3-Deoxysappanchalcone Inhibited High Mobility Group Box Protein 1-Mediated Severe Inflammatory Responses
Abstract
:1. Introduction
2. Results
2.1. 3-DSC Reduced LPS-Mediated HMGB1 Release and HMGB1-Mediated Barrier Disruptive Responses
2.2. Antioxidant Activity of 3-DSC
2.3. 3-DSC Suppressed HMGB1-Mediated CAM Expression, Adhesion, and Migration of Neutrophils
2.4. 3-DSC Inhibited HMGB1-Mediated NF-κB Expression and TNF-α Production
2.5. 3-DSC Downregulated RAGE Expression
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Cell Culture
4.3. Animals and Husbandry
4.4. Cell Viability Assay
4.5. Competitive Enzyme-Linked Immunosorbent Assay for HMGB1
4.6. Permeability Assay In Vivo
4.7. Permeability Assay In Vitro
4.8. ELISA for HMGB1, Nuclear Factor-κB (NF-κB), and Tumor Necrosis Factor-α (TNF-α)
4.9. Antioxidant Effects of 3-DSC on HUVECs
4.10. Cell–Cell Adhesion Assay
4.11. Transendothelial Migration (TEM) Assay
4.12. Expression of Cell Adhesion Molecules (CAMs) and HMGB1 Receptors
4.13. Quantitative Real-Time PCR (qPCR)
4.14. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, R.; Kang, R.; Tang, D. The mechanism of hmgb1 secretion and release. Exp. Mol. Med. 2022, 54, 91–102. [Google Scholar] [CrossRef]
- Zhong, H.; Li, X.; Zhou, S.; Jiang, P.; Liu, X.; Ouyang, M.; Nie, Y.; Chen, X.; Zhang, L.; Liu, Y.; et al. Interplay between rage and tlr4 regulates hmgb1-induced inflammation by promoting cell surface expression of rage and tlr4. J. Immunol. 2020, 205, 767–775. [Google Scholar] [CrossRef]
- Abdel-Aziz, S.; Aeron, A.; Kahil, T. Health benefits and possible risks of herbal medicine. In Microbes in Food and Health; Springer International: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Fu, L.C.; Huang, X.A.; Lai, Z.Y.; Hu, Y.J.; Liu, H.J.; Cai, X.L. A new 3-benzylchroman derivative from sappan lignum (caesalpinia sappan). Molecules 2008, 13, 1923–1930. [Google Scholar] [CrossRef] [PubMed]
- Badami, S.; Moorkoth, S.; Rai, S.R.; Kannan, E.; Bhojraj, S. Antioxidant activity of caesalpinia sappan heartwood. Biol. Pharm. Bull. 2003, 26, 1534–1537. [Google Scholar] [CrossRef] [PubMed]
- Jung, E.G.; Han, K.I.; Kwon, H.J.; Patnaik, B.B.; Kim, W.J.; Hur, G.M.; Nam, K.W.; Han, M.D. Anti-inflammatory activity of sappanchalcone isolated from caesalpinia sappan l. In a collagen-induced arthritis mouse model. Arch. Pharm. Res. 2015, 38, 973–983. [Google Scholar] [CrossRef]
- Kim, C.; Kim, B. Anti-cancer natural products and their bioactive compounds inducing er stress-mediated apoptosis: A review. Nutrients 2018, 10, 1021. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.L.; Shu, S.H.; Qin, H.L.; Lee, S.M.; Wang, Y.T.; Du, G.H. In vitro anti-influenza viral activities of constituents from caesalpinia sappan. Planta Med. 2009, 75, 337–339. [Google Scholar] [CrossRef]
- Yodsaoue, O.; Cheenpracha, S.; Karalai, C.; Ponglimanont, C.; Tewtrakul, S. Anti-allergic activity of principles from the roots and heartwood of caesalpinia sappan on antigen-induced beta-hexosaminidase release. Phytother. Res. 2009, 23, 1028–1031. [Google Scholar] [CrossRef]
- Sireeratawong, S.; Piyabhan, P.; Singhalak, T.; Wongkrajang, Y.; Temsiririrkkul, R.; Punsrirat, J.; Ruangwises, N.; Saraya, S.; Lerdvuthisopon, N.; Jaijoy, K. Toxicity evaluation of sappan wood extract in rats. J. Med. Assoc. Thai. 2010, 93 (Suppl. S7), S50–S57. [Google Scholar]
- Wang, H.; Yang, H.; Czura, C.J.; Sama, A.E.; Tracey, K.J. Hmgb1 as a late mediator of lethal systemic inflammation. Am. J. Respir. Crit. Care Med. 2001, 164, 1768–1773. [Google Scholar] [CrossRef]
- Liang, G.; He, Z. High mobility group proteins in sepsis. Front. Immunol. 2022, 13, 911152. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, J.; Ochani, M.; Rendon-Mitchell, B.; Qiang, X.; Susarla, S.; Ulloa, L.; Yang, H.; Fan, S.; Goyert, S.M.; et al. Bacterial endotoxin stimulates macrophages to release hmgb1 partly through cd14- and tnf-dependent mechanisms. J. Leukoc. Biol. 2004, 76, 994–1001. [Google Scholar] [CrossRef]
- Lee, W.; Ku, S.K.; Bae, J.S. Zingerone reduces hmgb1-mediated septic responses and improves survival in septic mice. Toxicol. Appl. Pharmacol. 2017, 329, 202–211. [Google Scholar] [CrossRef]
- Wolfson, R.K.; Chiang, E.T.; Garcia, J.G. Hmgb1 induces human lung endothelial cell cytoskeletal rearrangement and barrier disruption. Microvasc. Res. 2011, 81, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, H.; Czura, C.J.; Tracey, K.J. The cytokine activity of hmgb1. J. Leukoc. Biol. 2005, 78, 1–8. [Google Scholar] [CrossRef]
- Wolfe, K.L.; Liu, R.H. Cellular antioxidant activity (caa) assay for assessing antioxidants, foods, and dietary supplements. J. Agric. Food Chem. 2007, 55, 8896–8907. [Google Scholar] [CrossRef]
- Bae, J.S.; Rezaie, A.R. Activated protein c inhibits high mobility group box 1 signaling in endothelial cells. Blood 2011, 118, 3952–3959. [Google Scholar] [CrossRef] [PubMed]
- Orlova, V.V.; Choi, E.Y.; Xie, C.; Chavakis, E.; Bierhaus, A.; Ihanus, E.; Ballantyne, C.M.; Gahmberg, C.G.; Bianchi, M.E.; Nawroth, P.P.; et al. A novel pathway of hmgb1-mediated inflammatory cell recruitment that requires mac-1-integrin. EMBO J. 2007, 26, 1129–1139. [Google Scholar] [CrossRef]
- Zhou, Z.; Gengaro, P.; Wang, W.; Wang, X.Q.; Li, C.; Faubel, S.; Rivard, C.; Schrier, R.W. Role of nf-kappab and pi 3-kinase/akt in tnf-alpha-induced cytotoxicity in microvascular endothelial cells. Am. J. Physiol. Renal Physiol. 2008, 295, F932–F941. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. Nf-kappab signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef]
- Scaffidi, P.; Misteli, T.; Bianchi, M.E. Release of chromatin protein hmgb1 by necrotic cells triggers inflammation. Nature 2002, 418, 191–195. [Google Scholar] [CrossRef]
- Yang, J.; Huang, C.; Jiang, H.; Ding, J. Statins attenuate high mobility group box-1 protein induced vascular endothelial activation: A key role for tlr4/nf-kappab signaling pathway. Mol. Cell. Biochem. 2010, 345, 189–195. [Google Scholar] [CrossRef]
- Youn, J.H.; Shin, J.S. Nucleocytoplasmic shuttling of hmgb1 is regulated by phosphorylation that redirects it toward secretion. J. Immunol. 2006, 177, 7889–7897. [Google Scholar] [CrossRef] [PubMed]
- Rabadi, M.M.; Xavier, S.; Vasko, R.; Kaur, K.; Goligorksy, M.S.; Ratliff, B.B. High-mobility group box 1 is a novel deacetylation target of sirtuin1. Kidney Int. 2015, 87, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Kim, C.; Ryu, S.H.; Lee, W.; Bae, J.S. Anti-septic functions of cornuside against hmgb1-mediated severe inflammatory responses. Int. J. Mol. Sci. 2022, 23, 2065. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Choi, H.J.; Sim, H.; Choo, S.; Song, G.Y.; Bae, J.S. Barrier protective functions of hederacolchiside-e against hmgb1-mediated septic responses. Pharmacol. Res. 2021, 163, 105318. [Google Scholar] [CrossRef]
- Kim, J.E.; Lee, W.; Yang, S.; Cho, S.H.; Baek, M.C.; Song, G.Y.; Bae, J.S. Suppressive effects of rare ginsenosides, rk1 and rg5, on hmgb1-mediated septic responses. Food Chem. Toxicol. 2019, 124, 45–53. [Google Scholar] [CrossRef]
- Lee, W.; Yuseok, O.; Yang, S.; Lee, B.S.; Lee, J.H.; Park, E.K.; Baek, M.C.; Song, G.Y.; Bae, J.S. Jh-4 reduces hmgb1-mediated septic responses and improves survival rate in septic mice. J. Cell. Biochem. 2019, 120, 6277–6289. [Google Scholar] [CrossRef]
- Yang, S.; Lee, W.; Lee, B.S.; Lee, C.; Park, E.K.; Ku, S.K.; Bae, J.S. Aloin reduces hmgb1-mediated septic responses and improves survival in septic mice by activation of the sirt1 and pi3k/nrf2/ho-1 signaling axis. Am. J. Chin. Med. 2019, 47, 613–633. [Google Scholar] [CrossRef]
- Calixto, J.B.; Campos, M.M.; Otuki, M.F.; Santos, A.R. Anti-inflammatory compounds of plant origin. Part ii. Modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med. 2004, 70, 93–103. [Google Scholar]
- Lu, A.P.; Jia, H.W.; Xiao, C.; Lu, Q.P. Theory of traditional chinese medicine and therapeutic method of diseases. World J. Gastroenterol. 2004, 10, 1854–1856. [Google Scholar] [CrossRef] [PubMed]
- Komarova, Y.A.; Mehta, D.; Malik, A.B. Dual regulation of endothelial junctional permeability. Sci. STKE 2007, 2007, re8. [Google Scholar] [CrossRef]
- Ulbrich, H.; Eriksson, E.E.; Lindbom, L. Leukocyte and endothelial cell adhesion molecules as targets for therapeutic interventions in inflammatory disease. Trends Pharmacol. Sci. 2003, 24, 640–647. [Google Scholar] [CrossRef]
- Treutiger, C.J.; Mullins, G.E.; Johansson, A.S.; Rouhiainen, A.; Rauvala, H.M.; Erlandsson-Harris, H.; Andersson, U.; Yang, H.; Tracey, K.J.; Andersson, J.; et al. High mobility group 1 b-box mediates activation of human endothelium. J. Intern. Med. 2003, 254, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Fiuza, C.; Bustin, M.; Talwar, S.; Tropea, M.; Gerstenberger, E.; Shelhamer, J.H.; Suffredini, A.F. Inflammation-promoting activity of hmgb1 on human microvascular endothelial cells. Blood 2003, 101, 2652–2660. [Google Scholar] [CrossRef]
- Andersson, U.; Wang, H.; Palmblad, K.; Aveberger, A.C.; Bloom, O.; Erlandsson-Harris, H.; Janson, A.; Kokkola, R.; Zhang, M.; Yang, H.; et al. High mobility group 1 protein (hmg-1) stimulates proinflammatory cytokine synthesis in human monocytes. J. Exp. Med. 2000, 192, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Tracey, K.J. Targeting hmgb1 in inflammation. Biochim. Biophys. Acta 2010, 1799, 149–156. [Google Scholar] [CrossRef]
- Thomas, M.J.; Chen, Q.; Franklin, C.; Rudel, L.L. A comparison of the kinetics of low-density lipoprotein oxidation initiated by copper or by azobis (2-amidinopropane). Free Radic. Biol. Med. 1997, 23, 927–935. [Google Scholar]
- Bowry, V.W.; Stocker, R. Tocopherol-mediated peroxidation. The prooxidant effect of vitamin e on the radical-initiated oxidation of human low-density lipoprotein. J. Am. Chem. Soc. 1993, 115, 6029–6044. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Han, G.; Bae, J.-S. 3-Deoxysappanchalcone Inhibited High Mobility Group Box Protein 1-Mediated Severe Inflammatory Responses. Pharmaceuticals 2025, 18, 731. https://doi.org/10.3390/ph18050731
Lee J, Han G, Bae J-S. 3-Deoxysappanchalcone Inhibited High Mobility Group Box Protein 1-Mediated Severe Inflammatory Responses. Pharmaceuticals. 2025; 18(5):731. https://doi.org/10.3390/ph18050731
Chicago/Turabian StyleLee, Jinhee, Gyuri Han, and Jong-Sup Bae. 2025. "3-Deoxysappanchalcone Inhibited High Mobility Group Box Protein 1-Mediated Severe Inflammatory Responses" Pharmaceuticals 18, no. 5: 731. https://doi.org/10.3390/ph18050731
APA StyleLee, J., Han, G., & Bae, J.-S. (2025). 3-Deoxysappanchalcone Inhibited High Mobility Group Box Protein 1-Mediated Severe Inflammatory Responses. Pharmaceuticals, 18(5), 731. https://doi.org/10.3390/ph18050731