Arecoline Triggers Psychostimulant Responses by Modulating the Intestinal Microbiota to Influence Neurotransmitter Levels and Digestive Enzyme Activity
Abstract
:1. Introduction
2. Results
2.1. Effects of Arecoline on Mental State and Spontaneous Activity in Mice
2.2. Effects of Arecoline on Fecal Enzyme Activity in Mice
2.3. Effects of Arecoline on Changes in Serum GABA, DA, 5-HT and BDNF Levels in Mice
2.4. Effects of Arecoline on the Intestinal Microbiota Composition in Mice
2.4.1. Quality Assessment of Sequencing Data
2.4.2. Effects of Arecoline on Microbial Abundance and Diversity of Intestinal Contents in Mice
2.4.3. Effects of Arecoline on the Dominant Microbiota of Intestinal Contents in Mice
2.4.4. Effects of Arecoline on Characteristic Microbiota of Intestinal Contents in Mice
2.4.5. Correlation Analysis
3. Discussion
3.1. Arecoline May Exert Its Stimulatory Effects by Modulating Neurotransmitter Activity
3.2. Arecoline May Affect Mouse Behavior by Affecting Digestive Enzyme Activity
3.3. Arecoline May Impact Host Health Through the Modulation of the Intestinal Microbiota
3.4. Arecoline’s Stimulant Effects May Be Mediated by Intestinal Microbiota
4. Materials and Methods
4.1. Materials
4.1.1. Experimental Animals and Housing Conditions
4.1.2. Animal Feed
4.1.3. Drugs and Kits
4.2. Methods
4.2.1. Animal Grouping and Drug Administration
4.2.2. Open Field Test
4.2.3. Enzyme Activity Assay
4.2.4. Detection of GABA, DA, 5-HT, and BDNF in Serum
4.2.5. DNA Extraction, 16S rRNA Gene Amplicon Sequencing, and Sequence Analysis
4.2.6. Bioinformatics Analysis
4.2.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yi, S.; Zou, L.; Li, Z.; Sakao, K.; Wang, Y.; Hou, D.X. In Vitro Antioxidant Activity of Areca Nut Polyphenol Extracts on RAW264.7 Cells. Foods 2022, 11, 3607. [Google Scholar] [CrossRef] [PubMed]
- Myers, A.L. Metabolism of the areca alkaloids-toxic and psychoactive constituents of the areca (betel) nut. Drug Metab. Rev. 2022, 54, 343–360. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Yu, W.; Li, H.; Hu, X.; Wang, X. Bioactive Components of Areca Nut: An Overview of Their Positive Impacts Targeting Different Organs. Nutrients 2024, 16, 695. [Google Scholar] [CrossRef]
- Tong, T.; Xu, A.; Tan, S.; Jiang, H.; Liu, L.; Deng, S.; Wang, H. Biological Effects and Biomedical Applications of Areca Nut and Its Extract. Pharmaceuticals 2024, 17, 228. [Google Scholar] [CrossRef]
- Cheng, H.L.; Chang, W.T.; Hu, Y.C.; Hsieh, B.S.; Huang, T.C.; Chong, I.W.; Huang, L.-W.; Chang, K.-L. Arecoline Increases Glycolysis and Modulates pH Regulator Expression in HA22T/VGH Hepatoma Cells, Leading to Increase of Intracellular Ca2+, Reactive Oxygen Species, and Anoikis. J. Cancer 2017, 8, 3173–3182. [Google Scholar] [CrossRef] [PubMed]
- Volgin, A.D.; Bashirzade, A.; Amstislavskaya, T.G.; Yakovlev, O.A.; Demin, K.A.; Ho, Y.J.; Wang, D.; Shevyrin, V.A.; Yan, D.; Tang, Z.; et al. DARK Classics in Chemical Neuroscience: Arecoline. ACS Chem. Neurosci. 2019, 10, 2176–2185. [Google Scholar] [CrossRef]
- Wang, D.; Sun, Y.; Liu, J.; Sun, J.; Fan, B.; Lu, C.; Wang, F. Research on the Anti-Fatigue Effects and Mechanisms of Arecoline in Sleep-Deprived Mice. Nutrients 2024, 16, 2783. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Zhang, Y.; Ma, Y.; Zhuo, M. Inhibition of cortical synaptic transmission, behavioral nociceptive, and anxiodepressive-like responses by arecoline in adult mice. Mol. Brain 2024, 17, 39. [Google Scholar] [CrossRef]
- Mazzitelli, M.; Kiritoshi, T.; Presto, P.; Hurtado, Z.; Antenucci, N.; Ji, G.; Neugebauer, V. BDNF Signaling and Pain Modulation. Cells 2025, 14, 476. [Google Scholar] [CrossRef]
- Tang, Q.; Guo, Q.; Li, K.; Fei, F. VRT-043198 Ameliorates Surgery-Induced Neurocognitive Disorders by Restoring the NGF and BNDF Expression in Aged Mice. Neuropsychiatr. Dis. Treat. 2022, 18, 1027–1037. [Google Scholar] [CrossRef]
- Yao, N.; Feng, L.; Jiang, W.; Wu, P.; Ren, H.; Shi, H.; Tang, L.; Li, S.; Wu, C.; Li, H.; et al. An emerging role of arecoline on growth performance, intestinal digestion and absorption capacities and intestinal structural integrity of adult grass carp (Ctenopharyngodon idella). Anim. Nutr. 2023, 15, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Hagan, T.; Cortese, M.; Rouphael, N.; Boudreau, C.; Linde, C.; Maddur, M.S.; Das, J.; Wang, H.; Guthmiller, J.; Zheng, N.-Y.; et al. Antibiotics-Driven Gut Microbiome Perturbation Alters Immunity to Vaccines in Humans. Cell 2019, 178, 1313–1328.e13. [Google Scholar] [CrossRef]
- Xu, M.; Su, S.; Jiang, S.; Li, W.; Zhang, Z.; Zhang, J.; Hu, X. Short-term arecoline exposure affected the systemic health state of mice, in which gut microbes played an important role. Ecotoxicol. Environ. Saf. 2023, 259, 115055. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Ding, T.; Chen, Y.; Yang, W.; Rao, J.; Liu, D.; Yi, B. Arecoline aggravates acute ulcerative colitis in mice by affecting intestinal microbiota and serum metabolites. Front. Immunol. 2023, 14, 1197922. [Google Scholar] [CrossRef]
- Liu, Y.J.; Peng, W.; Hu, M.B.; Xu, M.; Wu, C.J. The pharmacology, toxicology and potential applications of arecoline: A review. Pharm. Biol. 2016, 54, 2753–2760. [Google Scholar] [CrossRef]
- Xiao, B.M.; Xiao, N.Q.; Peng, M.J.; Gong, L.M.; Li, C.; Lin, L.M. Research on effects of arecoline on refreshing and acute toxicity test. China Mod. Med. 2013, 20, 14–16. [Google Scholar]
- Shen, J.X.; Zhou, M.S.; Xiao, N.Q.; Tan, Z.; Liang, X. Unveiling the Mystery of the Stimulatory Effects of Arecoline: Its Relevance to the Regulatory Role in Neurotransmitters and the Microecosystem from Multi-Ecological Intestinal Sites. Int. J. Mol. Sci. 2025, 26, 3150. [Google Scholar] [CrossRef]
- Papke, R.L.; Bhattacharyya, I.; Hatsukami, D.K.; Moe, I.; Glatman, S. Betel Nut (areca) and Smokeless Tobacco Use in Myanmar. Subst. Use Misuse 2020, 55, 1385–1394. [Google Scholar] [CrossRef]
- Stokes, C.; Pino, J.A.; Hagan, D.W.; Torres, G.E.; Phelps, E.A.; Horenstein, N.A.; Papke, R.L. Betel quid: New insights into an ancient addiction. Addict. Biol. 2022, 27, e13223. [Google Scholar] [CrossRef]
- Zhai, C.T.; Hou, Y.W.; Shi, L.J.; Wang, Y.X.; Li, W.; Tian, Y.F. Mechanism of Herbal Cake-separated Moxibustion in Improving Neuroimmune Inflammation in Rats with Chronic Fatigue Syndrome by Interfering TLR4/MyD88/NF-κB Pathway. Chin. J. Exp. Tradit. Med. Formulae 2025, 31, 140–149. [Google Scholar] [CrossRef]
- Ye, D.; Xu, H.; Tang, Q.; Xia, H.; Zhang, C.; Bi, F. The role of 5-HT metabolism in cancer. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188618. [Google Scholar] [CrossRef] [PubMed]
- Spencer, N.J.; Keating, D.J. Role of 5-HT in the enteric nervous system and enteroendocrine cells. Br. J. Pharmacol. 2025, 182, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wei, W.; Xu, C.; Lian, X.; Bao, J.; Yang, S.; Wang, S.; Zhang, X.; Zheng, X.; Wang, Y.; et al. Prebiotic inulin alleviates anxiety and depression-like behavior in alcohol withdrawal mice by modulating the gut microbiota and 5-HT metabolism. Phytomedicine 2024, 135, 156181. [Google Scholar] [CrossRef]
- An, Z.; Wang, Y.; Li, X.; Jin, H.; Gong, Y. Antifatigue effect of sea buckthorn seed oil on swimming fatigue in mice. J. Food Sci. 2023, 88, 1482–1494. [Google Scholar] [CrossRef]
- Cai, J.; Cheung, J.; Cheung, S.; Chin, K.; Leung, R.; Lam, R.; Sharma, R.; Yiu, J.H.C.; Woo, C.W. Butyrate acts as a positive allosteric modulator of the 5-HT transporter to decrease availability of 5-HT in the ileum. Br. J. Pharmacol. 2024, 181, 1654–1670. [Google Scholar] [CrossRef] [PubMed]
- Costa, K.M.; Schoenbaum, G. Dopamine. Curr. Biol. 2022, 32, R817–R824. [Google Scholar] [CrossRef]
- Liu, S.W.; Zhang, T.T.; Wang, Y.Y.; Wu, T.M. Anti-Fatigue Activity and Its Mechanism of Action of Arecoline. J. Wuhan. Univ. Nat. Sci. Ed. 2024, 70, 649–658. [Google Scholar] [CrossRef]
- Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci. 2015, 11, 1164–1178. [Google Scholar] [CrossRef]
- Albini, M.; Krawczun-Rygmaczewska, A.; Cesca, F. Astrocytes and brain-derived neurotrophic factor (BDNF). Neurosci. Res. 2023, 197, 42–51. [Google Scholar] [CrossRef]
- Ngo, D.H.; Vo, T.S. An Updated Review on Pharmaceutical Properties of Gamma-Aminobutyric Acid. Molecules 2019, 24, 2678. [Google Scholar] [CrossRef]
- Liu, Z.; Feng, Y.; Zhao, H.; Hu, J.; Chen, Y.; Liu, D.; Wang, H.; Zhu, X.; Yang, H.; Shen, Z.; et al. Pharmacokinetics and tissue distribution of Ramulus Mori (Sangzhi) alkaloids in rats and its effects on liver enzyme activity. Front. Pharmacol. 2023, 14, 1136772. [Google Scholar] [CrossRef] [PubMed]
- Zakaraya, Z.; Abu Assab, M.; Tamimi, L.N.; Karameh, N.; Hailat, M.; Al-Omari, L.; Abu Dayyih, W.; Alasasfeh, O.; Awad, M.; Awad, R. Pharmacokinetics and Pharmacodynamics: A Comprehensive Analysis of the Absorption, Distribution, Metabolism, and Excretion of Psychiatric Drugs. Pharmaceuticals 2024, 17, 280. [Google Scholar] [CrossRef] [PubMed]
- van Groen, B.D.; Nicolaï, J.; Kuik, A.C.; Van Cruchten, S.; van Peer, E.; Smits, A.; Schmidt, S.; de Wildt, S.N.; Allegaert, K.; De Schaepdrijver, L.; et al. Ontogeny of Hepatic Transporters and Drug-Metabolizing Enzymes in Humans and in Nonclinical Species. Pharmacol. Rev. 2021, 73, 597–678. [Google Scholar] [CrossRef] [PubMed]
- Al Rihani, S.B.; Darakjian, L.I.; Deodhar, M.; Dow, P.; Turgeon, J.; Michaud, V. Disease-Induced Modulation of Drug Transporters at the Blood-Brain Barrier Level. Int. J. Mol. Sci. 2021, 22, 3742. [Google Scholar] [CrossRef]
- Al Rihani, S.B.; Batarseh, Y.S.; Kaddoumi, A. The Blood-Brain Barrier in Health and Disease. Int. J. Mol. Sci. 2023, 24, 9261. [Google Scholar] [CrossRef]
- Wang, Y.; Kuang, Z.; Yu, X.; Ruhn, K.A.; Kubo, M.; Hooper, L.V. The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science 2017, 357, 912–916. [Google Scholar] [CrossRef]
- Cani, P.D.; Van Hul, M.; Lefort, C.; Depommier, C.; Rastelli, M.; Everard, A. Microbial regulation of organismal energy homeostasis. Nat. Metab. 2019, 1, 34–46. [Google Scholar] [CrossRef]
- Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr. 2018, 57, 1–24. [Google Scholar] [CrossRef]
- Mazhar, S.; Simon, A.; Colom, J.; Khokhlova, E.; Buckley, M.; Phipps, C.; Deaton, J.; Rea, K. Acute physiological effects on macromolecule digestion following oral ingestion of the enzyme blend Elevase® in individuals that had undergone an ileostomy, but were otherwise healthy-a randomized, double blinded, placebo-controlled exploratory study. Front. Nutr. 2024, 11, 1357803. [Google Scholar] [CrossRef]
- Hani, Y.; Turies, C.; Palluel, O.; Delahaut, L.; Gaillet, V.; Bado-Nilles, A.; Porcher, J.-M.; Geffard, A.; Dedourge-Geffard, O. Effects of chronic exposure to cadmium and temperature, alone or combined, on the threespine stickleback (Gasterosteus aculeatus): Interest of digestive enzymes as biomarkers. Aquat. Toxicol. 2018, 199, 252–262. [Google Scholar] [CrossRef]
- Wu, Y.; Deng, N.; Liu, J.; Cai, Y.; Yi, X.; Tan, Z. Unlocking the therapeutic potential of Huoxiang Zhengqi San in cold and high humidity-induced diarrhea: Insights into intestinal microbiota modulation and digestive enzyme activity. Heliyon 2024, 10, e32789. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.C.; Srinivasan, R.S. Lymphatic Vasculature in Energy Homeostasis and Obesity. Front. Physiol. 2020, 11, 3. [Google Scholar] [CrossRef]
- Paeger, L.; Pippow, A.; Hess, S.; Paehler, M.; Klein, A.C.; Husch, A.; Pouzat, C.; Brüning, J.C.; Kloppenburg, P. Energy imbalance alters Ca2+ handling and excitability of POMC neurons. eLife 2017, 6, e25641. [Google Scholar] [CrossRef]
- Jezova, D.; Trebaticka, J.; Buzgoova, K.; Durackova, Z.; Hlavacova, N. Lower activity of salivary alpha-amylase in youths with depression. Stress 2020, 23, 688–693. [Google Scholar] [CrossRef]
- Domokos-Szabolcsy, É.; Alshaal, T.; Elhawat, N.; Kovács, Z.; Kaszás, L.; Béni, Á.; Kiss, A. Enhanced Oligopeptide and Free Tryptophan Release from Chickpea and Lentil Proteins: A Comparative Study of Enzymatic Modification with Bromelain, Ficin, and Papain. Plants 2024, 13, 3100. [Google Scholar] [CrossRef]
- Correia, P.A.; Lottem, E.; Banerjee, D.; Machado, A.S.; Carey, M.R.; Mainen, Z.F. Transient inhibition and long-term facilitation of locomotion by phasic optogenetic activation of serotonin neurons. eLife 2017, 6, e20975. [Google Scholar] [CrossRef] [PubMed]
- Dorau, R.; Jensen, P.R.; Solem, C. Purified lactases versus whole-cell lactases-the winner takes it all. Appl. Microbiol. Biotechnol. 2021, 105, 4943–4955. [Google Scholar] [CrossRef]
- Wang, J.; Hu, J.Q.; Song, Y.J.; Yin, J.; Wang, Y.Y.; Peng, B.; Zhang, B.-W.; Liu, J.-M.; Dong, L.; Wang, S. 2′-Fucosyllactose Ameliorates Oxidative Stress Damage in d-Galactose-Induced Aging Mice by Regulating Gut Microbiota and AMPK/SIRT1/FOXO1 Pathway. Foods 2022, 11, 151. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zeng, L.; Doi, Y.; Lv, L.; Liu, J.H. Extended-spectrum β-lactamase-producing Escherichia coli. Lancet Infect. Dis. 2020, 20, 404–405. [Google Scholar] [CrossRef]
- Rosin, P.; Niskanen, T.; Palm, D.; Struelens, M.; Takkinen, J.; Shiga toxin-producing Escherichia coli Experts of the European Union Food- and Waterborne Diseases and Zoonoses Network. Laboratory preparedness for detection and monitoring of Shiga toxin 2-producing Escherichia coli O104:H4 in Europe and response to the 2011 outbreak. Euro Surveill. 2013, 18, 20508. [Google Scholar] [CrossRef]
- Day, M.J.; Hopkins, K.L.; Wareham, D.W.; Toleman, M.A.; Elviss, N.; Randall, L.; Teale, C.; Cleary, P.; Wiuff, C.; Doumith, M.; et al. Extended-spectrum β-lactamase-producing Escherichia coli in human-derived and foodchain-derived samples from England, Wales, and Scotland: An epidemiological surveillance and typing study. Lancet Infect. Dis. 2019, 19, 1325–1335. [Google Scholar] [CrossRef] [PubMed]
- Iguchi, A.; Takemura, T.; Ogura, Y.; Nguyen, T.; Kikuchi, T.; Okuno, M.; Tokizawa, A.; Iwashita, H.; Pham, H.Q.A.; Doan, T.H.; et al. Genomic characterization of endemic diarrheagenic Escherichia coli and Escherichia albertii from infants with diarrhea in Vietnam. PLoS Negl. Trop. Dis. 2023, 17, e0011259. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Bai, P.; Wang, L.; Zhu, L.; Zhu, Z.; Jiang, L. Clostridium tyrobutyricum in Combination with Chito-oligosaccharides Modulate Inflammation and Gut Microbiota for Inflammatory Bowel Disease Treatment. J. Agric. Food Chem. 2024, 72, 18497–18506. [Google Scholar] [CrossRef]
- Mayer, E.A.; Nance, K.; Chen, S. The Gut-Brain Axis. Annu. Rev. Med. 2022, 73, 439–453. [Google Scholar] [CrossRef]
- Zou, Z.; Xiao, N.; Chen, Z.; Lin, X.; Li, Y.; Li, P.; Cheng, Q.; Du, B. Yeast Extract Peptides Alleviate Depression in Chronic Restraint Stress Rats by Alleviating Hippocampal Neuronal Apoptosis and Dysbiosis of the Gut Microbiota. Mol. Nutr. Food Res. 2024, 68, e2300467. [Google Scholar] [CrossRef]
- Wei, X.; Xin, J.; Chen, W.; Wang, J.; Lv, Y.; Wei, Y.; Li, Z.; Ding, Q.; Shen, Y.; Xu, X.; et al. Astragalus polysaccharide ameliorated complex factor-induced chronic fatigue syndrome by modulating the gut microbiota and metabolites in mice. Biomed. Pharmacother. 2023, 163, 114862. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, J.; Xu, F.; Liu, G.; Pang, B.; Liao, N.; Li, H.; Shi, J. Gut microbiota as a potential target for developing anti-fatigue foods. Crit. Rev. Food Sci. Nutr. 2023, 63, 3065–3080. [Google Scholar] [CrossRef]
- Qiao, B.; Liu, J.; Li, D.D.; Li, X.Y.; Liu, Y.W.; Tan, Z.J. Comparative Study on Five Modeling Methods of Spleen Qi Deficiency Syndrome Based on the Theory that “Diet and Fatigue Damage the Spleen”. J. Tradit. Chin. Med. 2023, 64, 1149–1156. [Google Scholar] [CrossRef]
- Zhou, M.; Li, X.; Liu, J.; Wu, Y.; Tan, Z.; Deng, N. Adenine’s impact on mice’s gut and kidney varies with the dosage administered and relates to intestinal microorganisms and enzyme activities. 3 Biotech 2024, 14, 88. [Google Scholar] [CrossRef]
- Zhou, K.; Yi, X.; Tan, Z.; Peng, M.; Xiao, N. Baohe pill decoction treats diarrhea induced by high-fat and high-protein diet by regulating lactase-producing bacteria in intestinal mucosa. Front. Microbiol. 2023, 14, 1157475. [Google Scholar] [CrossRef]
- Fang, L.; Shen, J.; Wu, Y.; Tan, Z. Involvement of intestinal mucosal microbiota in adenine-induced liver function injury. 3 Biotech 2025, 15, 6. [Google Scholar] [CrossRef] [PubMed]
- Qiao, B.; Liu, J.; Deng, N.; Cai, Y.; Bian, Y.; Wu, Y.; Tan, Z. Gut content microbiota dysbiosis and dysregulated lipid metabolism in diarrhea caused by high-fat diet in a fatigued state. Food Funct. 2023, 14, 3880–3892. [Google Scholar] [CrossRef] [PubMed]
- Moll, J.; Hoppe, B. Evaluation of primers for the detection of deadwood-inhabiting archaea via amplicon sequencing. PeerJ 2022, 10, e14567. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Zhou, K.; Jiang, P.; Deng, N.; Peng, X.; Tan, Z. Brain-bacteria-gut axis and oxidative stress mediated by intestinal mucosal microbiota might be an important mechanism for constipation in mice. 3 Biotech 2023, 13, 192. [Google Scholar] [CrossRef]
- Xie, S.; Fang, L.; Deng, N.; Shen, J.; Tan, Z.; Peng, X. Targeting the Gut-Kidney Axis in Diarrhea with Kidney-Yang Deficiency Syndrome: The Role of Sishen Pills in Regulating TMAO-Mediated Inflammatory Response. Med. Sci. Monit. 2024, 30, e944185. [Google Scholar] [CrossRef]
- Guo, M.; Wu, Y.; Peng, M.; Xiao, N.; Lei, Z.; Tan, Z. Decreasing of Trimethylamine N-Oxide by Cecal Microbiota and Choline-Trimethylamine Lyase are Associated with Sishen Pill on Diarrhea with Kidney-Yang Deficiency Syndrome. J. Inflamm. Res. 2024, 17, 7275–7294. [Google Scholar] [CrossRef]
- Liu, J.; Qiao, B.; Deng, N.; Wu, Y.; Li, D.; Tan, Z. The diarrheal mechanism of mice with a high-fat diet in a fatigued state is associated with intestinal mucosa microbiota. 3 Biotech 2023, 13, 77. [Google Scholar] [CrossRef]
Day 7 | Day 14 | Day 21 | Day 28 | ||
---|---|---|---|---|---|
Activity time (%) | CC | 53.12 ± 9.38 | 50.86 ± 3.75 | 47.26 ± 10.18 | 39.30 ± 6.91 |
CB | 60.72 ± 7.41 | 55.30 ± 4.66 | 49.53 ± 11.56 | 61.85 ± 14.56 * | |
Time spent in center zone (S) | CC | 18.84 ± 7.13 | 6.80 ± 3.80 | 13.20 ± 8.88 | 8.51 ± 6.14 |
CB | 23.60 ± 6.40 | 10.68 ± 9.22 | 14.00 ± 7.06 | 12.55 ± 6.57 | |
Center zone distance traveled (cm) | CC | 182.37 ± 61.87 | 87.03 ± 57.18 | 127.54 ± 45.38 | 78.71 ± 44.17 |
CB | 174.44 ± 46.96 | 48.57 ± 25.95 | 142.82 ± 21.21 | 111.25 ± 76.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di, J.; Xie, S.; Shen, J.; Fang, L.; Tan, Z.; Liang, X. Arecoline Triggers Psychostimulant Responses by Modulating the Intestinal Microbiota to Influence Neurotransmitter Levels and Digestive Enzyme Activity. Pharmaceuticals 2025, 18, 794. https://doi.org/10.3390/ph18060794
Di J, Xie S, Shen J, Fang L, Tan Z, Liang X. Arecoline Triggers Psychostimulant Responses by Modulating the Intestinal Microbiota to Influence Neurotransmitter Levels and Digestive Enzyme Activity. Pharmaceuticals. 2025; 18(6):794. https://doi.org/10.3390/ph18060794
Chicago/Turabian StyleDi, Jiaxin, Shiqin Xie, Junxi Shen, Leyao Fang, Zhoujin Tan, and Xuejuan Liang. 2025. "Arecoline Triggers Psychostimulant Responses by Modulating the Intestinal Microbiota to Influence Neurotransmitter Levels and Digestive Enzyme Activity" Pharmaceuticals 18, no. 6: 794. https://doi.org/10.3390/ph18060794
APA StyleDi, J., Xie, S., Shen, J., Fang, L., Tan, Z., & Liang, X. (2025). Arecoline Triggers Psychostimulant Responses by Modulating the Intestinal Microbiota to Influence Neurotransmitter Levels and Digestive Enzyme Activity. Pharmaceuticals, 18(6), 794. https://doi.org/10.3390/ph18060794