Chemoprevention of Colorectal Cancer—With Emphasis on Low-Dose Aspirin and Anticoagulants
Abstract
:1. Introduction
2. Results
2.1. Aspirin and Colorectal Cancer
2.2. Oral Anticoagulation and Colorectal Cancer
2.3. Metformin and Colorectal Cancer
2.4. Corticosteroids and Colorectal Cancer
2.5. Statins, Beta-Blockers, and Colorectal Cancer
2.6. CRC and Supplements: Vitamin D, Calcium, and Folic Acid
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviation
CRC | Colorectal cancer |
GIB | Gastrointestinal bleeding |
OAC | Oral anticoagulation |
COX | Cyclooxygenase |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Grymonprez, M.; Simoens, C.; Steurbaut, S.; De Backer, T.L.; Lahousse, L. Worldwide trends in oral anticoagulant use in patients with atrial fibrillation from 2010 to 2018: A systematic review and meta-analysis. EP Eur. 2022, 24, 887–898. [Google Scholar] [CrossRef] [PubMed]
- Stuntz, M.; Bernstein, B. Recent trends in the prevalence of low-dose aspirin use for primary and secondary prevention of cardiovascular disease in the United States, 2012–2015. Prev. Med. Rep. 2017, 5, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Antithrombotic Trialists’ (ATT) Collaboration; Baigent, C.; Blackwell, L.; Collins, R.; Emberson, J.; Godwin, J.; Peto, R.; Buring, J.; Hennekens, C.; Kearney, P.; et al. Aspirin in the primary and secondary prevention of vascular disease: Collaborative meta-analysis of individual participant data from randomised trials. Lancet 2009, 373, 1849–1860. [Google Scholar]
- Kune, G.A.; Kune, S.; Watson, L.F. Colorectal Cancer Risk, Chronic Illnesses, Operations, and Medications: Case Control Results from the Melbourne Colorectal Cancer Study. Cancer Res. 1988, 48, 4399–4404. [Google Scholar] [CrossRef]
- Lam, A.; Hao, Z.; Yiu, K.; Chan, S.; Chan, F.; Sung, J.; Tsoi, K. Long-term use of low-dose aspirin for cancer prevention: A 20-year longitudinal cohort study of 1,506,525 Hong Kong residents. Int. J. Cancer 2025, 156, 2330–2339. [Google Scholar] [CrossRef]
- Skriver, C.; Maltesen, T.; Dehlendorff, C.; Skovlund, C.W.; Schmidt, M.; Sørensen, H.T.; Friis, S. Long-term aspirin use and cancer risk: A 20-year cohort study. JNCI J. Natl. Cancer Inst. 2023, 116, 530–538. [Google Scholar] [CrossRef]
- Shahrivar, M.; Weibull, C.E.; Ekström Smedby, K.; Glimelius, B.; Syk, I.; Matthiessen, P.; Nordenvall, C.; Martling, A. Low-dose aspirin use and colorectal cancer survival in 32,195 patients—A national cohort study. Cancer Med. 2023, 12, 315–324. [Google Scholar] [CrossRef]
- Shami, J.J.P.; Zhao, J.; Pathadka, S.; Wan, E.Y.F.; Blais, J.E.; Vora, P.; Soriano-Gabarró, M.; Cheung, K.S.; Leung, W.K.; Wong, I.C.K.; et al. Safety and effectiveness of low-dose aspirin for the prevention of gastrointestinal cancer in adults without atherosclerotic cardiovascular disease: A population-based cohort study. BMJ Open 2022, 12, e050510. [Google Scholar] [CrossRef]
- Sung, J.J.Y.; Ho, J.M.W.; Chan, F.C.H.; Tsoi, K.K.F. Low-dose aspirin can reduce colorectal cancer mortality after surgery: A 10-year follow-up of 13 528 colorectal cancer patients. J. Gastroenterol. Hepatol. 2019, 34, 1027–1034. [Google Scholar] [CrossRef]
- Tsoi, K.K.F.; Chan, F.C.H.; Hirai, H.W.; Sung, J.J.Y. Risk of gastrointestinal bleeding and benefit from colorectal cancer reduction from long-term use of low-dose aspirin: A retrospective study of 612,509 patients. J. Gastroenterol. Hepatol. 2018, 33, 1728–1736. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Nishihara, R.; Wu, K.; Wang, M.; Ogino, S.; Willett, W.C.; Spiegelman, D.; Fuchs, C.S.; Giovannucci, E.L.; Chan, A.T. Population-wide Impact of Long-term Use of Aspirin and the Risk for Cancer. JAMA Oncol. 2016, 2, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Cook, N.R.; Lee, I.M.; Zhang, S.M.; Moorthy, M.V.; Buring, J.E. Alternate-Day, Low-Dose Aspirin and Cancer Risk: Long-Term Observational Follow-up of a Randomized Trial. Ann. Intern. Med. 2013, 159, 77–85. [Google Scholar] [CrossRef]
- Liao, X.; Lochhead, P.; Nishihara, R.; Morikawa, T.; Kuchiba, A.; Yamauchi, M.; Imamura, Y.; Qian Zhi, R.; Baba, Y.; Shima, K.; et al. Aspirin Use, Tumor PIK3CA Mutation, and Colorectal-Cancer Survival. N. Engl. J. Med. 2012, 367, 1596–1606. [Google Scholar] [CrossRef]
- Rothwell, P.M.; Fowkes, F.G.R.; Belch, J.F.F.; Ogawa, H.; Warlow, C.P.; Meade, T.W. Effect of daily aspirin on long-term risk of death due to cancer: Analysis of individual patient data from randomised trials. Lancet 2011, 377, 31–41. [Google Scholar] [CrossRef]
- Rothwell, P.M.; Wilson, M.; Elwin, C.-E.; Norrving, B.; Algra, A.; Warlow, C.P.; Meade, T.W. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 2010, 376, 1741–1750. [Google Scholar] [CrossRef]
- Chan, A.T.; Ogino, S.; Fuchs, C.S. Aspirin use and survival after diagnosis of colorectal cancer. JAMA 2009, 302, 649–658. [Google Scholar] [CrossRef]
- Thun Michael, J.; Namboodiri Mohan, M.; Heath Clark, W. Aspirin Use and Reduced Risk of Fatal Colon Cancer. N. Engl. J. Med. 1991, 325, 1593–1596. [Google Scholar] [CrossRef]
- McNeil John, J.; Nelson Mark, R.; Woods Robyn, L.; Lockery Jessica, E.; Wolfe, R.; Reid Christopher, M.; Kirpach, B.; Shah Raj, C.; Ives Diane, G.; Storey, E.; et al. Effect of Aspirin on All-Cause Mortality in the Healthy Elderly. N. Engl. J. Med. 2018, 379, 1519–1528. [Google Scholar] [CrossRef]
- Cook, N.R.; Lee, I.-M.; Gaziano, J.M.; Gordon, D.; Ridker, P.M.; Manson, J.E.; Hennekens, C.H.; Buring, J.E. Low-Dose Aspirin in the Primary Prevention of CancerThe Women’s Health Study: A Randomized Controlled Trial. JAMA 2005, 294, 47–55. [Google Scholar] [CrossRef]
- Mädge, J.C.; Stallmach, A.; Kleebusch, L.; Schlattmann, P. Meta-analysis of aspirin-guided therapy of colorectal cancer. J. Cancer Res. Clin. Oncol. 2022, 148, 1407–1417. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, R.; Yu, L.; Xiao, J.; Zhou, X.; Li, X.; Song, P.; Li, X. Aspirin Use and Common Cancer Risk: A Meta-Analysis of Cohort Studies and Randomized Controlled Trials. Front. Oncol. 2021, 11, 690219. [Google Scholar] [CrossRef]
- Bosetti, C.; Santucci, C.; Gallus, S.; Martinetti, M.; La Vecchia, C. Aspirin and the risk of colorectal and other digestive tract cancers: An updated meta-analysis through 2019. Ann. Oncol. 2020, 31, 558–568. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-L.; Lin, J.-X.; Zheng, C.-H.; Li, P.; Xie, J.-W.; Wang, J.-b.; Lu, J.; Chen, Q.-Y.; Cao, L.-l.; Lin, M.; et al. Relationship between aspirin use of esophageal, gastric and colorectal cancer patient survival: A meta-analysis. BMC Cancer 2020, 20, 638. [Google Scholar] [CrossRef]
- Algra, A.M.; Rothwell, P.M. Effects of regular aspirin on long-term cancer incidence and metastasis: A systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol. 2012, 13, 518–527. [Google Scholar] [CrossRef]
- Rothwell, P.M.; Price, J.F.; Fowkes, F.G.R.; Zanchetti, A.; Roncaglioni, M.C.; Tognoni, G.; Lee, R.; Belch, J.F.F.; Wilson, M.; Mehta, Z.; et al. Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: Analysis of the time course of risks and benefits in 51 randomised controlled trials. Lancet 2012, 379, 1602–1612. [Google Scholar] [CrossRef]
- Bibbins-Domingo, K. Aspirin Use for the Primary Prevention of Cardiovascular Disease and Colorectal Cancer: U.S. Preventive Services Task Force Recommendation Statement. Ann. Intern. Med. 2016, 164, 836–845. [Google Scholar] [CrossRef]
- McNeil, J.J.; Gibbs, P.; Orchard, S.G.; Lockery, J.E.; Bernstein, W.B.; Cao, Y.; Ford, L.; Haydon, A.; Kirpach, B.; Macrae, F.; et al. Effect of Aspirin on Cancer Incidence and Mortality in Older Adults. JNCI J. Natl. Cancer Inst. 2021, 113, 258–265. [Google Scholar] [CrossRef]
- Guo, C.-G.; Ma, W.; Drew, D.A.; Cao, Y.; Nguyen, L.H.; Joshi, A.D.; Ng, K.; Ogino, S.; Meyerhardt, J.A.; Song, M.; et al. Aspirin Use and Risk of Colorectal Cancer Among Older Adults. JAMA Oncol. 2021, 7, 428–435. [Google Scholar] [CrossRef]
- Flossmann, E.; Rothwell, P.M. Effect of aspirin on long-term risk of colorectal cancer: Consistent evidence from randomised and observational studies. Lancet 2007, 369, 1603–1613. [Google Scholar] [CrossRef]
- Drew, D.A.; Chan, A.T. Aspirin in the Prevention of Colorectal Neoplasia. Annu. Rev. Med. 2021, 72, 415–430. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Phipps, A.I.; Burnett-Hartman, A.N.; Adams, S.V.; Hardikar, S.; Cohen, S.A.; Kocarnik, J.M.; Ahnen, D.J.; Lindor, N.M.; Baron, J.A.; et al. Timing of Aspirin and Other Nonsteroidal Anti-Inflammatory Drug Use Among Patients With Colorectal Cancer in Relation to Tumor Markers and Survival. J. Clin. Oncol. 2017, 35, 2806–2813. [Google Scholar] [CrossRef] [PubMed]
- Bains, S.J.; Mahic, M.; Myklebust, T.Å.; Småstuen, M.C.; Yaqub, S.; Dørum, L.M.; Bjørnbeth, B.A.; Møller, B.; Brudvik, K.W.; Taskén, K. Aspirin as secondary prevention in patients with colorectal cancer: An unselected population-based study. J. Clin. Oncol. 2016, 34, 2501–2508. [Google Scholar] [CrossRef]
- Cardwell, C.R.; Kunzmann, A.T.; Cantwell, M.M.; Hughes, C.; Baron, J.A.; Powe, D.G.; Murray, L.J. Low-Dose Aspirin Use After Diagnosis of Colorectal Cancer Does Not Increase Survival: A Case–Control Analysis of a Population-Based Cohort. Gastroenterology 2014, 146, 700–708.e2. [Google Scholar] [CrossRef]
- Gray, R.T.; Coleman, H.G.; Hughes, C.; Murray, L.J.; Cardwell, C.R. Low-dose aspirin use and survival in colorectal cancer: Results from a population-based cohort study. BMC Cancer 2018, 18, 228. [Google Scholar] [CrossRef]
- Rothwell, P.M.; Wilson, M.; Price, J.F.; Belch, J.F.F.; Meade, T.W.; Mehta, Z. Effect of daily aspirin on risk of cancer metastasis: A study of incident cancers during randomised controlled trials. Lancet 2012, 379, 1591–1601. [Google Scholar] [CrossRef]
- Fenwick, S.W.; Toogood, G.J.; Lodge, J.P.; Hull, M.A. The effect of the selective cyclooxygenase-2 inhibitor rofecoxib on human colorectal cancer liver metastases. Gastroenterology 2003, 125, 716–729. [Google Scholar] [CrossRef]
- Yao, M.; Kargman, S.; Lam, E.C.; Kelly, C.R.; Zheng, Y.; Luk, P.; Kwong, E.; Evans, J.F.; Wolfe, M.M. Inhibition of Cyclooxygenase-2 by Rofecoxib Attenuates the Growth and Metastatic Potential of Colorectal Carcinoma in Mice. Cancer Res. 2003, 63, 586–592. [Google Scholar]
- Sheng, H.; Shao, J.; Washington, M.K.; DuBois, R.N. Prostaglandin E2 Increases Growth and Motility of Colorectal Carcinoma Cells. J. Biol. Chem. 2001, 276, 18075–18081. [Google Scholar] [CrossRef]
- Tsujii, M.; Kawano, S.; DuBois, R.N. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc. Natl. Acad. Sci. USA 1997, 94, 3336–3340. [Google Scholar] [CrossRef]
- Fujita, T.; Matsui, M.; Takaku, K.; Uetake, H.; Ichikawa, W.; Taketo, M.M.; Sugihara, K. Size- and Invasion-dependent Increase in Cyclooxygenase 2 Levels in Human Colorectal Carcinomas. Cancer Res. 1998, 58, 4823–4826. [Google Scholar] [PubMed]
- Sheehan, K.M.; Sheahan, K.; O’Donoghue, D.P.; MacSweeney, F.; Conroy, R.M.; Fitzgerald, D.J.; Murray, F.E. The Relationship Between Cyclooxygenase-2 Expression and Colorectal Cancer. JAMA 1999, 282, 1254–1257. [Google Scholar] [CrossRef] [PubMed]
- Sinicrope, F.A.; Gill, S. Role of cyclooxygenase-2 in colorectal cancer. Cancer Metastasis Rev. 2004, 23, 63–75. [Google Scholar] [CrossRef]
- Amann, R.; Peskar, B.A. Anti-inflammatory effects of aspirin and sodium salicylate. Eur. J. Pharmacol. 2002, 447, 1–9. [Google Scholar] [CrossRef]
- Soumaoro, L.T.; Uetake, H.; Higuchi, T.; Takagi, Y.; Enomoto, M.; Sugihara, K. Cyclooxygenase-2 Expression: A Significant Prognostic Indicator for Patients With Colorectal Cancer. Clin. Cancer Res. 2004, 10, 8465–8471. [Google Scholar] [CrossRef]
- Eberhart, C.E.; Coffey, R.J.; Radhika, A.; Giardiello, F.M.; Ferrenbach, S.; Dubois, R.N. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994, 107, 1183–1188. [Google Scholar] [CrossRef]
- Chan Andrew, T.; Ogino, S.; Fuchs Charles, S. Aspirin and the Risk of Colorectal Cancer in Relation to the Expression of COX-2. N. Engl. J. Med. 2007, 356, 2131–2142. [Google Scholar] [CrossRef]
- Hall, D.; Benndorf, R. Aspirin sensitivity of PIK3CA-mutated Colorectal Cancer: Potential mechanisms revisited. Cell. Mol. Life Sci. 2022, 79, 393. [Google Scholar] [CrossRef]
- Güller, U.; Hayoz, S.; Horber, D.; De Dosso, S.; Koeberle, D.; Kaufmann, S.S.; Inauen, R.I.; Stahl, M.; Delaunoit, T.; Ettrich, T.J.; et al. 512O Adjuvant aspirin treatment in PIK3CA mutated colon cancer patients: The phase III, prospective-randomized placebo-controlled multicenter SAKK 41/13 trial. Ann. Oncol. 2024, 35, S432. [Google Scholar] [CrossRef]
- Martling, A.; Lindberg, J.; Hed Myrberg, I.; Nilbert, M.; Mayrhofer, M.; Gronberg, H.; Glimelius, B.; ALASCCA Trial Study Group. Low-dose aspirin to reduce recurrence rate in colorectal cancer patients with PI3K pathway alterations: 3-year results from a randomized placebo-controlled trial. J. Clin. Oncol. 2025, 43 (Suppl. S4), LBA125. [Google Scholar] [CrossRef]
- Jacobs, E.J.; Thun, M.J.; Bain, E.B.; Rodriguez, C.; Henley, S.J.; Calle, E.E. A Large Cohort Study of Long-Term Daily Use of Adult-Strength Aspirin and Cancer Incidence. JNCI J. Natl. Cancer Inst. 2007, 99, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.T.; Giovannucci, E.L.; Meyerhardt, J.A.; Schernhammer, E.S.; Wu, K.; Fuchs, C.S. Aspirin Dose and Duration of Use and Risk of Colorectal Cancer in Men. Gastroenterology 2008, 134, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Friis, S.; Riis, A.H.; Erichsen, R.; Baron, J.A.; Sørensen, H.T. Low-Dose Aspirin or Nonsteroidal Anti-inflammatory Drug Use and Colorectal Cancer Risk. Ann. Intern. Med. 2015, 163, 347–355. [Google Scholar] [CrossRef]
- Din, F.V.N.; Theodoratou, E.; Farrington, S.M.; Tenesa, A.; Barnetson, R.A.; Cetnarskyj, R.; Stark, L.; Porteous, M.E.; Campbell, H.; Dunlop, M.G. Effect of aspirin and NSAIDs on risk and survival from colorectal cancer. Gut 2010, 59, 1670. [Google Scholar] [CrossRef]
- Sandler, R.S.; Halabi, S.; Baron, J.A.; Budinger, S.; Paskett, E.; Keresztes, R.; Petrelli, N.; Pipas, J.M.; Karp, D.D.; Loprinzi, C.L.; et al. A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N. Engl. J. Med. 2003, 348, 883–890. [Google Scholar] [CrossRef]
- Benamouzig, R.; Deyra, J.; Martin, A.; Girard, B.; Jullian, E.; Piednoir, B.; Couturier, D.; Coste, T.; Little, J.; Chaussade, S. Daily soluble aspirin and prevention of colorectal adenoma recurrence: One-year results of the APACC trial. Gastroenterology 2003, 125, 328–336. [Google Scholar] [CrossRef]
- Gann, P.H.; Manson, J.E.; Glynn, R.J.; Buring, J.E.; Hennekens, C.H. Low-Dose Aspirin and Incidence of Colorectal Tumors in a Randomized Trial. JNCI J. Natl. Cancer Inst. 1993, 85, 1220–1224. [Google Scholar] [CrossRef]
- Zheng, S.L.; Roddick, A.J. Association of Aspirin Use for Primary Prevention With Cardiovascular Events and Bleeding Events: A Systematic Review and Meta-analysis. JAMA 2019, 321, 277–287. [Google Scholar] [CrossRef]
- McNeil John, J.; Wolfe, R.; Woods Robyn, L.; Tonkin Andrew, M.; Donnan Geoffrey, A.; Nelson Mark, R.; Reid Christopher, M.; Lockery Jessica, E.; Kirpach, B.; Storey, E.; et al. Effect of Aspirin on Cardiovascular Events and Bleeding in the Healthy Elderly. N. Engl. J. Med. 2018, 379, 1509–1518. [Google Scholar] [CrossRef]
- Ikeda, Y.; Shimada, K.; Teramoto, T.; Uchiyama, S.; Yamazaki, T.; Oikawa, S.; Sugawara, M.; Ando, K.; Murata, M.; Yokoyama, K.; et al. Low-Dose Aspirin for Primary Prevention of Cardiovascular Events in Japanese Patients 60 Years or Older With Atherosclerotic Risk Factors: A Randomized Clinical Trial. JAMA 2014, 312, 2510–2520. [Google Scholar] [CrossRef]
- Hreinsson, J.P.; Jonasson, J.G.; Bjornsson, E.S. Bleeding-related symptoms in colorectal cancer: A 4-year nationwide population-based study. Aliment. Pharmacol. Ther. 2014, 39, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Lawrenson, R.; Logie, J.; Marks, C. Risk of colorectal cancer in general practice patients presenting with rectal bleeding, change in bowel habit or anaemia. Eur. J. Cancer Care 2006, 15, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Margaret, A.; Tom, G.; Richard, D.N.; Peter, R.; William, H. The diagnostic value of symptoms for colorectal cancer in primary care: A systematic review. Br. J. Gen. Pract. 2011, 61, e231. [Google Scholar]
- Stjepanovic, N.; Moreira, L.; Carneiro, F.; Balaguer, F.; Cervantes, A.; Balmaña, J.; Martinelli, E.; ESMO Guidelines Committee. Hereditary gastrointestinal cancers: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019, 30, 1558–1571. [Google Scholar] [CrossRef]
- Yurgelun, M.B.; Chan, A.T. Aspirin for Lynch syndrome: A legacy of prevention. Lancet 2020, 395, 1817–1818. [Google Scholar] [CrossRef]
- Dominguez-Valentin, M.; Sampson, J.R.; Seppälä, T.T.; Ten Broeke, S.W.; Plazzer, J.-P.; Nakken, S.; Engel, C.; Aretz, S.; Jenkins, M.A.; Sunde, L.; et al. Cancer risks by gene, age, and gender in 6350 carriers ofpathogenic mismatch repair variants: Findings from the Prospective Lynch SyndromeDatabase. Genet. Med. 2020, 22, 15–25. [Google Scholar] [CrossRef]
- Burn, J.; Sheth, H.; Elliott, F.; Reed, L.; Macrae, F.; Mecklin, J.-P.; Möslein, G.; McRonald, F.E.; Bertario, L.; Evans, D.G.; et al. Cancer prevention with aspirin in hereditary colorectal cancer (Lynch syndrome), 10-year follow-up and registry-based 20-year data in the CAPP2 study: A double-blind, randomised, placebo-controlled trial. Lancet 2020, 395, 1855–1863. [Google Scholar] [CrossRef]
- Chen, Q.; Toorop, M.M.A.; Tops, L.F.; Lijfering, W.M.; Cannegieter, S.C. Time Trends in Patient Characteristics, Anticoagulation Treatment, and Prognosis of Incident Nonvalvular Atrial Fibrillation in the Netherlands. JAMA Netw. Open 2023, 6, e239973. [Google Scholar] [CrossRef]
- Marzec, L.N.; Wang, J.; Shah, N.D.; Chan, P.S.; Ting, H.H.; Gosch, K.L.; Hsu, J.C.; Maddox, T.M. Influence of Direct Oral Anticoagulants on Rates of Oral Anticoagulation for Atrial Fibrillation. J. Am. Coll. Cardiol. 2017, 69, 2475–2484. [Google Scholar] [CrossRef]
- Ágústsson, A.S.; Ingason, A.B.; Rumba, E.; Pálsson, D.; Reynisson, I.E.; Hreinsson, J.P.; Björnsson, E.S. Causes of gastrointestinal bleeding in oral anticoagulant users compared to non-users in a population-based study. Scand. J. Gastroenterol. 2022, 57, 239–245. [Google Scholar] [CrossRef]
- Rasmussen, P.V.; Dalgaard, F.; Gislason, G.H.; Brandes, A.; Johnsen, S.P.; Grove, E.L.; Torp-Pedersen, C.; Dybro, L.; Harboe, L.; Munster, A.B.; et al. Gastrointestinal bleeding and the risk of colorectal cancer in anticoagulated patients with atrial fibrillation. Eur. Heart J. 2020, 43, e38–e44. [Google Scholar] [CrossRef] [PubMed]
- Abrahami, D.; Renoux, C.; Yin, H.; Fournier, J.-P.; Azoulay, L. The Association between Oral Anticoagulants and Cancer Incidence among Individuals with Nonvalvular Atrial Fibrillation. Thromb. Haemost. 2020, 120, 1384–1394. [Google Scholar] [CrossRef] [PubMed]
- Haaland, G.S.; Falk, R.S.; Straume, O.; Lorens, J.B. Association of Warfarin Use With Lower Overall Cancer Incidence Among Patients Older Than 50 Years. JAMA Intern. Med. 2017, 177, 1774–1780. [Google Scholar] [CrossRef]
- Clemens, A.; Strack, A.; Noack, H.; Konstantinides, S.; Brueckmann, M.; Lip, G.Y.H. Anticoagulant-related gastrointestinal bleeding—Could this facilitate early detection of benign or malignant gastrointestinal lesions? Ann. Med. 2014, 46, 672–678. [Google Scholar] [CrossRef]
- O’Rorke, M.A.; Murray, L.J.; Hughes, C.M.; Cantwell, M.M.; Cardwell, C.R. The effect of warfarin therapy on breast, colorectal, lung, and prostate cancer survival: A population-based cohort study using the Clinical Practice Research Datalink. Cancer Causes Control 2015, 26, 355–366. [Google Scholar] [CrossRef]
- Johannsdottir, G.A.; Onundarson, P.T.; Gudmundsdottir, B.R.; Bjornsson, E.S. Screening for anemia in patients on warfarin facilitates diagnosis of gastrointestinal malignancies and pre-malignant lesions. Thromb. Res. 2012, 130, e20–e25. [Google Scholar] [CrossRef]
- Kirane, A.; Ludwig, K.F.; Sorrelle, N.; Haaland, G.; Sandal, T.; Ranaweera, R.; Toombs, J.E.; Wang, M.; Dineen, S.P.; Micklem, D.; et al. Warfarin Blocks Gas6-Mediated Axl Activation Required for Pancreatic Cancer Epithelial Plasticity and Metastasis. Cancer Res. 2015, 75, 3699–3705. [Google Scholar] [CrossRef]
- Barnes, G.D.; Lucas, E.; Alexander, G.C.; Goldberger, Z.D. National Trends in Ambulatory Oral Anticoagulant Use. Am. J. Med. 2015, 128, 1300–1305.e2. [Google Scholar] [CrossRef]
- Ingason, A.B.; Hreinsson, J.P.; Ágústsson, A.S.; Lund, S.H.; Rumba, E.; Pálsson, D.A.; Reynisson, I.E.; Guðmundsdóttir, B.R.; Önundarson, P.T.; Björnsson, E.S. Rivaroxaban Is Associated With Higher Rates of Gastrointestinal Bleeding Than Other Direct Oral Anticoagulants. Ann. Intern. Med. 2021, 174, 1493–1502. [Google Scholar] [CrossRef]
- Ingason, A.B.; Hreinsson, J.P.; Agustsson, A.S.; Lund, S.H.; Rumba, E.; Palsson, D.A.; Reynisson, I.E.; Gudmundsdottir, B.R.; Onundarson, P.T.; Bjornsson, E.S. Warfarin Is Associated With Higher Rates of Upper But Not Lower Gastrointestinal Bleeding Compared with Direct Oral Anticoagulants: A Population-Based Propensity-Weighted Cohort Study. Clin. Gastroenterol. Hepatol. 2023, 21, 347–357.e10. [Google Scholar] [CrossRef]
- Ng, C.-A.W.; Jiang, A.A.; Toh, E.M.S.; Ng, C.H.; Ong, Z.H.; Peng, S.; Tham, H.Y.; Sundar, R.; Chong, C.S.; Khoo, C.M. Metformin and colorectal cancer: A systematic review, meta-analysis and meta-regression. Int. J. Color. Dis. 2020, 35, 1501–1512. [Google Scholar] [CrossRef] [PubMed]
- DeCensi, A.; Puntoni, M.; Goodwin, P.; Cazzaniga, M.; Gennari, A.; Bonanni, B.; Gandini, S. Metformin and Cancer Risk in Diabetic Patients: A Systematic Review and Meta-analysis. Cancer Prev. Res. 2010, 3, 1451–1461. [Google Scholar] [CrossRef] [PubMed]
- Noto, H.; Goto, A.; Tsujimoto, T.; Noda, M. Cancer Risk in Diabetic Patients Treated with Metformin: A Systematic Review and Meta-analysis. PLoS ONE 2012, 7, e33411. [Google Scholar] [CrossRef]
- Zhang, Z.-J.; Zheng, Z.-J.; Kan, H.; Song, Y.; Cui, W.; Zhao, G.; Kip, K.E. Reduced Risk of Colorectal Cancer with Metformin Therapy in Patients with Type 2 Diabetes: A meta-analysis. Diabetes Care 2011, 34, 2323–2328. [Google Scholar] [CrossRef]
- Mei, Z.-B.; Zhang, Z.-J.; Liu, C.-Y.; Liu, Y.; Cui, A.; Liang, Z.-L.; Wang, G.-H.; Cui, L. Survival Benefits of Metformin for Colorectal Cancer Patients with Diabetes: A Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e91818. [Google Scholar] [CrossRef]
- Kowall, B.; Stang, A.; Rathmann, W.; Kostev, K. No reduced risk of overall, colorectal, lung, breast, and prostate cancer with metformin therapy in diabetic patients: Database analyses from Germany and the UK. Pharmacoepidemiol. Drug Saf. 2015, 24, 865–874. [Google Scholar] [CrossRef]
- Menamin, Ú.C.M.; Murray, L.J.; Hughes, C.M.; Cardwell, C.R. Metformin use and survival after colorectal cancer: A population-based cohort study. Int. J. Cancer 2016, 138, 369–379. [Google Scholar] [CrossRef]
- Chang, Y.-T.; Tsai, H.-L.; Kung, Y.-T.; Yeh, Y.-S.; Huang, C.-W.; Ma, C.-J.; Chiu, H.-C.; Wang, J.-Y. Dose-Dependent Relationship Between Metformin and Colorectal Cancer Occurrence Among Patients with Type 2 Diabetes—A Nationwide Cohort Study. Transl. Oncol. 2018, 11, 535–541. [Google Scholar] [CrossRef]
- Spillane, S.; Bennett, K.; Sharp, L.; Barron, T.I. A Cohort Study of Metformin Exposure and Survival in Patients with Stage I–III Colorectal Cancer. Cancer Epidemiol. Biomark. Prev. 2013, 22, 1364–1373. [Google Scholar] [CrossRef]
- Larsson, S.C.; Orsini, N.; Wolk, A. Diabetes Mellitus and Risk of Colorectal Cancer: A Meta-Analysis. JNCI J. Natl. Cancer Inst. 2005, 97, 1679–1687. [Google Scholar] [CrossRef]
- Guraya, S.Y. Association of type 2 diabetes mellitus and the risk of colorectal cancer: A meta-analysis and systematic review. World J. Gastroenterol. 2015, 21, 6026–6031. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, A.A.; Spechler, S.J.; Huerta, S.; Dredar, S.; Little, B.B.; Cryer, B. Elevated HbA1c Is an Independent Predictor of Aggressive Clinical Behavior in Patients with Colorectal Cancer: A Case-Control Study. Dig. Dis. Sci. 2008, 53, 2486–2494. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zheng, H.; Chen, P.; Yang, J.; Lin, S.; Liu, T.; Chen, S.; Lu, S.; Chen, J.; Chen, W.; et al. An Elevated HbA1c Level Is Associated with Short-Term Adverse Outcomes in Patients with Gastrointestinal Cancer and Type 2 Diabetes Mellitus. J. Clin. Med. Res. 2017, 9, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Hope, C.; Robertshaw, A.; Cheung, K.L.; Idris, I.; English, E. Relationship between HbA1c and cancer in people with or without diabetes: A systematic review. Diabet. Med. 2016, 33, 1013–1025. [Google Scholar] [CrossRef]
- Miao Jonasson, J.; Cederholm, J.; Eliasson, B.; Zethelius, B.; Eeg-Olofsson, K.; Gudbjörnsdottir, S. HbA1C and Cancer Risk in Patients with Type 2 Diabetes—A Nationwide Population-Based Prospective Cohort Study in Sweden. PLoS ONE 2012, 7, e38784. [Google Scholar] [CrossRef]
- van de Poll-Franse, L.V.; Haak, H.R.; Coebergh, J.W.W.; Janssen-Heijnen, M.L.G.; Lemmens, V.E.P.P. Disease-specific mortality among stage I–III colorectal cancer patients with diabetes: A large population-based analysis. Diabetologia 2012, 55, 2163–2172. [Google Scholar] [CrossRef]
- Barone, B.B.; Yeh, H.-C.; Snyder, C.F.; Peairs, K.S.; Stein, K.B.; Derr, R.L.; Wolff, A.C.; Brancati, F.L. Long-term All-Cause Mortality in Cancer Patients with Preexisting Diabetes Mellitus: A Systematic Review and Meta-analysis. JAMA 2008, 300, 2754–2764. [Google Scholar] [CrossRef]
- Sugiura, K.; Okabayashi, K.; Seishima, R.; Ishida, T.; Shigeta, K.; Tsuruta, M.; Hasegawa, H.; Kitagawa, Y. Metformin inhibits the development and metastasis of colorectal cancer. Med. Oncol. 2022, 39, 136. [Google Scholar] [CrossRef]
- Mogavero, A.; Maiorana, M.V.; Zanutto, S.; Varinelli, L.; Bozzi, F.; Belfiore, A.; Volpi, C.C.; Gloghini, A.; Pierotti, M.A.; Gariboldi, M. Metformin transiently inhibits colorectal cancer cell proliferation as a result of either AMPK activation or increased ROS production. Sci. Rep. 2017, 7, 15992. [Google Scholar] [CrossRef]
- Kamarudin, M.N.A.; Sarker, M.M.R.; Zhou, J.-R.; Parhar, I. Metformin in colorectal cancer: Molecular mechanism, preclinical and clinical aspects. J. Exp. Clin. Cancer Res. 2019, 38, 491. [Google Scholar] [CrossRef]
- Barnes, P.J. How corticosteroids control inflammation: Quintiles Prize Lecture 2005. Br. J. Pharmacol. 2006, 148, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Giles, A.J.; Hutchinson, M.-K.N.D.; Sonnemann, H.M.; Jung, J.; Fecci, P.E.; Ratnam, N.M.; Zhang, W.; Song, H.; Bailey, R.; Davis, D.; et al. Dexamethasone-induced immunosuppression: Mechanisms and implications for immunotherapy. J. Immunother. Cancer 2018, 6, 51. [Google Scholar] [CrossRef] [PubMed]
- Karagiannidis, C.; Akdis, M.; Holopainen, P.; Woolley, N.J.; Hense, G.; Rückert, B.; Mantel, P.Y.; Menz, G.; Akdis, C.A.; Blaser, K.; et al. Glucocorticoids upregulate FOXP3 expression and regulatory T cells in asthma. J. Allergy Clin. Immunol. 2004, 114, 1425–1433. [Google Scholar] [CrossRef]
- Dao Nguyen, X.; Robinson, D.S. Fluticasone propionate increases CD4+CD25+ T regulatory cell suppression of allergen-stimulated CD4+CD25− T cells by an IL-10-dependent mechanism. J. Allergy Clin. Immunol. 2004, 114, 296–301. [Google Scholar] [CrossRef]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef]
- Greten, F.R.; Grivennikov, S.I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019, 51, 27–41. [Google Scholar] [CrossRef]
- Ekbom, A.; Adami, H.O.; Helmick, C.; Zack, M. Increased risk of large-bowel cancer in Crohn’s disease with colonic involvement. Lancet 1990, 336, 357–359. [Google Scholar] [CrossRef]
- Hamilton, S.R. Colorectal carcinoma in patients with Crohn’s Disease. Gastroenterology 1985, 89, 398–407. [Google Scholar] [CrossRef]
- Velayos, F.S.; Loftus, E.V.; Jess, T.; Harmsen, W.S.; Bida, J.; Zinsmeister, A.R.; Tremaine, W.J.; Sandborn, W.J. Predictive and Protective Factors Associated With Colorectal Cancer in Ulcerative Colitis: A Case-Control Study. Gastroenterology 2006, 130, 1941–1949. [Google Scholar] [CrossRef]
- Dietrich, K.; Schned, A.; Fortuny, J.; Heaney, J.; Marsit, C.; Kelsey, K.T.; Karagas, M.R. Glucocorticoid therapy and risk of bladder cancer. Br. J. Cancer 2009, 101, 1316–1320. [Google Scholar] [CrossRef]
- Jensen, A.; Thomsen, H.F.; Engebjerg, M.C.; Olesen, A.B.; Friis, S.; Karagas, M.R.; Sørensen, H.T. Use of oral glucocorticoids and risk of skin cancer and non-Hodgkin’s lymphoma: A population-based case-control study. Br. J. Cancer 2009, 100, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Karagas, M.R.; Cushing, G.L., Jr.; Greenberg, E.R.; Mott, L.A.; Spencer, S.K.; Nierenberg, D.W. Non-melanoma skin cancers and glucocorticoid therapy. Br. J. Cancer 2001, 85, 683–686. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, H.T.; Mellemkjaer, L.; Nielsen, G.L.; Baron, J.A.; Olsen, J.H.; Karagas, M.R. Skin cancers and non-hodgkin lymphoma among users of systemic glucocorticoids: A population-based cohort study. JNCI J. Natl. Cancer Inst. 2004, 96, 709–711. [Google Scholar] [CrossRef]
- Kuwahara, T.; Hazama, S.; Suzuki, N.; Yoshida, S.; Tomochika, S.; Nakagami, Y.; Matsui, H.; Shindo, Y.; Kanekiyo, S.; Tokumitsu, Y.; et al. Intratumoural-infiltrating CD4+ and FOXP3+ T cells as strong positive predictive markers for the prognosis of resectable colorectal cancer. Br. J. Cancer 2019, 121, 659–665. [Google Scholar] [CrossRef]
- Hu, G.; Li, Z.; Wang, S. Tumor-infiltrating FoxP3+ Tregs predict favorable outcome in colorectal cancer patients: A meta-analysis. Oncotarget 2017, 8, 75361–75371. [Google Scholar] [CrossRef]
- Betts, G.; Jones, E.; Junaid, S.; El-Shanawany, T.; Scurr, M.; Mizen, P.; Kumar, M.; Jones, S.; Rees, B.; Williams, G.; et al. Suppression of tumour-specific CD4+ T cells by regulatory T cells is associated with progression of human colorectal cancer. Gut 2012, 61, 1163. [Google Scholar] [CrossRef]
- Oh, T.K.; Song, I.-A. Trends in long-term glucocorticoid use and risk of 5-year mortality: A historical cohort study in South Korea. Endocrine 2020, 69, 634–641. [Google Scholar] [CrossRef]
- Ostenfeld, E.B.; Erichsen, R.; Thorlacius-Ussing, O.; Riis, A.H.; Sørensen, H.T. Use of systemic glucocorticoids and the risk of colorectal cancer. Aliment. Pharmacol. Ther. 2013, 37, 146–152. [Google Scholar] [CrossRef]
- Petrelli, F.; Bukovec, R.; Perego, G.; Luisa, R.; Luciani, A.; Zaniboni, A.; Ghidini, A. Association of steroid use with survival in solid tumours. Eur. J. Cancer 2020, 141, 105–114. [Google Scholar] [CrossRef]
- Buchwald, H. Cholesterol inhibition, cancer, and chemotherapy. Lancet 1992, 339, 1154–1156. [Google Scholar] [CrossRef]
- Poynter Jenny, N.; Gruber Stephen, B.; Higgins Peter, D.R.; Almog, R.; Bonner Joseph, D.; Rennert Hedy, S.; Low, M.; Greenson Joel, K.; Rennert, G. Statins and the Risk of Colorectal Cancer. N. Engl. J. Med. 2005, 352, 2184–2192. [Google Scholar] [CrossRef] [PubMed]
- Lytras, T.; Nikolopoulos, G.; Bonovas, S. Statins and the risk of colorectal cancer: An updated systematic review and meta-analysis of 40 studies. World J. Gastroenterol. 2014, 20, 1858–1870. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tang, W.; Wang, J.; Xie, L.; Li, T.; He, Y.; Deng, Y.; Peng, Q.; Li, S.; Qin, X. Association between statin use and colorectal cancer risk: A meta-analysis of 42 studies. Cancer Causes Control 2014, 25, 237–249. [Google Scholar] [CrossRef]
- Li, Y.; He, X.; Ding, Y.; Chen, H.; Sun, L. Statin uses and mortality in colorectal cancer patients: An updated systematic review and meta-analysis. Cancer Med. 2019, 8, 3305–3313. [Google Scholar] [CrossRef]
- Gray, R.T.; Coleman, H.G.; Hughes, C.; Murray, L.J.; Cardwell, C.R. Statin use and survival in colorectal cancer: Results from a population-based cohort study and an updated systematic review and meta-analysis. Cancer Epidemiol. 2016, 45, 71–81. [Google Scholar] [CrossRef]
- Cardwell, C.R.; Hicks, B.M.; Hughes, C.; Murray, L.J. Statin Use After Colorectal Cancer Diagnosis and Survival: A Population-Based Cohort Study. J. Clin. Oncol. 2014, 32, 3177–3183. [Google Scholar] [CrossRef]
- Tang, J.; Li, Z.; Lu, L.; Cho, C.H. β-Adrenergic system, a backstage manipulator regulating tumour progression and drug target in cancer therapy. Semin. Cancer Biol. 2013, 23, 533–542. [Google Scholar] [CrossRef]
- Jansen, L.; Below, J.; Chang-Claude, J.; Brenner, H.; Hoffmeister, M. Beta blocker use and colorectal cancer risk. Cancer 2012, 118, 3911–3919. [Google Scholar] [CrossRef]
- Jansen, L.; Weberpals, J.; Kuiper, J.G.; Vissers, P.A.J.; Wolkewitz, M.; Hoffmeister, M.; Brenner, H. Pre- and post-diagnostic beta-blocker use and prognosis after colorectal cancer: Results from a population-based study. Int. J. Cancer 2017, 141, 62–71. [Google Scholar] [CrossRef]
- Jansen, L.; Hoffmeister, M.; Arndt, V.; Chang-Claude, J.; Brenner, H. Stage-specific associations between beta blocker use and prognosis after colorectal cancer. Cancer 2014, 120, 1178–1186. [Google Scholar] [CrossRef]
- Fiala, O.; Ostasov, P.; Sorejs, O.; Liska, V.; Buchler, T.; Poprach, A.; Finek, J. Incidental Use of Beta-Blockers Is Associated with Outcome of Metastatic Colorectal Cancer Patients Treated with Bevacizumab-Based Therapy: A Single-Institution Retrospective Analysis of 514 Patients. Cancers 2019, 11, 1856. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lu, S.; Meng, Y.; Fu, W.; Zhou, X. Beta adrenergic blockade and clinical outcomes in patients with colorectal cancer: A systematic review and meta-analysis. Eur. J. Pharmacol. 2022, 929, 175135. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Li, H.; Chan, A.T.; Hollis, B.W.; Lee, I.M.; Stampfer, M.J.; Wu, K.; Giovannucci, E.; Ma, J. Circulating Levels of Vitamin D and Colon and Rectal Cancer: The Physicians’ Health Study and a Meta-analysis of Prospective Studies. Cancer Prev. Res. 2011, 4, 735–743. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, P.; Wang, F.; Yang, J.; Liu, Z.; Qin, H. Association Between Vitamin D and Risk of Colorectal Cancer: A Systematic Review of Prospective Studies. J. Clin. Oncol. 2011, 29, 3775–3782. [Google Scholar] [CrossRef]
- Chung, M.; Lee, J.; Terasawa, T.; Lau, J.; Trikalinos, T.A. Vitamin D with or Without Calcium Supplementation for Prevention of Cancer and Fractures: An Updated Meta-analysis for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2011, 155, 827–838. [Google Scholar] [CrossRef]
- Park, S.-Y.; Murphy, S.P.; Wilkens, L.R.; Nomura, A.M.Y.; Henderson, B.E.; Kolonel, L.N. Calcium and Vitamin D Intake and Risk of Colorectal Cancer: The Multiethnic Cohort Study. Am. J. Epidemiol. 2007, 165, 784–793. [Google Scholar] [CrossRef]
- Mizoue, T.; Kimura, Y.; Toyomura, K.; Nagano, J.; Kono, S.; Mibu, R.; Tanaka, M.; Kakeji, Y.; Maehara, Y.; Okamura, T.; et al. Calcium, Dairy Foods, Vitamin D, and Colorectal Cancer Risk: The Fukuoka Colorectal Cancer Study. Cancer Epidemiol. Biomark. Prev. 2008, 17, 2800–2807. [Google Scholar] [CrossRef]
- Fedirko, V.; Riboli, E.; Tjønneland, A.; Ferrari, P.; Olsen, A.; Bueno-de-Mesquita, H.B.; van Duijnhoven, F.J.B.; Norat, T.; Jansen, E.H.J.M.; Dahm, C.C.; et al. Prediagnostic 25-Hydroxyvitamin D, VDR and CASR Polymorphisms, and Survival in Patients with Colorectal Cancer in Western European Populations. Cancer Epidemiol. Biomark. Prev. 2012, 21, 582–593. [Google Scholar] [CrossRef]
- Zgaga, L.; Theodoratou, E.; Farrington, S.M.; Din, F.V.N.; Ooi, L.Y.; Glodzik, D.; Johnston, S.; Tenesa, A.; Campbell, H.; Dunlop, M.G. Plasma Vitamin D Concentration Influences Survival Outcome After a Diagnosis of Colorectal Cancer. J. Clin. Oncol. 2014, 32, 2430–2439. [Google Scholar] [CrossRef]
- Yang, B.; McCullough, M.L.; Gapstur, S.M.; Jacobs, E.J.; Bostick, R.M.; Fedirko, V.; Flanders, W.D.; Campbell, P.T. Calcium, Vitamin D, Dairy Products, and Mortality Among Colorectal Cancer Survivors: The Cancer Prevention Study-II Nutrition Cohort. J. Clin. Oncol. 2014, 32, 2335–2343. [Google Scholar] [CrossRef]
- Trivedi, D.P.; Doll, R.; Khaw, K.T. Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: Randomised double blind controlled trial. BMJ 2003, 326, 469. [Google Scholar] [CrossRef] [PubMed]
- Lappe, J.M.; Travers-Gustafson, D.; Davies, K.M.; Recker, R.R.; Heaney, R.P. Vitamin D and calcium supplementation reduces cancer risk: Results of a randomized trial. Am. J. Clin. Nutr. 2007, 85, 1586–1591. [Google Scholar] [CrossRef] [PubMed]
- Avenell, A.; MacLennan, G.S.; Jenkinson, D.J.; McPherson, G.C.; McDonald, A.M.; Pant, P.R.; Grant, A.M.; Campbell, M.K.; Anderson, F.H.; Cooper, C.; et al. Long-Term Follow-Up for Mortality and Cancer in a Randomized Placebo-Controlled Trial of Vitamin D3 and/or Calcium (RECORD Trial). J. Clin. Endocrinol. Metab. 2012, 97, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Wactawski-Wende, J.; Kotchen Jane, M.; Anderson Garnet, L.; Assaf Annlouise, R.; Brunner Robert, L.; O’Sullivan Mary, J.; Margolis Karen, L.; Ockene Judith, K.; Phillips, L.; Pottern, L.; et al. Calcium plus Vitamin D Supplementation and the Risk of Colorectal Cancer. N. Engl. J. Med. 2006, 354, 684–696. [Google Scholar] [CrossRef]
- Vaughan-Shaw, P.G.; Buijs, L.F.; Blackmur, J.P.; Theodoratou, E.; Zgaga, L.; Din, F.V.N.; Farrington, S.M.; Dunlop, M.G. The effect of vitamin D supplementation on survival in patients with colorectal cancer: Systematic review and meta-analysis of randomised controlled trials. Br. J. Cancer 2020, 123, 1705–1712. [Google Scholar] [CrossRef]
- Ottaiano, A.; Facchini, S.; Santorsola, M.; Nasti, G.; Facchini, G.; Montella, L.; Maurea, N.; Cascella, M.; Iervolino, D.; Facchini, B.A.; et al. Circulating Vitamin D Level and Its Impact on Mortality and Recurrence in Stage III Colorectal Cancer Patients: A Systematic Review and Meta-Analysis. Cancers 2023, 15, 3012. [Google Scholar] [CrossRef]
- Dou, R.; Ng, K.; Giovannucci, E.L.; Manson, J.E.; Qian, Z.R.; Ogino, S. Vitamin D and colorectal cancer: Molecular, epidemiological and clinical evidence. Br. J. Nutr. 2016, 115, 1643–1660. [Google Scholar] [CrossRef]
- Autier, P.; Boniol, M.; Pizot, C.; Mullie, P. Vitamin D status and ill health: A systematic review. Lancet Diabetes Endocrinol. 2014, 2, 76–89. [Google Scholar] [CrossRef]
- Huncharek, M.; Muscat, J.; Kupelnick, B. Colorectal Cancer Risk and Dietary Intake of Calcium, Vitamin D, and Dairy Products: A Meta-Analysis of 26,335 Cases From 60 Observational Studies. Nutr. Cancer 2008, 61, 47–69. [Google Scholar] [CrossRef]
- Baron, J.A.; Beach, M.; Mandel, J.S.; van Stolk, R.U.; Haile, R.W.; Sandler, R.S.; Rothstein, R.; Summers, R.W.; Snover, D.C.; Beck, G.J.; et al. Calcium supplements for the prevention of colorectal adenomas. N. Engl. J. Med. 1999, 340, 101–107. [Google Scholar] [CrossRef]
- Grau, M.V.; Baron, J.A.; Sandler, R.S.; Haile, R.W.; Beach, M.L.; Church, T.R.; Heber, D. Vitamin D, Calcium Supplementation, and Colorectal Adenomas: Results of a Randomized Trial. JNCI J. Natl. Cancer Inst. 2003, 95, 1765–1771. [Google Scholar] [CrossRef] [PubMed]
- Baron John, A.; Barry Elizabeth, L.; Mott Leila, A.; Rees Judy, R.; Sandler Robert, S.; Snover Dale, C.; Bostick Roberd, M.; Ivanova, A.; Cole Bernard, F.; Ahnen Dennis, J.; et al. A Trial of Calcium and Vitamin D for the Prevention of Colorectal Adenomas. N. Engl. J. Med. 2015, 373, 1519–1530. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Ma, Y.; Smith-Warner, S.; Song, M.; Wu, K.; Wang, M.; Chan, A.T.; Ogino, S.; Fuchs, C.S.; Poylin, V.; et al. Calcium Intake and Survival after Colorectal Cancer Diagnosis. Clin. Cancer Res. 2019, 25, 1980–1988. [Google Scholar] [CrossRef]
- Dray, X.; Boutron-Ruault, M.C.; Bertrais, S.; Sapinho, D.; Benhamiche-Bouvier, A.M.; Faivre, J. Influence of dietary factors on colorectal cancer survival. Gut 2003, 52, 868. [Google Scholar] [CrossRef]
- Dik, V.K.; Murphy, N.; Siersema, P.D.; Fedirko, V.; Jenab, M.; Kong, S.Y.; Hansen, C.P.; Overvad, K.; Tjønneland, A.; Olsen, A.; et al. Prediagnostic Intake of Dairy Products and Dietary Calcium and Colorectal Cancer Survival—Results from the EPIC Cohort Study. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1813–1823. [Google Scholar] [CrossRef]
- Lipkin, M.; Newmark, H. Calcium and the prevention of colon cancer. J. Cell. Biochem. 1995, 59, 65–73. [Google Scholar] [CrossRef]
- Llor, X.; Jacoby, R.F.; Teng, B.-B.; Davidson, N.O.; Sitrin, M.D.; Brasitus, T.A. K-ras Mutations in 1,2-Dimethylhydrazine-induced Colonic Tumors: Effects of Supplemental Dietary Calcium and Vitamin D Deficiency. Cancer Res. 1991, 51, 4305–4309. [Google Scholar]
- Kherbek, H.; Daoud, R.; Soueycatt, T.; Soueycatt, Y.; Ali, Z.; Ehsan, J.; Alshehabi, Z.; Georgeos, M. The relationship between folic acid and colorectal cancer; a literature review. Ann. Med. Surg. 2022, 80, 104170. [Google Scholar] [CrossRef]
- Hubner, R.A.; Houlston, R.S. Folate and colorectal cancer prevention. Br. J. Cancer 2009, 100, 233–239. [Google Scholar] [CrossRef]
- Moazzen, S.; Dolatkhah, R.; Tabrizi, J.S.; Shaarbafi, J.; Alizadeh, B.Z.; de Bock, G.H.; Dastgiri, S. Folic acid intake and folate status and colorectal cancer risk: A systematic review and meta-analysis. Clin. Nutr. 2018, 37 Pt A, 1926–1934. [Google Scholar] [CrossRef]
- Ting, P.-C.; Lee, W.-R.; Huo, Y.-N.; Hsu, S.-P.; Lee, W.-S. Folic acid inhibits colorectal cancer cell migration. J. Nutr. Biochem. 2019, 63, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Geijsen, A.J.M.R.; Ulvik, A.; Gigic, B.; Kok, D.E.; van Duijnhoven, F.J.B.; Holowatyj, A.N.; Brezina, S.; van Roekel, E.H.; Baierl, A.; Bergmann, M.M.; et al. Circulating Folate and Folic Acid Concentrations: Associations with Colorectal Cancer Recurrence and Survival. JNCI Cancer Spectr. 2020, 4, pkaa051. [Google Scholar] [CrossRef] [PubMed]
- Gustavsson, B.; Carlsson, G.; Machover, D.; Petrelli, N.; Roth, A.; Schmoll, H.-J.; Tveit, K.-M.; Gibson, F. A Review of the Evolution of Systemic Chemotherapy in the Management of Colorectal Cancer. Clin. Color. Cancer 2015, 14, 1–10. [Google Scholar] [CrossRef] [PubMed]
Observational Studies | ||
---|---|---|
Study | Aspirin Dose | CRC-Specific Survival * (Hazard Ratio (95% CI), p) (Relative Risk (95% CI), p) |
Lam et al., 2025 [6] | Low-dose ** | sHR = 0.78; 95% CI: 0.76–0.81 |
Skriver et al., 2023 [7] | 75–150 mg | HR = 0.90; 95% CI: 0.84–0.95 |
Shahrivar et al., 2023 [8] | 75 or 160 mg | HR = 0.99; 95% CI: 0.91–1.07 |
Shami et al., 2022 [9] | 75–300 mg | HR = 0.83; 95% CI: 0.76–0.91 |
Sung et al., 2019 [10] | Low-dose ** | sHR = 0.69; 95% CI: 0.59–0.81 |
Tsoi et al., 2018 [11] | Low-dose ** | sHR = 0.59: 95% CI: 0.56–0.62 |
Cao et al., 2016 [12] | 81 or 325 mg | RR = 0.81; 95% CI: 0.75–0.88 |
Cook et al., 2013 [13] —8 year follow-up post-trial | 100 mg | HR = 0.80; 95% CI: 0.67–0.97, p = 0.021 |
Liao et al., 2012 [14] ** PIK3CA-mutated patients | 81 or 325 mg post-diagnosis | HR = 0.18; 95% CI: 0.06–0.61, p < 0.001 |
Rothwell et al., 2011 [15] | 75 mg | HR = 0.60; 95% CI: 0.45–0.81, p = 0.0007 |
Rothwell et al., 2010 [16] | 75 mg | HR = 0.65; 95% CI: 0.48–0.88, p = 0.005 |
Chan et al., 2009 [17] | 81 or 325 mg | HR = 0.71; 95% CI: 0.53–0.95 |
Thun Michael et al., 1991 [18] | Low-dose ** | Men: RR = 0.60; 95% CI: 0.40–0.89, p < 0.001 Women: RR = 0.58; 95% CI: 0.37–0.90, p < 0.001 |
Randomized controlled studies | ||
Study | Aspirin Dose | CRC-Specific Survival * (Hazard Ratio (95% CI), p) (Relative Risk (95% CI), p) |
McNeil et al., 2018 [19] | 100 mg | HR = 1.77; 95% CI: 1.02–3.06 |
Cook et al., 2005 [20] | 100 mg | RR = 0.94; 95% CI: 0.79–1.11, p = 0.45 |
Meta-Analysis | ||
Study | Aspirin Dose | CRC-Specific Survival * (Hazard Ratio (95% CI), p) (Relative Risk (95% CI), p) |
Mädge et al., 2022 [21] | Variable, most often low-dose ** | HR = 0.74; 95% CI: 0.62–0.89 |
Wang et al., 2021 [22] | Variable, most often low-dose * | Cohort studies: RR = 0.85; 95% CI: 0.78–0.92 RCTs: RR = 0.74; 95% CI: 0.56–0.97 |
Bosetti et al., 2020 [23] | Variable, most often low-dose ** | RR = 0.73; 95% CI: 0.69–0.78, p < 0.001 |
Lin et al., 2020 [24] | Variable, most often low-dose ** | HR = 0.78; 95% CI: 0.73–0.85 |
Algra et al., 2012 [25] | Variable, most often low-dose ** | OR = 0.58; 95% CI: 0.44–0.78, p = 0.0002 |
Rothwell et al., 2012 [26] | Low dose ** | OR = 0.58; 95% CI: 0.38–0.89, p = 0.008 |
Study | OAC Type | Endpoint | Results | Statistical Measurement |
---|---|---|---|---|
Rasmussen et al., 2022 [71] | DOACs Warfarin | CRC bleeding events | RR = 12.3–24.2 depending on age | Risk ratio |
Abrahami et al., 2020 [72] | DOACs Warfarin | CRC incidence | DOAC: HR = 1.73; 95% CI: 1.01–2.99 Warfarin: HR = 1.14; 95% CI: 0.74–1.77 | Hazard ratio |
Haaland et al., 2017 [73] | Warfarin | CRC incidence | Overall group: IRR = 0.99; 95% CI: 0.93–1.06 Atrial Fibrillation subgroup: IRR = 0.71; 95% CI: 0.63–0.81 | Incidence rate ratio |
Clemens et al., 2014 [74] | Dabigatran Rivaroxaban Apixaban Warfarin | CRC incidence | 0.20–0.52% | Cumulative incidence |
O’Rouke et al., 2014 [75] | Warfarin | CRC specific mortality | HR = 0.88; 95% CI: 0.77–1.01 | Hazard ratio |
Johannsdottir et al., 2012 [76] | Warfarin | CRC detection via anemia screening | 0.31% | Cumulative incidence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agustsson, A.S.; Bjornsson, E.S. Chemoprevention of Colorectal Cancer—With Emphasis on Low-Dose Aspirin and Anticoagulants. Pharmaceuticals 2025, 18, 811. https://doi.org/10.3390/ph18060811
Agustsson AS, Bjornsson ES. Chemoprevention of Colorectal Cancer—With Emphasis on Low-Dose Aspirin and Anticoagulants. Pharmaceuticals. 2025; 18(6):811. https://doi.org/10.3390/ph18060811
Chicago/Turabian StyleAgustsson, Arnar Snaer, and Einar Stefan Bjornsson. 2025. "Chemoprevention of Colorectal Cancer—With Emphasis on Low-Dose Aspirin and Anticoagulants" Pharmaceuticals 18, no. 6: 811. https://doi.org/10.3390/ph18060811
APA StyleAgustsson, A. S., & Bjornsson, E. S. (2025). Chemoprevention of Colorectal Cancer—With Emphasis on Low-Dose Aspirin and Anticoagulants. Pharmaceuticals, 18(6), 811. https://doi.org/10.3390/ph18060811