---|---|
EggPC-L | 145 ± 7 | 0.26 ± 0.02 | −0.4 ± 0.1 |
PP-EggPC-L | 142 ± 27 | 0.25 ± 0.01 | −2.2 ± 1.5 |
DPPC-L | 104.1 ± 2.2 | 0.26 ± 0.02 | 1.1 ± 0.3 |
PP-DPPC-L | 104 ± 15 | 0.25 ± 0.01 | 1.1 ± 1.3 |
EggPC-Chol-L | 147.8 ± 7 | 0.25 ± 0.01 | −2.9 ± 0.4 |
PP-EggPC-Chol-L | 142.6 ± 4 | 0.25 ± 0.01 | −3.9 ± 0.3 |
DPPC-Chol-L | 100.9 ± 3 | 0.25 ± 0.01 | 1.8 ± 0.3 |
PP-DPPC-Chol-L | 99.2 ± 4.6 | 0.20 ± 0.01 | 2.3 ± 0.1 |
Liposomal Nanoformulations | Hydrodynamic Diameter ± SD (nm) | PDI ± SD |
---|---|---|
PP-EggPC-L | 134 ± 16 | 0.26 ± 0.01 |
PP-EggPC-Chol-L | 222 ± 32 | 0.27 ± 0.01 |
PP-DPPC-L | 147 ± 20 | 0.26 ± 0.02 |
PP-DPPC-Chol-L | 88 ± 25 | 0.23 ± 0.06 |
Liposomal Formulation | Lipid | EE (%) |
---|---|---|
PP-EggPC-L | Egg-PC | 96 ± 3 |
PP-DPPC-L | DPPC | 99.7 ± 0.1 |
PP-EggPC-Chol-L | Egg:Cholesterol (7:3) | 99.1 ± 0.1 |
PP-DPPC-Chol-L | DPPC:Cholesterol (7:3) | 99.5 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, S.; Ferreira, D.; Rodrigues, A.R.O.; Rodrigues, L.R.; Castanheira, E.M.S.; Carvalho, M.A. Liposomal Formulations for Efficient Delivery of a Novel, Highly Potent Pyrimidine-Based Anticancer Drug. Pharmaceuticals 2025, 18, 1210. https://doi.org/10.3390/ph18081210
Teixeira S, Ferreira D, Rodrigues ARO, Rodrigues LR, Castanheira EMS, Carvalho MA. Liposomal Formulations for Efficient Delivery of a Novel, Highly Potent Pyrimidine-Based Anticancer Drug. Pharmaceuticals. 2025; 18(8):1210. https://doi.org/10.3390/ph18081210
Chicago/Turabian StyleTeixeira, Sofia, Débora Ferreira, Ana Rita O. Rodrigues, Ligia R. Rodrigues, Elisabete M. S. Castanheira, and Maria Alice Carvalho. 2025. "Liposomal Formulations for Efficient Delivery of a Novel, Highly Potent Pyrimidine-Based Anticancer Drug" Pharmaceuticals 18, no. 8: 1210. https://doi.org/10.3390/ph18081210
APA StyleTeixeira, S., Ferreira, D., Rodrigues, A. R. O., Rodrigues, L. R., Castanheira, E. M. S., & Carvalho, M. A. (2025). Liposomal Formulations for Efficient Delivery of a Novel, Highly Potent Pyrimidine-Based Anticancer Drug. Pharmaceuticals, 18(8), 1210. https://doi.org/10.3390/ph18081210