Protective Effects of Pasireotide in LPS-Induced Acute Lung Injury
Abstract
1. Introduction
2. Results
2.1. PAS Reduces BALF Protein Concentration Levels in Mice Treated with LPSs
2.2. PAS Inhibits LPS-Induced Activation of the JAK/STAT Signaling Pathway in Mouse Lungs
2.3. PAS Attenuates LPS-Induced MAPK Activation in Mouse Lungs
2.4. PAS Counteracts LPS-Induced Grp94 Suppression in Inflamed Mouse Lungs
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. In Vivo Model of ALI, PAS Treatment, and BALF Protein Concentration Measurements
4.3. Western Blot Analysis
4.4. Densitometry and Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Morales, P.; Franklin, R.A. Macrophage phenotypes and functions: Resolving inflammation and restoring homeostasis. Trends Immunol. 2023, 44, 986–998. [Google Scholar] [CrossRef] [PubMed]
- Feehan, K.T.; Gilroy, D.W. Is Resolution the End of Inflammation? Trends Mol. Med. 2019, 25, 198–214. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, F.S.; Lanzetti, M.; Nesi, R.T.; Nagato, A.C.; Silva, C.P.E.; Kennedy-Feitosa, E.; Melo, A.C.; Cattani-Cavalieri, I.; Porto, L.C.; Valenca, S.S. Oxidative Stress and Inflammation in Acute and Chronic Lung Injuries. Antioxidants 2023, 12, 548. [Google Scholar] [CrossRef]
- Moldoveanu, B.; Otmishi, P.; Jani, P.; Walker, J.; Sarmiento, X.; Guardiola, J.; Saad, M.; Yu, J. Inflammatory mechanisms in the lung. J. Inflamm. Res. 2009, 2, 1–11. [Google Scholar]
- Scherer, P.M.; Chen, D.L. Imaging Pulmonary Inflammation. J. Nucl. Med. 2016, 57, 1764–1770. [Google Scholar] [CrossRef]
- Christenson, S.A.; Smith, B.M.; Bafadhel, M.; Putcha, N. Chronic obstructive pulmonary disease. Lancet 2022, 399, 2227–2242. [Google Scholar] [CrossRef]
- Robb, C.T.; Regan, K.H.; Dorward, D.A.; Rossi, A.G. Key mechanisms governing resolution of lung inflammation. Semin. Immunopathol. 2016, 38, 425–448. [Google Scholar] [CrossRef]
- Matuschak, G.M.; Lechner, A.J. Acute lung injury and the acute respiratory distress syndrome: Pathophysiology and treatment. Mo. Med. 2010, 107, 252–258. [Google Scholar]
- Huang, L.; Du, B.; Cui, X.; Zhao, H.; Feng, Y.; Xu, Z.; Long, J.; Yuan, J.; You, F. Nerelimomab Alleviates Capsaicin-Induced Acute Lung Injury by Inhibiting TNF Signaling and Apoptosis. Pharmaceuticals 2024, 17, 1694. [Google Scholar] [CrossRef]
- Shen, X.; He, L.; Cai, W. Role of Lipopolysaccharides in the Inflammation and Pyroptosis of Alveolar Epithelial Cells in Acute Lung Injury and Acute Respiratory Distress Syndrome. J. Inflamm. Res. 2024, 17, 5855–5869. [Google Scholar] [CrossRef] [PubMed]
- Zamyatina, A.; Heine, H. Lipopolysaccharide Recognition in the Crossroads of TLR4 and Caspase-4/11 Mediated Inflammatory Pathways. Front. Immunol. 2020, 11, 585146. [Google Scholar] [CrossRef] [PubMed]
- Ciesielska, A.; Matyjek, M.; Kwiatkowska, K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol. Life Sci. 2021, 78, 1233–1261. [Google Scholar] [CrossRef]
- Gonzales, J.N.; Lucas, R.; Verin, A.D. The Acute Respiratory Distress Syndrome: Mechanisms and Perspective Therapeutic Approaches. Austin J. Vasc. Med. 2015, 2, 1009. [Google Scholar] [PubMed]
- Theodoropoulou, M.; Stalla, G.K. Somatostatin receptors: From signaling to clinical practice. Front. Neuroendocrinol. 2013, 34, 228–252. [Google Scholar] [CrossRef] [PubMed]
- Lang, A.; Sakhnini, E.; Fidder, H.H.; Maor, Y.; Bar-Meir, S.; Chowers, Y. Somatostatin inhibits pro-inflammatory cytokine secretion from rat hepatic stellate cells. Liver Int. 2005, 25, 808–816. [Google Scholar] [CrossRef]
- Hosono, T.; Bando, M.; Mizushina, Y.; Sata, M.; Hagiwara, K.; Sugiyama, Y. Inhibitory effects of somatostatin analogue in bleomycin-induced pulmonary fibrosis. Exp. Lung Res. 2021, 47, 280–288. [Google Scholar] [CrossRef]
- Barriga, M.; Benitez, R.; Ferraz-de-Paula, V.; Garcia-Frutos, M.; Caro, M.; Robledo, G.; O’Valle, F.; Campos-Salinas, J.; Delgado, M. Protective role of cortistatin in pulmonary inflammation and fibrosis. Br. J. Pharmacol. 2021, 178, 4368–4388. [Google Scholar] [CrossRef]
- Puuvuori, E.; Liggieri, F.; Velikyan, I.; Chiodaroli, E.; Sigfridsson, J.; Romelin, H.; Ingvast, S.; Korsgren, O.; Hulsart-Billstrom, G.; Perchiazzi, G.; et al. PET-CT imaging of pulmonary inflammation using [(68)Ga]Ga-DOTA-TATE. EJNMMI Res. 2022, 12, 19. [Google Scholar] [CrossRef]
- Anzola, L.K.; Glaudemans, A.; Dierckx, R.; Martinez, F.A.; Moreno, S.; Signore, A. Somatostatin receptor imaging by SPECT and PET in patients with chronic inflammatory disorders: A systematic review. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2496–2513. [Google Scholar] [CrossRef]
- Varecza, Z.; Elekes, K.; Laszlo, T.; Perkecz, A.; Pinter, E.; Sandor, Z.; Szolcsanyi, J.; Keszthelyi, D.; Szabo, A.; Sandor, K.; et al. Expression of the somatostatin receptor subtype 4 in intact and inflamed pulmonary tissues. J. Histochem. Cytochem. 2009, 57, 1127–1137. [Google Scholar] [CrossRef] [PubMed]
- Elekes, K.; Helyes, Z.; Kereskai, L.; Sandor, K.; Pinter, E.; Pozsgai, G.; Tekus, V.; Banvolgyi, A.; Nemeth, J.; Szuts, T.; et al. Inhibitory effects of synthetic somatostatin receptor subtype 4 agonists on acute and chronic airway inflammation and hyperreactivity in the mouse. Eur. J. Pharmacol. 2008, 578, 313–322. [Google Scholar] [CrossRef]
- Bolanowski, M.; Kaluzny, M.; Witek, P.; Jawiarczyk-Przybylowska, A. Pasireotide-a novel somatostatin receptor ligand after 20 years of use. Rev. Endocr. Metab. Disord. 2022, 23, 601–620. [Google Scholar] [CrossRef]
- Petersenn, S.; Unger, N.; Hu, K.; Weisshaar, B.; Zhang, Y.; Bouillaud, E.; Resendiz, K.H.; Wang, Y.; Mann, K. Pasireotide (SOM230), a novel multireceptor-targeted somatostatin analogue, is well tolerated when administered as a continuous 7-day subcutaneous infusion in healthy male volunteers. J. Clin. Pharmacol. 2012, 52, 1017–1027. [Google Scholar] [CrossRef]
- Popa Ilie, I.R.; Dobrea, C.M.; Butuca, A.; Homorodean, C.; Morgovan, C.; Vonica-Tincu, A.L.; Gligor, F.G.; Ghibu, S.; Frum, A. Real-Life Data on the Safety of Pasireotide in Acromegaly: Insights from EudraVigilance. Pharmaceuticals 2024, 17, 1631. [Google Scholar] [CrossRef] [PubMed]
- Seifert, G.J.; Leithold, G.; Kulemann, B.; Holzner, P.A.; Glatz, T.; Hoeppner, J.; Kirste, S.; Marjanovic, G.; Laessle, C. The effect of pasireotide on intestinal anastomotic healing with and without whole-body irradiation in a rat model. Int. J. Colorectal Dis. 2019, 34, 337–345. [Google Scholar] [CrossRef]
- Fu, Q.; Berbee, M.; Boerma, M.; Wang, J.; Schmid, H.A.; Hauer-Jensen, M. The somatostatin analog SOM230 (pasireotide) ameliorates injury of the intestinal mucosa and increases survival after total-body irradiation by inhibiting exocrine pancreatic secretion. Radiat. Res. 2009, 171, 698–707. [Google Scholar] [CrossRef]
- Fakir, S.; Sigdel, M.; Sarker, M.M.R.; Barabutis, N. Pasireotide Exerts Anti-Inflammatory Effects in the Endothelium. J. Biochem. Mol. Toxicol. 2025, 39, e70306. [Google Scholar] [CrossRef] [PubMed]
- Barabutis, N. Activating transcription factor 6 in the endothelial context. Pulm. Pharmacol. Ther. 2023, 80, 102216. [Google Scholar] [CrossRef]
- Pawlikowski, M.; Stepien, H.; Kunert-Radek, J.; Zelazowski, P.; Schally, A.V. Immunomodulatory action of somatostatin. Ann. N. Y Acad. Sci. 1987, 496, 233–239. [Google Scholar] [CrossRef]
- Wang, J.; Tian, W.; Wang, S.; Wei, W.; Wu, D.; Wang, H.; Wang, L.; Yang, R.; Ji, A.; Li, Y. Anti-inflammatory and retinal protective effects of capsaicin on ischaemia-induced injuries through the release of endogenous somatostatin. Clin. Exp. Pharmacol. Physiol. 2017, 44, 803–814. [Google Scholar] [CrossRef]
- Strowski, M.Z.; Parmar, R.M.; Blake, A.D.; Schaeffer, J.M. Somatostatin inhibits insulin and glucagon secretion via two receptors subtypes: An in vitro study of pancreatic islets from somatostatin receptor 2 knockout mice. Endocrinology 2000, 141, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Nezi, M.; Mastorakos, G.; Mouslech, Z. Corticotropin Releasing Hormone And The Immune/Inflammatory Response. In Endotext; Feingold, K.R., Ahmed, S.F., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., et al., Eds.; MDText.com, Inc.: Austin, TX, USA, 2000. [Google Scholar]
- Casnici, C.; Lattuada, D.; Crotta, K.; Truzzi, M.C.; Corradini, C.; Ingegnoli, F.; Tonna, N.; Bianco, F.; Marelli, O. Anti-inflammatory Effect of Somatostatin Analogue Octreotide on Rheumatoid Arthritis Synoviocytes. Inflammation 2018, 41, 1648–1660. [Google Scholar] [CrossRef] [PubMed]
- Fakir, S.; Kubra, K.T.; Barabutis, N. Octreotide protects against LPS-induced endothelial cell and lung injury. Cell Signal 2024, 124, 111455. [Google Scholar] [CrossRef] [PubMed]
- Sarker, M.M.R.; Fakir, S.; Kubra, K.T.; Sigdel, M.; Siejka, A.; Stepien, H.; Barabutis, N. Lanreotide protects against LPS-induced inflammation in endothelial cells and mouse lungs. Tissue Barriers 2025, 2493968. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, A.; Coopmans, E.C.; Gatto, F.; Franck, S.E.; Janssen, J.; van der Lely, A.J.; Hofland, L.J.; Neggers, S. Pasireotide Responsiveness in Acromegaly Is Mainly Driven by Somatostatin Receptor Subtype 2 Expression. J. Clin. Endocrinol. Metab. 2019, 104, 915–924. [Google Scholar] [CrossRef]
- Bhat, S.Z.; Salvatori, R. Current role of pasireotide in the treatment of acromegaly. Best. Pract. Res. Clin. Endocrinol. Metab. 2024, 38, 101875. [Google Scholar] [CrossRef]
- Khadangi, F.; Forgues, A.S.; Tremblay-Pitre, S.; Dufour-Mailhot, A.; Henry, C.; Boucher, M.; Beaulieu, M.J.; Morissette, M.; Fereydoonzad, L.; Brunet, D.; et al. Intranasal versus intratracheal exposure to lipopolysaccharides in a murine model of acute respiratory distress syndrome. Sci. Rep. 2021, 11, 7777. [Google Scholar] [CrossRef]
- Nguyen, N.; Xu, S.; Lam, T.Y.W.; Liao, W.; Wong, W.S.F.; Ge, R. ISM1 suppresses LPS-induced acute lung injury and post-injury lung fibrosis in mice. Mol. Med. 2022, 28, 72. [Google Scholar] [CrossRef]
- Vernooy, J.H.; Dentener, M.A.; van Suylen, R.J.; Buurman, W.A.; Wouters, E.F. Intratracheal instillation of lipopolysaccharide in mice induces apoptosis in bronchial epithelial cells: No role for tumor necrosis factor-alpha and infiltrating neutrophils. Am. J. Respir. Cell Mol. Biol. 2001, 24, 569–576. [Google Scholar] [CrossRef]
- Liu, J.; Schiralli-Lester, G.M.; Norman, R.; Dean, D.A. Upregulation of alveolar fluid clearance is not sufficient for Na(+),K(+)-ATPase beta subunit-mediated gene therapy of LPS-induced acute lung injury in mice. Sci. Rep. 2023, 13, 6792. [Google Scholar] [CrossRef]
- Akhter, M.S.; Uddin, M.A.; Kubra, K.T.; Barabutis, N. Elucidation of the Molecular Pathways Involved in the Protective Effects of AUY-922 in LPS-Induced Inflammation in Mouse Lungs. Pharmaceuticals 2021, 14, 522. [Google Scholar] [CrossRef] [PubMed]
- Boncoeur, E.; Criq, V.S.; Bonvin, E.; Roque, T.; Henrion-Caude, A.; Gruenert, D.C.; Clement, A.; Jacquot, J.; Tabary, O. Oxidative stress induces extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase in cystic fibrosis lung epithelial cells: Potential mechanism for excessive IL-8 expression. Int. J. Biochem. Cell Biol. 2008, 40, 432–446. [Google Scholar] [CrossRef]
- Coulthard, L.R.; White, D.E.; Jones, D.L.; McDermott, M.F.; Burchill, S.A. p38(MAPK): Stress responses from molecular mechanisms to therapeutics. Trends Mol. Med. 2009, 15, 369–379. [Google Scholar] [CrossRef]
- Duan, X.; Iwanowycz, S.; Ngoi, S.; Hill, M.; Zhao, Q.; Liu, B. Molecular Chaperone GRP94/GP96 in Cancers: Oncogenesis and Therapeutic Target. Front. Oncol. 2021, 11, 629846. [Google Scholar] [CrossRef]
- Newton, R.; Holden, N.S. New aspects of p38 mitogen activated protein kinase (MAPK) biology in lung inflammation. Drug Discov. Today Dis. Mech. 2006, 3, 53–61. [Google Scholar] [CrossRef]
- Sarapultsev, A.; Gusev, E.; Komelkova, M.; Utepova, I.; Luo, S.; Hu, D. JAK-STAT signaling in inflammation and stress-related diseases: Implications for therapeutic interventions. Mol. Biomed. 2023, 4, 40. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Wei, L.W.; Zhao, M.D.; Zhu, J.L.; Chen, S.Y.; Jia, X.B.; Lai, S.J. Investigation of JAKs/STAT-3 in lipopolysaccharide-induced intestinal epithelial cells. Clin. Exp. Immunol. 2016, 186, 75–85. [Google Scholar] [CrossRef]
- Paris, A.J.; Hayer, K.E.; Oved, J.H.; Avgousti, D.C.; Toulmin, S.A.; Zepp, J.A.; Zacharias, W.J.; Katzen, J.B.; Basil, M.C.; Kremp, M.M.; et al. STAT3-BDNF-TrkB signalling promotes alveolar epithelial regeneration after lung injury. Nat. Cell Biol. 2020, 22, 1197–1210. [Google Scholar] [CrossRef]
- Corre, I.; Paris, F.; Huot, J. The p38 pathway, a major pleiotropic cascade that transduces stress and metastatic signals in endothelial cells. Oncotarget 2017, 8, 55684–55714. [Google Scholar] [CrossRef]
- Hammouda, M.B.; Ford, A.E.; Liu, Y.; Zhang, J.Y. The JNK Signaling Pathway in Inflammatory Skin Disorders and Cancer. Cells 2020, 9, 857. [Google Scholar] [CrossRef] [PubMed]
- Mebratu, Y.; Tesfaigzi, Y. How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle 2009, 8, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
- Fakir, S.; Sigdel, M.; Sarker, M.M.R.; Folahan, J.T.; Barabutis, N. Ceapin-A7 suppresses the protective effects of Octreotide in human and bovine lung endothelial cells. Cell Stress. Chaperones 2025, 30, 1–8. [Google Scholar] [CrossRef]
- Fakir, S.; Barabutis, N. Involvement of ATF6 in Octreotide-Induced Endothelial Barrier Enhancement. Pharmaceuticals 2024, 17, 1604. [Google Scholar] [CrossRef] [PubMed]
- Fakir, S.; Kubra, K.T.; Akhter, M.S.; Uddin, M.A.; Sarker, M.M.R.; Siejka, A.; Barabutis, N. Unfolded protein response modulates the effects of GHRH antagonists in experimental models of in vivo and in vitro lung injury. Tissue Barriers 2024, 2438974. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Berbee, M.; Wang, W.; Boerma, M.; Wang, J.; Schmid, H.A.; Hauer-Jensen, M. Preclinical evaluation of Som230 as a radiation mitigator in a mouse model: Postexposure time window and mechanisms of action. Radiat. Res. 2011, 175, 728–735. [Google Scholar] [CrossRef]
- Owonikoko, T.K.; Zhang, G.; Lallani, S.B.; Chen, Z.; Martinson, D.E.; Khuri, F.R.; Lonial, S.; Marcus, A.; Sun, S.Y. Evaluation of preclinical efficacy of everolimus and pasireotide in thyroid cancer cell lines and xenograft models. PLoS ONE 2019, 14, e0206309. [Google Scholar] [CrossRef]
- Kucharava, K.; Sekulic-Jablanovic, M.; Horvath, L.; Bodmer, D.; Petkovic, V. Pasireotide protects mammalian cochlear hair cells from gentamicin ototoxicity by activating the PI3K-Akt pathway. Cell Death Dis. 2019, 10, 110. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fakir, S.; Sarker, M.M.R.; Sigdel, M.; Barabutis, N. Protective Effects of Pasireotide in LPS-Induced Acute Lung Injury. Pharmaceuticals 2025, 18, 942. https://doi.org/10.3390/ph18070942
Fakir S, Sarker MMR, Sigdel M, Barabutis N. Protective Effects of Pasireotide in LPS-Induced Acute Lung Injury. Pharmaceuticals. 2025; 18(7):942. https://doi.org/10.3390/ph18070942
Chicago/Turabian StyleFakir, Saikat, Md Matiur Rahman Sarker, Madan Sigdel, and Nektarios Barabutis. 2025. "Protective Effects of Pasireotide in LPS-Induced Acute Lung Injury" Pharmaceuticals 18, no. 7: 942. https://doi.org/10.3390/ph18070942
APA StyleFakir, S., Sarker, M. M. R., Sigdel, M., & Barabutis, N. (2025). Protective Effects of Pasireotide in LPS-Induced Acute Lung Injury. Pharmaceuticals, 18(7), 942. https://doi.org/10.3390/ph18070942