Lercanidipine Enhances Cisplatin Activity: Dual Anticancer and Anti-Inflammatory Effects via Caspase Activation and MAPK Inhibition
Abstract
:1. Introduction
2. Results
2.1. Cytotoxic Assay
2.2. MAPK Enzyme Activity
2.3. Caspase Activity Assay
2.4. Results of Anti-Inflammatory Activity
3. Discussion
4. Materials and Methods
4.1. Cell Culture Conditions
4.2. MTT Assay
4.3. p38MAPK Inhibition Assay
4.4. Caspase 3 and Caspase 8 Enzyme Assay
4.5. Determination of TNF-α Levels
4.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barrios, V.; Escobar, C.; Navarro, A.; Barrios, L.; Navarro-Cid, J.; Calderón, A.; LAURA Investigators. Lercanidipine is an effective and well tolerated antihypertensive drug regardless the cardiovascular risk profile: The LAURA study. Int. J. Clin. Pract. 2006, 60, 1364–1370, Erratum in Int. J. Clin. Pract. 2007, 61, 712. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iurova, E.; Rastorgueva, E.; Beloborodov, E.; Pogodina, E.; Fomin, A.; Sugak, D.; Viktorov, D.; Tumozov, I.; Saenko, Y. Protective Effect of Peptide Calcium Channel Blocker Omega-Hexatoxin-Hv1a on Epithelial Cell during Ischemia-Reperfusion Injury. Pharmaceuticals 2023, 16, 1314. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Edraki, N.; Mehdipour, A.R.; Khoshneviszadeh, M.; Miri, R. Dihydropyridines: Evaluation of their current and future pharmacological applications. Drug Discov. Today 2009, 14, 1058–1066. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, M.; Nasr-Esfahani, M.; Tangestaninejad, S.; Mirkhani, V. Mild and efficient oxidation of Hantzsch 1,4-dihydropyridines with sodium periodate catalyzed by a new polystyrene-bound Mn(TPP)Cl. Bioorg. Med. Chem. Lett. 2006, 16, 2026–2030. [Google Scholar] [CrossRef] [PubMed]
- McClellan, K.J.; Jarvis, B. Lercanidipine: A review of its use in hypertension. Drugs 2000, 60, 1123–1140. [Google Scholar] [CrossRef] [PubMed]
- Grassi, G.; Robles, N.R.; Seravalle, G.; Fici, F. Lercanidipine in the Management of Hypertension: An Update. J. Pharmacol. Pharmacother. 2017, 8, 155–165. [Google Scholar] [CrossRef]
- Gupta, S.; Sharma, U.; Jagannathan, N.R.; Gupta, Y.K. Neuroprotective effect of lercanidipine in middle cerebral artery occlusion model of stroke in rats. Exp. Neurol. 2017, 288, 25–37. [Google Scholar] [CrossRef]
- Vasigar, P.; Batmanabane, M. Anti-inflammatoryactivity of calciumchannel blocker lercanidipine hydrochloride. J. Pharmacol. Pharmacother. 2013, 4, 238–242. [Google Scholar] [CrossRef]
- Buchanan, P.J.; McCloskey, K.D. CaV channels and cancer: Canonical functions indicate benefits of repurposed drugs as cancer therapeutics. Eur. Biophys. J. 2016, 45, 621–633. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Afonso de Lima, C.; de Souza Bueno, I.L.; Nunes Siqueira Vasconcelos, S.; Sciani, J.M.; Ruiz, A.L.T.G.; Foglio, M.A.; Carvalho, J.E.; Barbarini Longato, G. Reversal of Ovarian Cancer Cell Lines Multidrug Resistance Phenotype by the Association of Apiole with Chemotherapies. Pharmaceuticals 2020, 13, 327. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cui, C.; Merritt, R.; Fu, L.; Pan, Z. Targeting calcium signaling in cancer therapy. Acta Pharm. Sin. B 2017, 7, 3–17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Florea, A.M.; Varghese, E.; McCallum, J.E.; Mahgoub, S.; Helmy, I.; Varghese, S.; Gopinath, N.; Sass, S.; Theis, F.J.; Reifenberger, G.; et al. Calcium-regulatory proteins as modulators of chemotherapy in human neuroblastoma. Oncotarget 2017, 8, 22876–22893. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barbado, M.; Fablet, K.; Ronjat, M.; De Waard, M. Gene regulation by voltage-dependent calcium channels. Biochim. Biophys. Acta 2009, 1793, 1096–1104. [Google Scholar] [CrossRef] [PubMed]
- Basson, M.D.; Zeng, B.; Downey, C.; Sirivelu, M.P.; Tepe, J.J. Increased extracellular pressure stimulates tumor proliferation by a mechanosensitive calcium channel and PKC-β. Mol. Oncol. 2015, 9, 513–526. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shekari, F.; Sadeghpour, H.; Javidnia, K.; Saso, L.; Nazari, F.; Firuzi, O.; Miri, R. Cytotoxic and multidrug resistance reversal activities of novel 1,4-dihydropyridines against human cancer cells. Eur. J. Pharmacol. 2015, 746, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Viale, M.; Cordazzo, C.; de Totero, D.; Budriesi, R.; Rosano, C.; Leoni, A.; Ioan, P.; Aiello, C.; Croce, M.; Andreani, A.; et al. Inhibition of MDR1 activity and induction of apoptosis by analogues of nifedipine and diltiazem: An in vitro analysis. Investig. New Drugs 2011, 29, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Onoda, J.M.; Piechocki, M.P.; Mihu, R.G.; Nelson, K.K. Calcium Channel Blockers and Cisplatin: Synergistic Antimetastatic Effects. In New Concepts in Cancer; Etievant, C., Cros, J., Rustum, Y.M., Eds.; Palgrave: London, UK, 1990. [Google Scholar] [CrossRef]
- Lee, H.; Kim, J.W.; Kim, D.K.; Choi, D.K.; Lee, S.; Yu, J.H.; Kwon, O.B.; Lee, J.; Lee, D.S.; Kim, J.H.; et al. Calcium Channels as Novel Therapeutic Targets for Ovarian Cancer Stem Cells. Int. J. Mol. Sci. 2020, 21, 2327. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Panneerpandian, P.; Rao, D.B.; Ganesan, K. Calcium channel blockers lercanidipine and amlodipine inhibit YY1/ERK/TGF-β mediated transcription and sensitize the gastric cancer cells to doxorubicin. Toxicol. Vitr. 2021, 74, 105152. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, N.; Adhimoolam, M.; Perumal, D.K.; Rajamohammed, M.A. Neuroprotective Effect of Lercanidipine—A Novel Calcium Channel Blocker in Albino Mice. J. Clin. Diagn. Res. 2015, 9, FF01-5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- İlhan, İ.; Aşcı, H.; Sevük, M.A.; İmeci, O.B.; Milletsever, A.; Sancer, O. Investigation of Antioxidant and Antiapoptotic Effects of Lercanidipine in Doxorubicin-Induced Kidney Damage via Bcl-2/Bax/Sit c/Cas-3 Signaling Pathway. Med. J. SDU 2022, 29, 671–679. [Google Scholar] [CrossRef]
- Lee, A.R.; Seo, M.J.; Kim, J.; Lee, D.M.; Kim, I.Y.; Yoon, M.J.; Hoon, H.; Choi, K.S. Lercanidipine synergistically enhances bortezomib cytotoxicity in cancer cells via enhanced endoplasmic reticulum stress and mitochondrial Ca2+ overload. Int. J. Mol. Sci. 2019, 20, 6112. [Google Scholar] [CrossRef] [PubMed]
- Tepebaşı, M.Y.; Selli, J.; Gül, S.; Hüseynov, İ.; Milletsever, A.; Selçuk, E. Lercanidipine alleviates doxorubicin-induced lung injury by regulating PERK/CHOP and Bax/Bcl 2/Cyt c pathways. Histochem. Cell Biol. 2023, 160, 361–368. [Google Scholar] [CrossRef]
- Tyagi, A.K.; Agarwal, C.; Chan, D.C.; Agarwal, R. Synergistic anti-cancer effects of silibinin with conventional cytotoxic agents doxorubicin, cisplatin and carboplatin against human breast carcinoma MCF-7 and MDA-MB468 cells. Oncol. Rep. 2004, 11, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, D.V.; Patel, D.P.; Shah, P.A.; Shah, J.V.; Sanyal, M.; Shrivastav, P.S. Determination of lercanidipine in human plasma by an improved UPLC-MS/MS method for a bioequivalence study. J. Pharm. Anal. 2016, 6, 87–94. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wong, R.S. Apoptosis in cancer: From pathogenesis to treatment. J. Exp. Clin. Cancer Res. 2011, 30, 87. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shurtz-Swirski, R.; Farah, R.; Sela, S.; Shapiro, G.; Klempef, R.; Snitkovski, T.; Kristal, B. The effect of calcium channel blocker lercanidipine on lowgrade inflammation parameters in essential hypertension patients. Harefuah 2006, 145, 895–899, 942. (In Hebrew) [Google Scholar] [PubMed]
- Dogan Unlu, M.; Asci, S.; Asci, H.; Agirca Tasan, S.; Ozmen, O.; Taner, R.; Demirci, S. Lercanidipine ameliorated doxorubicin-induced neuroinflammation and maintained the expressions of choline acetyltransferase via enhancing the levels of PI3K/AKT/HIF1-α expressions. Mol. Biol. Rep. 2024, 51, 300. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Chatterjee, A.; Gupta, S.; Sur, R. Anti-inflammatory efficacy of lercanidipine hydrochloride on TNF-α induced HaCaT cells and TPA-induced acute mouse ear inflammation model. Arch. Dermatol. Res. 2024, 316, 488. [Google Scholar] [CrossRef] [PubMed]
- Rajasegaran, T.; How, C.W.; Saud, A.; Ali, A.; Lim, J.C.W. Targeting Inflammation in Non-Small Cell Lung Cancer through Drug Repurposing. Pharmaceuticals 2023, 16, 451. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Biltekin, S.N.; Uçar, E.Ö. Separate and Mutual Effects of BIRB796 and Bortezomib on pHsp27 and Viability of U87MG Glioma Cells. Biol. Bull. 2023, 50, 761–772. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Biltekin, S.N.; Karadag, A.E.; Demirci, F.; Demirci, B. In vitro anti-inflammatory and anticancer evaluation of Mentha spicata L. and Matricaria chamomilla L. essential oils. ACS Omega 2023, 8, 17143–17150. [Google Scholar] [CrossRef]
- Gong, L.; Tang, Y.; An, R.; Lin, M.; Chen, L.; Du, J. RTN1-C mediates cerebral ischemia/reperfusion injury via ER stress and mitochondria-associated apoptosis pathways. Cell Death Dis. 2017, 8, e3080. [Google Scholar] [CrossRef]
- Fritsch, M.; Günther, S.D.; Schwarzer, R.; Albert, M.C.; Schorn, F.; Werthenbach, J.P.; Schiffmann, L.M.; Stair, N.; Stocks, H.; Seeger, J.M.; et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature 2019, 575, 683–687. [Google Scholar] [CrossRef]
- Donepudi, M.; Mac Sweeney, A.; Briand, C.; Grütter, M.G. Insights into the regulatory mechanism for caspase-8 activation. Mol. Cell 2003, 11, 543–549. [Google Scholar] [CrossRef]
- Olgen, S.; Kaleli, S.N.; Karaca, B.T.; Demirel, U.U.; Bristow, H.K. Synthesis and anticancer activity of novel indole derivatives as dual EGFR/SRC kinase inhibitors. Curr. Med. Chem. 2024, 31, 3798–3817. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, L.J.; Wang, J.; Li, D.; Ren, W.J.; Peng, J.; Wei, X.; Xu, T.; Xin, W.-J.; Pang, R.-P.; et al. TNF-α differentially regulates synaptic plasticity in the hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury. J. Neurosci. 2017, 37, 871–881. [Google Scholar] [CrossRef]
Cpd No. | IC50 (μM) | |||
---|---|---|---|---|
HEK293 | SH-SY5Y | PC3 | MCF7 | |
Lercanidipine | >150 | 31.48 ± 0.92 | 88.60 ± 1.39 | 107.54 ± 1.55 |
Cisplatin | 2.98 ± 0.82 | 6.72 ± 0.89 | 5.78 ± 0.97 | 8.13 ± 0.95 |
Cell Lines | Fold Increase |
---|---|
SH-SY5Y | 2.7 |
PC3 | 1.9 |
MCF7 | 1.6 |
Cpd. | MAPK Inhibition (%) |
---|---|
Lercanidipine (20 µM) | 83.60 ± 1.04 |
SB203580 | 99.80 ± 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uskur, T.; Biltekin, S.N.; Faikoglu, G.; Saygisever-Faikoglu, K.; Berk, B. Lercanidipine Enhances Cisplatin Activity: Dual Anticancer and Anti-Inflammatory Effects via Caspase Activation and MAPK Inhibition. Pharmaceuticals 2025, 18, 651. https://doi.org/10.3390/ph18050651
Uskur T, Biltekin SN, Faikoglu G, Saygisever-Faikoglu K, Berk B. Lercanidipine Enhances Cisplatin Activity: Dual Anticancer and Anti-Inflammatory Effects via Caspase Activation and MAPK Inhibition. Pharmaceuticals. 2025; 18(5):651. https://doi.org/10.3390/ph18050651
Chicago/Turabian StyleUskur, Tugce, Sevde Nur Biltekin, Gokhan Faikoglu, Kubra Saygisever-Faikoglu, and Barkın Berk. 2025. "Lercanidipine Enhances Cisplatin Activity: Dual Anticancer and Anti-Inflammatory Effects via Caspase Activation and MAPK Inhibition" Pharmaceuticals 18, no. 5: 651. https://doi.org/10.3390/ph18050651
APA StyleUskur, T., Biltekin, S. N., Faikoglu, G., Saygisever-Faikoglu, K., & Berk, B. (2025). Lercanidipine Enhances Cisplatin Activity: Dual Anticancer and Anti-Inflammatory Effects via Caspase Activation and MAPK Inhibition. Pharmaceuticals, 18(5), 651. https://doi.org/10.3390/ph18050651