Improving Ex Vivo Nasal Mucosa Experimental Design for Drug Permeability Assessments: Correcting Mucosal Thickness Interference and Reevaluating Fluorescein Sodium as an Integrity Marker for Chemically Induced Mucosal Injury
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Influence of Mucosal Thickness on Intra- and Inter-Individual Variability in Nasal Permeability
2.2. Statistical Efficiency After Mucosal Thickness Normalization
2.3. Reevaluating Flu-Na as an Integrity Marker for Chemically Induced Mucosal Injury
2.4. Implications and Future Perspectives for Optimizing Ex Vivo Permeability Study Design
3. Materials and Methods
3.1. Chemicals
3.2. Dissection and Thickness Measurement of Porcine Nasal Epithelial Tissues
3.3. Permeation Study Using Franz Diffusion Cells
3.3.1. Permeation Study of Melatonin
3.3.2. Permeation Study of Flu-Na
3.4. Analytical Methods
3.5. Calculation and Statistical Analysis
3.6. Numerical Simulation of Permeation Experiments
3.7. Measurement of Flu-Na UV Spectra and Log D at Different pH Values
3.7.1. Flu-Na UV Spectra
3.7.2. Flu-Na Log D
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kola, I.; Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 2004, 3, 711–716. [Google Scholar] [CrossRef]
- Sun, D.; Gao, W.; Hu, H.; Zhou, S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm. Sin. B 2022, 12, 3049–3062. [Google Scholar] [CrossRef] [PubMed]
- Kirby-Smith, C.; Steenekamp, J.; Steyn, D.; Haasbroek-Pheiffer, A.; Hamman, H.; Hamman, J. Intranasal Insulin Delivery: Microparticle Formulations Consisting of Aloe vera Polysaccharides for Advanced Delivery across Excised Olfactory and Respiratory Nasal Epithelial Tissues. Appl. Sci. 2023, 13, 4822. [Google Scholar] [CrossRef]
- Liu, Y.; Johnson, M.R.; Matida, E.A.; Kherani, S.; Marsan, J. Creation of a standardized geometry of the human nasal cavity. J Appl. Physiol. 2009, 106, 784–795. [Google Scholar] [CrossRef]
- Gizurarson, S. Anatomical and histological factors affecting intranasal drug and vaccine delivery. Curr. Drug Deliv. 2012, 9, 566–582. [Google Scholar] [CrossRef] [PubMed]
- Helander, H.F.; Fändriks, L. Surface area of the digestive tract–revisited. Scand. J. Gastroenterol. 2014, 49, 681–689. [Google Scholar] [CrossRef]
- DeSesso, J.M.; Jacobson, C.F. Anatomical and physiological parameters affecting gastrointestinal absorption in humans and rats. Food Chem. Toxicol. 2001, 39, 209–228. [Google Scholar] [CrossRef] [PubMed]
- Dahl, R.; Mygind, N. Anatomy, physiology and function of the nasal cavities in health and disease. Adv. Drug Deliv. Rev. 1998, 29, 3–12. [Google Scholar] [CrossRef]
- Merkus, F.W.; Verhoef, J.C.; Schipper, N.G.; Marttin, E. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv. Drug Deliv. Rev. 1998, 29, 13–38. [Google Scholar] [CrossRef]
- Gizurarson, S. The effect of cilia and the mucociliary clearance on successful drug delivery. Biol. Pharm. Bull. 2015, 38, 497–506. [Google Scholar] [CrossRef]
- Haasbroek-Pheiffer, A.; Van Niekerk, S.; Van der Kooy, F.; Cloete, T.; Steenekamp, J.; Hamman, J. In vitro and ex vivo experimental models for evaluation of intranasal systemic drug delivery as well as direct nose-to-brain drug delivery. Biopharm. Drug Dispos. 2023, 44, 94–112. [Google Scholar] [CrossRef] [PubMed]
- Steyn, J.D.; Haasbroek-Pheiffer, A.; Pheiffer, W.; Weyers, M.; van Niekerk, S.E.; Hamman, J.H.; van Staden, D. Evaluation of Drug Permeation Enhancement by Using In Vitro and Ex Vivo Models. Pharmaceuticals 2025, 18, 195. [Google Scholar] [CrossRef] [PubMed]
- Loftsson, T.; Konradsdottir, F.; Masson, M. Development and evaluation of an artificial membrane for determination of drug availability. Int. J. Pharm. 2006, 326, 60–68. [Google Scholar] [CrossRef]
- Henriques, P.; Bicker, J.; Silva, S.; Doktorovova, S.; Fortuna, A. Nasal-PAMPA: A novel non-cell-based high throughput screening assay for prediction of nasal drug permeability. Int. J. Pharm. 2023, 643, 123252. [Google Scholar] [CrossRef]
- Radan, M.; Djikic, T.; Obradovic, D.; Nikolic, K. Application of in vitro PAMPA technique and in silico computational methods for blood-brain barrier permeability prediction of novel CNS drug candidates. Eur. J. Pharm. Sci. 2022, 168, 106056. [Google Scholar] [CrossRef]
- Soriano-Meseguer, S.; Fuguet, E.; Port, A.; Rosés, M. Suitability of skin-PAMPA and chromatographic systems to emulate skin permeation. Influence of pH on skin-PAMPA permeability. Microchem. J. 2023, 190, 108567. [Google Scholar] [CrossRef]
- Dargo, G.; Vincze, A.; Muller, J.; Kiss, H.J.; Nagy, Z.Z.; Balogh, G.T. Corneal-PAMPA: A novel, non-cell-based assay for prediction of corneal drug permeability. Eur. J. Pharm. Sci. 2019, 128, 232–239. [Google Scholar] [CrossRef]
- Yamashita, S.; Tanaka, Y.; Endoh, Y.; Taki, Y.; Sakane, T.; Nadai, T.; Sezaki, H. Analysis of drug permeation across Caco-2 monolayer: Implication for predicting in vivo drug absorption. Pharm. Res. 1997, 14, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Sibinovska, N.; Zakelj, S.; Trontelj, J.; Kristan, K. Applicability of RPMI 2650 and Calu-3 Cell Models for Evaluation of Nasal Formulations. Pharmaceutics 2022, 14, 369. [Google Scholar] [CrossRef]
- Bai, S.; Yang, T.; Abbruscato, T.J.; Ahsan, F. Evaluation of human nasal RPMI 2650 cells grown at an air-liquid interface as a model for nasal drug transport studies. J. Pharm. Sci. 2008, 97, 1165–1178. [Google Scholar] [CrossRef]
- Gerber, W.; Svitina, H.; Steyn, D.; Peterson, B.; Kotze, A.; Weldon, C.; Hamman, J.H. Comparison of RPMI 2650 cell layers and excised sheep nasal epithelial tissues in terms of nasal drug delivery and immunocytochemistry properties. J. Pharmacol. Toxicol Methods 2022, 113, 107131. [Google Scholar] [CrossRef] [PubMed]
- Wadell, C.; Bjork, E.; Camber, O. Permeability of porcine nasal mucosa correlated with human nasal absorption. Eur. J. Pharm. Sci. 2003, 18, 47–53. [Google Scholar] [CrossRef]
- Bartos, C.; Szabo-Revesz, P.; Horvath, T.; Varga, P.; Ambrus, R. Comparison of Modern In Vitro Permeability Methods with the Aim of Investigation Nasal Dosage Forms. Pharmaceutics 2021, 13, 846. [Google Scholar] [CrossRef]
- Song, J.; Xu, Z.; Xie, L.; Shen, J. Recent Advances in Studying In Vitro Drug Permeation Across Mucosal Membranes. Pharmaceutics 2025, 17, 256. [Google Scholar] [CrossRef] [PubMed]
- Nicolazzo, J.A.; Reed, B.L.; Finnin, B.C. The effect of various in vitro conditions on the permeability characteristics of the buccal mucosa. J. Pharm. Sci. 2003, 92, 2399–2410. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, Y.; Zuo, J.; Le, T.S.; Kerdsiri, J.; Waranuch, N.; Davies, N.M.; Loebenberg, R. Evaluation of Drug Permeability Across Ex Vivo Nasal Mucosa: A Simulation-Based Approach to Minimize Thickness-Related Variability. J. Drug Deliv. Sci. Technol. 2025, 108, 106959. [Google Scholar] [CrossRef]
- Mehrer, H. Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; Volume 155. [Google Scholar]
- Kumar, N.N.; Gautam, M.; Lochhead, J.J.; Wolak, D.J.; Ithapu, V.; Singh, V.; Thorne, R.G. Relative vascular permeability and vascularity across different regions of the rat nasal mucosa: Implications for nasal physiology and drug delivery. Sci. Rep. 2016, 6, 31732. [Google Scholar] [CrossRef] [PubMed]
- Arora, P.; Sharma, S.; Garg, S. Permeability issues in nasal drug delivery. Drug Discov. Today 2002, 7, 967–975. [Google Scholar] [CrossRef]
- Wadell, C.; Bjork, E.; Camber, O. Nasal drug delivery—Evaluation of an in vitro model using porcine nasal mucosa. Eur. J. Pharm. Sci. 1999, 7, 197–206. [Google Scholar] [CrossRef]
- de Araujo, J.S.M.; Augusto, G.G.X.; Pestana, A.M.; Groppo, F.C.; Rodrigues, F.S.M.; Novaes, P.D.; Franz-Montan, M. Impact of Storage on In Vitro Permeation and Mucoadhesion Setup Experiments Using Swine Nasal Mucosa. AAPS PharmSciTech 2024, 26, 7. [Google Scholar] [CrossRef]
- Osth, K.; Grasjo, J.; Bjork, E. A new method for drug transport studies on pig nasal mucosa using a horizontal Ussing chamber. J. Pharm. Sci. 2002, 91, 1259–1273. [Google Scholar] [CrossRef]
- Leichner, C.; Baus, R.A.; Jelkmann, M.; Plautz, M.; Barthelmes, J.; Dunnhaupt, S.; Bernkop-Schnurch, A. In vitro evaluation of a self-emulsifying drug delivery system (SEDDS) for nasal administration of dimenhydrinate. Drug Deliv. Transl. Res. 2019, 9, 945–955. [Google Scholar] [CrossRef]
- Haasbroek-Pheiffer, A.; Viljoen, A.; Steenekamp, J.; Chen, W.; Hamman, J. An Ex vivo Investigation on Drug Permeability of Sheep Nasal Epithelial Tissue Membranes from the Respiratory and Olfactory Regions. Curr. Drug Deliv. 2024, 21, 115–125. [Google Scholar] [CrossRef]
- SAFETY DATA SHEET. Sigma-Aldrich. Available online: https://www.sigmaaldrich.com/CA/en/sds/sial/f6377?srsltid=AfmBOop0KjftBilbRx2MaZpl4wFn4amm3MMvTLw6X1YHBh4HJZ80_He1 (accessed on 25 April 2025).
- Sakai, M.; Imai, T.; Ohtake, H.; Azuma, H.; Otagiri, M. Effects of absorption enhancers on the transport of model compounds in Caco-2 cell monolayers: Assessment by confocal laser scanning microscopy. J. Pharm. Sci. 1997, 86, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Oba, Y.; Poulson, S.R. Octanol-water partition coefficients (Kow) vs. pH for fluorescent dye tracers (fluorescein, eosin Y), and implications for hydrologic tracer tests. Geochem. J. 2012, 46, 517–520. [Google Scholar] [CrossRef]
- Hurni, M.A.; Noach, A.B.; Blom-Roosemalen, M.C.; de Boer, A.G.; Nagelkerke, J.F.; Breimer, D.D. Permeability enhancement in Caco-2 cell monolayers by sodium salicylate and sodium taurodihydrofusidate: Assessment of effect-reversibility and imaging of transepithelial transport routes by confocal laser scanning microscopy. J. Pharmacol. Exp. Ther. 1993, 267, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Ahishali, B.; Kaya, M. Evaluation of blood-brain barrier integrity using vascular permeability markers: Evans blue, sodium fluorescein, albumin-alexa fluor conjugates, and horseradish peroxidase. In Permeability Barrier: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2020; pp. 87–103. [Google Scholar]
- Szabo, A.; Vollmar, B.; Boros, M.; Menger, M.D. In vivo fluorescence microscopic imaging for dynamic quantitative assessment of intestinal mucosa permeability in mice. J. Surg. Res. 2008, 145, 179–185. [Google Scholar] [CrossRef]
- McNamara, N.A.; Fusaro, R.E.; Brand, R.J.; Polse, K.A.; Srinivas, S.P. Measurement of corneal epithelial permeability to fluorescein. A repeatability study. Investig. Ophthalmol. Vis. Sci. 1997, 38, 1830–1839. [Google Scholar]
- Clausen, A.E.; Bernkop-Schnurch, A. In vitro evaluation of the permeation-enhancing effect of thiolated polycarbophil. J. Pharm. Sci. 2000, 89, 1253–1261. [Google Scholar] [CrossRef]
- Clausen, A.E.; Bernkop-Schnurch, A. Thiolated carboxymethylcellulose: In vitro evaluation of its permeation enhancing effect on peptide drugs. Eur. J. Pharm. Biopharm. 2001, 51, 25–32. [Google Scholar] [CrossRef]
- Zambito, Y.; Zaino, C.; Burchielli, S.; Carelli, V.; Serafini, M.F.; Di Colo, G. Novel quaternary ammonium chitosan derivatives for the promotion of intraocular drug absorption. J. Drug Deliv. Sci. Technol. 2007, 17, 19–24. [Google Scholar] [CrossRef]
- Zambito, Y.; Uccello-Barretta, G.; Zaino, C.; Balzano, F.; Di Colo, G. Novel transmucosal absorption enhancers obtained by aminoalkylation of chitosan. Eur. J. Pharm. Sci. 2006, 29, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Salade, L.; Wauthoz, N.; Goole, J.; Amighi, K. How to characterize a nasal product. The state of the art of in vitro and ex vivo specific methods. Int. J. Pharm. 2019, 561, 47–65. [Google Scholar] [CrossRef]
- Anderson, J.M.; Van Itallie, C.M. Physiology and function of the tight junction. Cold Spring Harb. Perspect. Biol. 2009, 1, a002584. [Google Scholar] [CrossRef] [PubMed]
- Shah, B.; Khunt, D.; Misra, M.; Padh, H. Non-invasive intranasal delivery of quetiapine fumarate loaded microemulsion for brain targeting: Formulation, physicochemical and pharmacokinetic consideration. Eur. J. Pharm. Sci. 2016, 91, 196–207. [Google Scholar] [CrossRef]
- Patel, R.B.; Patel, M.R.; Bhatt, K.K.; Patel, B.G. Formulation consideration and characterization of microemulsion drug delivery system for transnasal administration of carbamazepine. Bull. Fac. Pharm. Cairo Univ. 2013, 51, 243–253. [Google Scholar] [CrossRef]
- Ohashi, Y.; Nakai, Y.; Koshimo, H.; Esaki, Y.; Ikeoka, H.; Horiguchi, S.; Teramoto, K.; Nakaseko, H. Toxicity of isopropyl alcohol exposure on the nasal mucociliary system in the guinea pig. Environ. Res. 1988, 46, 25–38. [Google Scholar] [CrossRef]
- Haasbroek-Pheiffer, A.; Viljoen, A.; Steenekamp, J.; Chen, W.; Hamman, J. Permeation of Phytochemicals of Selected Psychoactive Medicinal Plants across Excised Sheep Respiratory and Olfactory Epithelial Tissues. Pharmaceutics 2023, 15, 1423. [Google Scholar] [CrossRef]
- Zhao, S.; Le, T.S.; Davies, N.M.; Löbenberg, R. Development of a Physiologically Relevant Simulated Nasal Fluid for In Vitro Dissolution Studies. Dissolution Technol. 2025, 32, 20–31. [Google Scholar] [CrossRef]
- Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, C.; Xie, S. DDSolver: An add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010, 12, 263–271. [Google Scholar] [CrossRef]
Sample Size (n) | CV (%) | Relative Minimum Detectable Difference (%) |
---|---|---|
3 | 10 | 22.67 |
3 | 20 | 45.33 |
3 | 30 | 68.00 |
4 | 10 | 19.63 |
4 | 20 | 39.26 |
4 | 30 | 58.89 |
5 | 10 | 17.56 |
5 | 20 | 35.11 |
5 | 30 | 52.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Zuo, J.; Mallillin, M.C., III; Tang, R.; Doschak, M.R.; Davies, N.M.; Löbenberg, R. Improving Ex Vivo Nasal Mucosa Experimental Design for Drug Permeability Assessments: Correcting Mucosal Thickness Interference and Reevaluating Fluorescein Sodium as an Integrity Marker for Chemically Induced Mucosal Injury. Pharmaceuticals 2025, 18, 889. https://doi.org/10.3390/ph18060889
Zhao S, Zuo J, Mallillin MC III, Tang R, Doschak MR, Davies NM, Löbenberg R. Improving Ex Vivo Nasal Mucosa Experimental Design for Drug Permeability Assessments: Correcting Mucosal Thickness Interference and Reevaluating Fluorescein Sodium as an Integrity Marker for Chemically Induced Mucosal Injury. Pharmaceuticals. 2025; 18(6):889. https://doi.org/10.3390/ph18060889
Chicago/Turabian StyleZhao, Shengnan, Jieyu Zuo, Marlon C. Mallillin, III, Ruikun Tang, Michael R. Doschak, Neal M. Davies, and Raimar Löbenberg. 2025. "Improving Ex Vivo Nasal Mucosa Experimental Design for Drug Permeability Assessments: Correcting Mucosal Thickness Interference and Reevaluating Fluorescein Sodium as an Integrity Marker for Chemically Induced Mucosal Injury" Pharmaceuticals 18, no. 6: 889. https://doi.org/10.3390/ph18060889
APA StyleZhao, S., Zuo, J., Mallillin, M. C., III, Tang, R., Doschak, M. R., Davies, N. M., & Löbenberg, R. (2025). Improving Ex Vivo Nasal Mucosa Experimental Design for Drug Permeability Assessments: Correcting Mucosal Thickness Interference and Reevaluating Fluorescein Sodium as an Integrity Marker for Chemically Induced Mucosal Injury. Pharmaceuticals, 18(6), 889. https://doi.org/10.3390/ph18060889