Management of Postoperative Pain Following Primary Total Knee Arthroplasty: A Level I Evidence-Based Bayesian Network Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
- P (Problem): TKA;
- I (Intervention): postoperative pain control;
- C (Comparison): different strategies to manage pain control;
- O (Outcomes): visual analogue scale;
- T (Timing): hospitalisation;
- D (Design): randomised controlled trials.
2.2. Eligibility Criteria
2.3. Outcomes of Interest
2.4. Methodology Quality Assessment
2.5. Statistical Analysis
3. Results
3.1. Search Result
3.2. Methodological Quality Assessment
3.3. Patient Demographics
3.4. Outcomes of Interest
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Migliorini, F.; Aretini, P.; Driessen, A.; El Mansy, Y.; Quack, V.; Tingart, M.; Eschweiler, J. Better outcomes after mini-subvastus approach for primary total knee arthroplasty: A Bayesian network meta-analysis. Eur. J. Orthop. Surg. Traumatol. 2020, 30, 979–992. Correction in Eur. J. Orthop. Surg. Traumatol. 2021, 31, 1259. https://doi.org/10.1007/s00590-021-03026-9. [CrossRef] [PubMed]
- Migliorini, F.; Eschweiler, J.; Baroncini, A.; Tingart, M.; Maffulli, N. Better outcomes after minimally invasive surgeries compared to the standard invasive medial parapatellar approach for total knee arthroplasty: A meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 3608–3620. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, F.; Eschweiler, J.; Mansy, Y.E.; Quack, V.; Schenker, H.; Tingart, M.; Driessen, A. Gap balancing versus measured resection for primary total knee arthroplasty: A meta-analysis study. Arch. Orthop. Trauma Surg. 2020, 140, 1245–1253. [Google Scholar] [CrossRef]
- Migliorini, F.; Eschweiler, J.; Niewiera, M.; El Mansy, Y.; Tingart, M.; Rath, B. Better outcomes with patellar resurfacing during primary total knee arthroplasty: A meta-analysis study. Arch. Orthop. Trauma Surg. 2019, 139, 1445–1454. [Google Scholar] [CrossRef]
- Migliorini, F.; Eschweiler, J.; Tingart, M.; Rath, B. Posterior-stabilized versus cruciate-retained implants for total knee arthroplasty: A meta-analysis of clinical trials. Eur. J. Orthop. Surg. Traumatol. 2019, 29, 937–946. [Google Scholar] [CrossRef]
- Migliorini, F.; Maffulli, N. What are the best antithrombotic prophylaxes following total knee arthroplasty? Expert Opin. Drug Saf. 2024, 23, 1367–1369. [Google Scholar] [CrossRef]
- Migliorini, F.; Maffulli, N.; Cuozzo, F.; Pilone, M.; Elsner, K.; Eschweiler, J. No difference between mobile and fixed bearing in primary total knee arthroplasty: A meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 3138–3154. [Google Scholar] [CrossRef]
- Migliorini, F.; Maffulli, N.; Schafer, L.; Simeone, F.; Bell, A.; Hofmann, U.K. Minimal clinically important difference (MCID), substantial clinical benefit (SCB), and patient-acceptable symptom state (PASS) in patients who have undergone total knee arthroplasty: A systematic review. Knee Surg. Relat. Res. 2024, 36, 3. [Google Scholar] [CrossRef]
- Migliorini, F.; Pilone, M.; Schafer, L.; Simeone, F.; Bell, A.; Maffulli, N. Functional alignment in robotic-assisted total knee arthroplasty: A systematic review. Arch. Orthop. Trauma Surg. 2024, 144, 1741–1749. [Google Scholar] [CrossRef] [PubMed]
- Ranawat, A.S.; Ranawat, C.S. Pain management and accelerated rehabilitation for total hip and total knee arthroplasty. J. Arthroplast. 2007, 22, 12–15. [Google Scholar] [CrossRef]
- Maheshwari, A.V.; Blum, Y.C.; Shekhar, L.; Ranawat, A.S.; Ranawat, C.S. Multimodal pain management after total hip and knee arthroplasty at the Ranawat Orthopaedic Center. Clin. Orthop. Relat. Res. 2009, 467, 1418–1423. [Google Scholar] [CrossRef] [PubMed]
- Indelli, P.F.; Grant, S.A.; Nielsen, K.; Vail, T.P. Regional anesthesia in hip surgery. Clin. Orthop. Relat. Res. 2005, 441, 250–255. [Google Scholar] [CrossRef]
- Li, J.W.; Ma, Y.S.; Xiao, L.K. Postoperative Pain Management in Total Knee Arthroplasty. Orthop. Surg. 2019, 11, 755–761. [Google Scholar] [CrossRef]
- Aso, K.; Izumi, M.; Sugimura, N.; Okanoue, Y.; Kamimoto, Y.; Yokoyama, M.; Ikeuchi, M. Additional benefit of local infiltration of analgesia to femoral nerve block in total knee arthroplasty: Double-blind randomized control study. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 2368–2374. [Google Scholar] [CrossRef]
- Hutton, B.; Salanti, G.; Caldwell, D.M.; Chaimani, A.; Schmid, C.H.; Cameron, C.; Ioannidis, J.P.; Straus, S.; Thorlund, K.; Jansen, J.P.; et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Ann. Intern. Med. 2015, 162, 777–784. [Google Scholar] [CrossRef]
- Howick, J.C.I.; Glasziou, P.; Greenhalgh, T.; Carl Heneghan Liberati, A.; Moschetti, I.; Phillips, B.; Thornton, H.; Goddard, O.; Hodgkinson, M. The 2011 Oxford CEBM Levels of Evidence. Oxford Centre for Evidence-Based Medicine. 2011. Available online: https://www.cebm.net/index.aspx?o=5653 (accessed on 18 February 2025).
- Migliorini, F.; Maffulli, N.; Eschweiler, J.; Schenker, H.; Tingart, M.; Betsch, M. Arthroscopic versus mini-open rotator cuff repair: A meta-analysis. Surgeon 2023, 21, e1–e12. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savovic, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Higgins, J.P.; Savović, J.; Page, M.J.; Elbers, R.G.; Sterne, J.A. Chapter 8: Assessing risk of bias in a randomized trial. In Cochrane Handbook for Systematic Reviews of Interventions Version 6.3; Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A., Eds.; Updated February 2022; Cochrane: Cochrane, AB, Canada, 2022; Available online: https://training.cochrane.org/handbook/current/chapter-08 (accessed on 18 February 2025).
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef]
- Adams, H.A.; Saatweber, P.; Schmitz, C.S.; Hecker, H. Postoperative pain management in orthopaedic patients: No differences in pain score, but improved stress control by epidural anaesthesia. Eur. J. Anaesthesiol. 2002, 19, 658–665. [Google Scholar] [CrossRef]
- Akesen, S.; Akesen, B.; Atıcı, T.; Gurbet, A.; Ermutlu, C.; Özyalçın, A. Comparison of efficacy between the genicular nerve block and the popliteal artery and the capsule of the posterior knee (IPACK) block for total knee replacement surgery: A prospective randomized controlled study. Acta Orthop. Traumatol. Turc. 2021, 55, 134–140. [Google Scholar] [CrossRef]
- Albrecht, E.; Morfey, D.; Chan, V.; Gandhi, R.; Koshkin, A.; Chin, K.J.; Robinson, S.; Frascarolo, P.; Brull, R. Single-injection or continuous femoral nerve block for total knee arthroplasty? Clin. Orthop. Relat. Res. 2014, 472, 1384–1393. [Google Scholar] [CrossRef] [PubMed]
- Al-Zahrani, T.; Doais, K.S.; Aljassir, F.; Alshaygy, I.; Albishi, W.; Terkawi, A.S. Randomized clinical trial of continuous femoral nerve block combined with sciatic nerve block versus epidural analgesia for unilateral total knee arthroplasty. J. Arthroplast. 2015, 30, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Ardon, A.E.; Clendenen, S.R.; Porter, S.B.; Robards, C.B.; Greengrass, R.A. Opioid consumption in total knee arthroplasty patients: A retrospective comparison of adductor canal and femoral nerve continuous infusions in the presence of a sciatic nerve catheter. J. Clin. Anesth. 2016, 31, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, A.; Raut, V.V.; Canty, S.J.; McLauchlan, G.J. Pain control after primary total knee replacement. A prospective randomised controlled trial of local infiltration versus single shot femoral nerve block. Knee 2013, 20, 324–327. [Google Scholar] [CrossRef]
- Bagry, H.; de la Cuadra Fontaine, J.C.; Asenjo, J.F.; Bracco, D.; Carli, F. Effect of a continuous peripheral nerve block on the inflammatory response in knee arthroplasty. Reg. Anesth. Pain. Med. 2008, 33, 17–23. [Google Scholar] [CrossRef]
- Bali, C.; Ozmete, O.; Eker, H.E.; Hersekli, M.A.; Aribogan, A. Postoperative analgesic efficacy of fascia iliaca block versus periarticular injection for total knee arthroplasty. J. Clin. Anesth. 2016, 35, 404–410. [Google Scholar] [CrossRef]
- Baranović, S.; Maldini, B.; Milosević, M.; Golubić, R.; Nikolić, T. Peripheral regional analgesia with femoral catheter versus intravenous patient controlled analgesia after total knee arthroplasty: A prospective randomized study. Coll. Antropol. 2011, 35, 1209–1214. [Google Scholar]
- Campbell, A.; McCormick, M.; McKinlay, K.; Scott, N.B. Epidural vs. lumbar plexus infusions following total knee arthroplasty: Randomized controlled trial. Eur. J. Anaesthesiol. 2008, 25, 502–507. [Google Scholar] [CrossRef]
- Canbek, U.; Akgun, U.; Aydogan, N.H.; Kilinc, C.Y.; Uysal, A.I. Continuous adductor canal block following total knee arthroplasty provides a better analgesia compared to single shot: A prospective randomized controlled trial. Acta Orthop. Traumatol. Turc. 2019, 53, 334–339. [Google Scholar] [CrossRef]
- Cappelleri, G.; Ghisi, D.; Fanelli, A.; Albertin, A.; Somalvico, F.; Aldegheri, G. Does continuous sciatic nerve block improve postoperative analgesia and early rehabilitation after total knee arthroplasty? A prospective, randomized, double-blinded study. Reg. Anesth. Pain. Med. 2011, 36, 489–492. [Google Scholar] [CrossRef]
- Carli, F.; Clemente, A.; Asenjo, J.F.; Kim, D.J.; Mistraletti, G.; Gomarasca, M.; Morabito, A.; Tanzer, M. Analgesia and functional outcome after total knee arthroplasty: Periarticular infiltration vs. continuous femoral nerve block. Br. J. Anaesth. 2010, 105, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, R.; Calixto, L.; Braganca, J.P. Effect of a single shot sciatic nerve block combined with a continuous femoral block on pain scores after knee arthroplasty. A randomized controlled trial. Open J. Anesthesiol. 2012, 2, 22253. [Google Scholar] [CrossRef]
- Casati, A.; Vinciguerra, F.; Cappelleri, G.; Aldegheri, G.; Fanelli, G.; Putzu, M.; Chelly, J.E. Adding clonidine to the induction bolus and postoperative infusion during continuous femoral nerve block delays recovery of motor function after total knee arthroplasty. Anesth. Analg. 2005, 100, 866–872. [Google Scholar] [CrossRef]
- Chan, M.H.; Chen, W.H.; Tung, Y.W.; Liu, K.; Tan, P.H.; Chia, Y.Y. Single-injection femoral nerve block lacks preemptive effect on postoperative pain and morphine consumption in total knee arthroplasty. Acta Anaesthesiol. Taiwan. 2012, 50, 54–58. [Google Scholar] [CrossRef]
- Chan, E.Y.; Fransen, M.; Sathappan, S.; Chua, N.H.; Chan, Y.H.; Chua, N. Comparing the analgesia effects of single-injection and continuous femoral nerve blocks with patient controlled analgesia after total knee arthroplasty. J. Arthroplast. 2013, 28, 608–613. [Google Scholar] [CrossRef]
- Chaumeron, A.; Audy, D.; Drolet, P.; Lavigne, M.; Vendittoli, P.A. Periarticular injection in knee arthroplasty improves quadriceps function. Clin. Orthop. Relat. Res. 2013, 471, 2284–2295. [Google Scholar] [CrossRef]
- Cicekci, F.; Yildirim, A.; Önal, Ö.; Celik, J.B.; Kara, I. Ultrasound-guided adductor canal block using levobupivacaine versus periarticular levobupivacaine infiltration after totalknee arthroplasty: A randomized clinical trial. Sao Paulo Med. J. 2019, 137, 45–53. [Google Scholar] [CrossRef]
- Elkassabany, N.M.; Antosh, S.; Ahmed, M.; Nelson, C.; Israelite, C.; Badiola, I.; Cai, L.F.; Williams, R.; Hughes, C.; Mariano, E.R.; et al. The Risk of Falls After Total Knee Arthroplasty with the Use of a Femoral Nerve Block Versus an Adductor Canal Block: A Double-Blinded Randomized Controlled Study. Anesth. Analg. 2016, 122, 1696–1703. [Google Scholar] [CrossRef]
- Elkassabany, N.M.; Cai, L.F.; Badiola, I.; Kase, B.; Liu, J.; Hughes, C.; Israelite, C.L.; Nelson, C.L. A prospective randomized open-label study of single injection versus continuous adductor canal block for postoperative analgesia after total knee arthroplasty. Bone Jt. J. 2019, 101, 340–347. [Google Scholar] [CrossRef]
- Fritze, P.; Anderl, S.; Marouf, A.; Cumlivski, R.; Müller, C.; Pernicka, E.; Redl, G. Pain therapy using stimulating catheters after total knee arthroplasty. Schmerz 2009, 23, 292–298. [Google Scholar] [CrossRef]
- Gi, E.; Yamauchi, M.; Yamakage, M.; Kikuchi, C.; Shimizu, H.; Okada, Y.; Kawamura, S.; Suzuki, T. Effects of local infiltration analgesia for posterior knee pain after total knee arthroplasty: Comparison with sciatic nerve block. J. Anesth. 2014, 28, 696–701. [Google Scholar] [CrossRef] [PubMed]
- Good, R.P.; Snedden, M.H.; Schieber, F.C.; Polachek, A. Effects of a preoperative femoral nerve block on pain management and rehabilitation after total knee arthroplasty. Am. J. Orthop. 2007, 36, 554–557. [Google Scholar] [PubMed]
- Grosso, M.J.; Murtaugh, T.; Lakra, A.; Brown, A.R.; Maniker, R.B.; Cooper, H.J.; Macaulay, W.; Shah, R.P.; Geller, J.A. Adductor Canal Block Compared with Periarticular Bupivacaine Injection for Total Knee Arthroplasty: A Prospective Randomized Trial. J. Bone Jt. Surg. Am. 2018, 100, 1141–1146. [Google Scholar] [CrossRef] [PubMed]
- Kanadli, H.; Dogru, S.; Karaman, T.; Karaman, S.; Tapar, H.; Şahin, A.; Aşçi, M.; Kanadli, K.A.; Süren, M. Comparison of the efficacy of femoral nerve block and fascia iliaca compartment block in patients with total knee replacement. Minerva Anestesiol. 2018, 84, 1134–1141. [Google Scholar] [CrossRef]
- Kovalak, E.; Doğan, A.T.; Üzümcügil, O.; Obut, A.; Yıldız, A.S.; Kanay, E.; Tüzüner, T.; Özyuvacı, E. A comparison of continuous femoral nerve block and periarticular local infiltration analgesia in the management of early period pain developing after total knee arthroplasty. Acta Orthop. Traumatol. Turc. 2015, 49, 260–266. [Google Scholar] [CrossRef]
- Kulkarni, M.M.; Dadheech, A.N.; Wakankar, H.M.; Ganjewar, N.V.; Hedgire, S.S.; Pandit, H.G. Randomized Prospective Comparative Study of Adductor Canal Block vs Periarticular Infiltration on Early Functional Outcome After Unilateral Total Knee Arthroplasty. J. Arthroplast. 2019, 34, 2360–2364. [Google Scholar] [CrossRef]
- Kurosaka, K.; Tsukada, S.; Seino, D.; Morooka, T.; Nakayama, H.; Yoshiya, S. Local Infiltration Analgesia Versus Continuous Femoral Nerve Block in Pain Relief After Total Knee Arthroplasty: A Randomized Controlled Trial. J. Arthroplast. 2016, 31, 913–917. [Google Scholar] [CrossRef]
- Kutzner, K.P.; Paulini, C.; Hechtner, M.; Rehbein, P.; Pfeil, J. Postoperative analgesia after total knee arthroplasty: Continuous intra-articular catheter vs. continuous femoral nerve block. Orthopade 2015, 44, 566–573. [Google Scholar] [CrossRef]
- Li, C.; Xu, H.; Shen, B.; Yang, J.; Zhou, Z.; Kang, P.; Pei, F. Effect of continuous and single shot adductor canal blocks for postoperative analgesia and early rehabilitation after total knee arthroplasty. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2017, 31, 1049–1054. [Google Scholar] [CrossRef]
- Li, D.; Alqwbani, M.; Wang, Q.; Yang, Z.; Liao, R.; Kang, P. Ultrasound-guided adductor canal block combined with lateral femoral cutaneous nerve block for post-operative analgesia following total knee arthroplasty: A prospective, double-blind, randomized controlled study. Int. Orthop. 2021, 45, 1421–1429. [Google Scholar] [CrossRef]
- Li, D.; Alqwbani, M.; Wang, Q.; Liao, R.; Yang, J.; Kang, P. Efficacy of Adductor Canal Block Combined With Additional Analgesic Methods for Postoperative Analgesia in Total Knee Arthroplasty: A Prospective, Double-Blind, Randomized Controlled Study. J. Arthroplast. 2020, 35, 3554–3562. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Y.; Chen, Y.; Qian, J.; Li, S.; Chen, S.; Fu, P. Comparison of Femoral Triangle Block in Combination with IPACK to Local Periarticular Injection in Total Knee Arthroplasty. J. Knee Surg. 2023, 36, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Long, W.T.; Ward, S.R.; Dorr, L.D.; Raya, J.; Boutary, M.; Sirianni, L.E. Postoperative pain management following total knee arthroplasty: A randomized comparison of continuous epidural versus femoral nerve infusion. J. Knee Surg. 2006, 19, 137–143. [Google Scholar] [CrossRef]
- Luo, Z.Y.; Yu, Q.P.; Zeng, W.N.; Xiao, Q.; Chen, X.; Wang, H.Y.; Zhou, Z. Adductor canal block combined with local infiltration analgesia with morphine and betamethasone show superior analgesic effect than local infiltration analgesia alone for total knee arthroplasty: A prospective randomized controlled trial. BMC Musculoskelet. Disord. 2022, 23, 468. [Google Scholar] [CrossRef]
- Macrinici, G.I.; Murphy, C.; Christman, L.; Drescher, M.; Hughes, B.; Macrinici, V.; Diab, G. Prospective, Double-Blind, Randomized Study to Evaluate Single-Injection Adductor Canal Nerve Block Versus Femoral Nerve Block: Postoperative Functional Outcomes After Total Knee Arthroplasty. Reg. Anesth. Pain. Med. 2017, 42, 10–16. [Google Scholar] [CrossRef]
- Marino, J.; Scuderi, G.; Dowling, O.; Farquhar, R.; Freycinet, B.; Overdyk, F. Periarticular Knee Injection With Liposomal Bupivacaine and Continuous Femoral Nerve Block for Postoperative Pain Management After Total Knee Arthroplasty: A Randomized Controlled Trial. J. Arthroplast. 2019, 34, 495–500. [Google Scholar] [CrossRef]
- Memtsoudis, S.G.; Yoo, D.; Stundner, O.; Danninger, T.; Ma, Y.; Poultsides, L.; Kim, D.; Chisholm, M.; Jules-Elysee, K.; Valle, A.G.; et al. Subsartorial adductor canal vs. femoral nerve block for analgesia after total knee replacement. Int. Orthop. 2015, 39, 673–680. [Google Scholar] [CrossRef]
- Mistraletti, G.; De La Cuadra-Fontaine, J.C.; Asenjo, F.J.; Donatelli, F.; Wykes, L.; Schricker, T.; Carli, F. Comparison of analgesic methods for total knee arthroplasty: Metabolic effect of exogenous glucose. Reg. Anesth. Pain Med. 2006, 31, 260–269. [Google Scholar] [CrossRef]
- Moreno, I.; Tsamassiottis, S.; Ettinger, M.; Fischer-Kumbruch, M.; Przemeck, M. Femoral nerve blockade versus local infiltration analgesia for primary knee arthroplasty. Randomised controlled trial. Anaesthesiol. Intensive Ther. 2022, 54, 387–392. [Google Scholar] [CrossRef]
- Mu, T.; Liu, D.; Gao, F. Butorphanol as an Adjuvant to Ropivacaine for Adductor Canal Blocks in Total Knee Arthroplasty Patients: A Randomized, Double, Blind Study. J. Healthc. Eng. 2022, 2022, 7718108. [Google Scholar] [CrossRef]
- Mudumbai, S.C.; Kim, T.E.; Howard, S.K.; Workman, J.J.; Giori, N.; Woolson, S.; Ganaway, T.; King, R.; Mariano, E.R. Continuous adductor canal blocks are superior to continuous femoral nerve blocks in promoting early ambulation after TKA. Clin. Orthop. Relat. Res. 2014, 472, 1377–1383. [Google Scholar] [CrossRef] [PubMed]
- Ng, F.Y.; Ng, J.K.; Chiu, K.Y.; Yan, C.H.; Chan, C.W. Multimodal periarticular injection vs. continuous femoral nerve block after total knee arthroplasty: A prospective, crossover, randomized clinical trial. J. Arthroplast. 2012, 27, 1234–1238. [Google Scholar] [CrossRef] [PubMed]
- Nicolino, T.I.; Costantini, J.; Carbó, L. Complementary Saphenous Nerve Block to Intra-Articular Analgesia Reduces Pain After Total Knee Arthroplasty: A Prospective Randomized Controlled Trial. J. Arthroplast. 2020, 35, S168–S172. [Google Scholar] [CrossRef]
- Paauwe, J.J.; Thomassen, B.J.; Weterings, J.; van Rossum, E.; Ausems, M.E. Femoral nerve block using ropivacaine 0.025%, 0.05% and 0.1%: Effects on the rehabilitation programme following total knee arthroplasty: A pilot study. Anaesthesia 2008, 63, 948–953. [Google Scholar] [CrossRef]
- Parvataneni, H.K.; Shah, V.P.; Howard, H.; Cole, N.; Ranawat, A.S.; Ranawat, C.S. Controlling pain after total hip and knee arthroplasty using a multimodal protocol with local periarticular injections: A prospective randomized study. J. Arthroplast. 2007, 22 (Suppl. S2), 33–38. [Google Scholar] [CrossRef]
- Patterson, M.E.; Vitter, J.; Bland, K.; Nossaman, B.D.; Thomas, L.C.; Chimento, G.F. The Effect of the IPACK Block on Pain After Primary TKA: A Double-Blinded, Prospective, Randomized Trial. J. Arthroplast. 2020, 35, S173–S177. [Google Scholar] [CrossRef]
- Rousseau-Saine, N.; Williams, S.R.; Girard, F.; Hébert, L.J.; Robin, F.; Duchesne, L.; Lavoie, F.; Ruel, M. The Effect of Adductor Canal Block on Knee Extensor Muscle Strength 6 Weeks After Total Knee Arthroplasty: A Randomized, Controlled Trial. Anesth. Analg. 2018, 126, 1019–1027. [Google Scholar] [CrossRef]
- Salinas, F.V.; Liu, S.S.; Mulroy, M.F. The effect of single-injection femoral nerve block versus continuous femoral nerve block after total knee arthroplasty on hospital length of stay and long-term functional recovery within an established clinical pathway. Anesth. Analg. 2006, 102, 1234–1239. [Google Scholar] [CrossRef]
- Sankineani, S.R.; Reddy, A.R.C.; Ajith Kumar, K.S.; Eachempati, K.K.; Reddy, A.V.G. Comparative analysis of influence of adductor canal block and multimodal periarticular infiltration versus adductor canal block alone on pain and knee range of movement after total knee arthroplasty: A prospective non-randomised study. Musculoskelet. Surg. 2018, 102, 173–177. [Google Scholar] [CrossRef]
- Sankineani, S.R.; Reddy, A.R.C.; Eachempati, K.K.; Jangale, A.; Gurava Reddy, A.V. Comparison of adductor canal block and IPACK block (interspace between the popliteal artery and the capsule of the posterior knee) with adductor canal block alone after total knee arthroplasty: A prospective control trial on pain and knee function in immediate postoperative period. Eur. J. Orthop. Surg. Traumatol. 2018, 28, 1391–1395. [Google Scholar] [CrossRef]
- Shah, N.A.; Jain, N.P. Is continuous adductor canal block better than continuous femoral nerve block after total knee arthroplasty? Effect on ambulation ability, early functional recovery and pain control: A randomized controlled trial. J. Arthroplast. 2014, 29, 2224–2229. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.A.; Jain, N.P.; Panchal, K.A. Adductor Canal Blockade Following Total Knee Arthroplasty-Continuous or Single Shot Technique? Role in Postoperative Analgesia, Ambulation Ability and Early Functional Recovery: A Randomized Controlled Trial. J. Arthroplast. 2015, 30, 1476–1481. [Google Scholar] [CrossRef] [PubMed]
- Sites, B.D.; Beach, M.; Gallagher, J.D.; Jarrett, R.A.; Sparks, M.B.; Lundberg, C.J.F. A single injection ultrasound-assisted femoral nerve block provides side effect-sparing analgesia when compared with intrathecal morphine in patients undergoing total knee arthroplasty. Anesth. Analg. 2004, 99, 1539–1543. [Google Scholar] [CrossRef] [PubMed]
- Stathellis, A.; Fitz, W.; Schnurr, C.; Koeck, F.X.; Gebauer, M.; Huth, J.; Bauer, G.; Beckmann, J. Periarticular injections with continuous perfusion of local anaesthetics provide better pain relief and better function compared to femoral and sciatic blocks after TKA: A randomized clinical trial. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 2702–2707. [Google Scholar] [CrossRef]
- Tak, R.; Gurava Reddy, A.V.; Jhakotia, K.; Karumuri, K.; Sankineani, S.R. Continuous adductor canal block is superior to adductor canal block alone or adductor canal block combined with IPACK block (interspace between the popliteal artery and the posterior capsule of knee) in postoperative analgesia and ambulation following total knee arthroplasty: Randomized control trial. Musculoskelet. Surg. 2022, 106, 155–162. [Google Scholar] [CrossRef]
- Talmo, C.T.; Kent, S.E.; Fredette, A.N.; Anderson, M.C.; Hassan, M.K.; Mattingly, D.A. Prospective Randomized Trial Comparing Femoral Nerve Block With Intraoperative Local Anesthetic Injection of Liposomal Bupivacaine in Total Knee Arthroplasty. J. Arthroplast. 2018, 33, 3474–3478. [Google Scholar] [CrossRef]
- Tan, Z.; Kang, P.; Pei, F.; Shen, B.; Zhou, Z.; Yang, J. A comparison of adductor canal block and femoral nerve block after total-knee arthroplasty regarding analgesic effect, effectiveness of early rehabilitation, and lateral knee pain relief in the early stage. Medicine 2018, 97, e13391. [Google Scholar] [CrossRef]
- Tang, Q.; Li, X.; Yu, L.; Hao, Y.; Lu, G. Preoperative ropivacaine with or without tramadol for femoral nerve block in total knee arthroplasty. J. Orthop. Surg. 2016, 24, 183–187. [Google Scholar] [CrossRef]
- Tanikawa, H.; Sato, T.; Nagafuchi, M.; Takeda, K.; Oshida, J.; Okuma, K. Comparison of local infiltration of analgesia and sciatic nerve block in addition to femoral nerve block for total knee arthroplasty. J. Arthroplast. 2014, 29, 2462–2467. [Google Scholar] [CrossRef]
- Tanikawa, H.; Harato, K.; Ogawa, R.; Sato, T.; Kobayashi, S.; Nomoto, S.; Niki, Y.; Okuma, K. Local infiltration of analgesia and sciatic nerve block provide similar pain relief after total knee arthroplasty. J. Orthop. Surg. Res. 2017, 12, 109. [Google Scholar] [CrossRef]
- Theodosiadis, P.; Sachinis, N.; Goroszeniuk, T.; Grosomanidis, V.; Chalidis, B. Ropivacaine versus bupivacaine for 3-in-1 block during total knee arthroplasty. J. Orthop. Surg. 2013, 21, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Thobhani, S.; Scalercio, L.; Elliott, C.E.; Nossaman, B.D.; Thomas, L.C.; Yuratich, D.; Bland, K.; Osteen, K.; Patterson, M.E. Novel Regional Techniques for Total Knee Arthroplasty Promote Reduced Hospital Length of Stay: An Analysis of 106 Patients. Ochsner J. 2017, 17, 233–238. [Google Scholar] [PubMed]
- Tsukada, S.; Wakui, M.; Hoshino, A. Postoperative epidural analgesia compared with intraoperative periarticular injection for pain control following total knee arthroplasty under spinal anesthesia: A randomized controlled trial. J. Bone Jt. Surg. Am. 2014, 96, 1433–1438. [Google Scholar] [CrossRef] [PubMed]
- Wall, P.D.H.; Parsons, N.R.; Parsons, H.; Achten, J.; Balasubramanian, S.; Thompson, P.; Costa, M.L. A pragmatic randomised controlled trial comparing the efficacy of a femoral nerve block and periarticular infiltration for early pain relief following total knee arthroplasty. Bone Jt. J. 2017, 99, 904–911. [Google Scholar] [CrossRef]
- Wang, H.; Boctor, B.; Verner, J. The effect of single-injection femoral nerve block on rehabilitation and length of hospital stay after total knee replacement. Reg. Anesth. Pain. Med. 2002, 27, 139–144. [Google Scholar] [CrossRef]
- Wang, Q.; Yue, Y.; Li, D.; Yang, Z.; Yeersheng, R.; Kang, P. Efficacy of Single-Shot Adductor Canal Block Combined With Posterior Capsular Infiltration on Postoperative Pain and Functional Outcome After Total Knee Arthroplasty: A Prospective, Double-Blind, Randomized Controlled Study. J. Arthroplast. 2019, 34, 1650–1655. [Google Scholar] [CrossRef]
- Wang, C.G.; Ding, Y.L.; Wang, Y.Y.; Liu, J.Y.; Zhang, Q. Comparison of Adductor Canal Block and Femoral Triangle Block for Total Knee Arthroplasty. Clin. J. Pain 2020, 36, 558–561. [Google Scholar] [CrossRef]
- Wang, C.G.; Ma, W.H.; Liu, R.; Yang, M.Y.; Yang, Y.; Ding, Y.L. The effect of continuous adductor canal block combined with distal interspace between the popliteal artery and capsule of the posterior knee block for total knee arthroplasty: A randomized, double-blind, controlled trial. BMC Anesthesiol. 2022, 22, 175. [Google Scholar] [CrossRef]
- Wu, J.W.; Wong, Y.C. Elective unilateral total knee replacement using continuous femoral nerve blockade versus conventional patient-controlled analgesia: Perioperative patient management based on a multidisciplinary pathway. Hong Kong Med. J. 2014, 20, 45–51. [Google Scholar] [CrossRef]
- Yao, Y.Y.; Zhou, Q.H.; Yu, L.N.; Yan, M. Additional femoral nerve block analgesia does not reduce the chronic pain after total knee arthroplasty: A retrospective study in patients with knee osteoarthritis. Medicine 2019, 98, e14991. [Google Scholar] [CrossRef]
- Zaric, D.; Boysen, K.; Christiansen, C.; Christiansen, J.; Stephensen, S.; Christensen, B. A comparison of epidural analgesia with combined continuous femoral-sciatic nerve blocks after total knee replacement. Anesth. Analg. 2006, 102, 1240–1246. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Y.; Zhang, E.F.; Bai, X.L.; Cheng, Z.J.; Jia, P.Y.; Li, Y.N.; Guo, Z.; Yang, J.X. Ultrasound-Guided Continuous Femoral Nerve Block with Dexmedetomidine Combined with Low Concentrations of Ropivacaine for Postoperative Analgesia in Elderly Knee Arthroplasty. Med. Princ. Pract. 2019, 28, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Zinkus, J.; Mockutė, L.; Gelmanas, A.; Tamošiūnas, R.; Vertelis, A.; Macas, A. Comparison of 2 Analgesia Modalities in Total Knee Replacement Surgery: Is There an Effect on Knee Function Rehabilitation? Med. Sci. Monit. 2017, 23, 3019–3025. [Google Scholar] [CrossRef]
- Zoratto, D.; Phelan, R.; Hopman, W.M.; Wood, G.C.A.; Shyam, V.; DuMerton, D.; Shelley, J.; McQuaide, S.; Kanee, L.; Ho, A.M.; et al. Adductor canal block with or without added magnesium sulfate following total knee arthroplasty: A multi-arm randomized controlled trial. Can. J. Anaesth. 2021, 68, 1028–1037. [Google Scholar] [CrossRef]
- Moucha, C.S.; Weiser, M.C.; Levin, E.J. Current Strategies in Anesthesia and Analgesia for Total Knee Arthroplasty. J. Am. Acad. Orthop. Surg. 2016, 24, 60–73. [Google Scholar] [CrossRef]
- Song, M.H.; Kim, B.H.; Ahn, S.J.; Yoo, S.H.; Kang, S.W.; Kim, Y.J.; Kim, D.H. Peri-articular injections of local anaesthesia can replace patient-controlled analgesia after total knee arthroplasty: A randomised controlled study. Int. Orthop. 2016, 40, 295–299. [Google Scholar] [CrossRef]
- Walder, B.; Schafer, M.; Henzi, I.; Tramèr, M.R. Efficacy and safety of patient-controlled opioid analgesia for acute postoperative pain. A quantitative systematic review. Acta Anaesthesiol. Scand. 2001, 45, 795–804. [Google Scholar] [CrossRef]
- Memtsoudis, S.G.; Cozowicz, C.; Bekeris, J.; Bekere, D.; Liu, J.; Soffin, E.M.; Mariano, E.R.; Johnson, R.L.; Go, G.; Hargett, M.J.; et al. Peripheral nerve block anesthesia/analgesia for patients undergoing primary hip and knee arthroplasty: Recommendations from the International Consensus on Anesthesia-Related Outcomes after Surgery (ICAROS) group based on a systematic review and meta-analysis of current literature. Reg. Anesth. Pain Med. 2021, 46, 971–985. [Google Scholar] [CrossRef]
- Dixit, V.; Fathima, S.; Walsh, S.M.; Seviciu, A.; Schwendt, I.; Spittler, K.H.; Briggs, D. Effectiveness of continuous versus single injection femoral nerve block for total knee arthroplasty: A double blinded, randomized trial. Knee 2018, 25, 623–630. [Google Scholar] [CrossRef]
- Charous, M.T.; Madison, S.J.; Suresh, P.J.; Sandhu, N.S.; Loland, V.J.; Mariano, E.R.; Donohue, M.C.; Dutton, P.H.; Ferguson, E.J.; Ilfeld, B.M. Continuous femoral nerve blocks: Varying local anesthetic delivery method (bolus versus basal) to minimize quadriceps motor block while maintaining sensory block. Anesthesiology 2011, 115, 774–781. [Google Scholar] [CrossRef]
- Li, D.; Ma, G.G. Analgesic efficacy and quadriceps strength of adductor canal block versus femoral nerve block following total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 2614–2619. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.Y.; Fransen, M.; Parker, D.A.; Assam, P.N.; Chua, N. Femoral nerve blocks for acute postoperative pain after knee replacement surgery. Cochrane Database Syst. Rev. 2014, 2014, CD009941. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.S.; Kim, O.G.; Seo, J.H.; Kim, D.H.; Kim, Y.G.; Park, B.Y. Comparison of the Effect of Continuous Femoral Nerve Block and Adductor Canal Block after Primary Total Knee Arthroplasty. Clin. Orthop. Surg. 2017, 9, 303–309. [Google Scholar] [CrossRef]
- Karkhur, Y.; Mahajan, R.; Kakralia, A.; Pandey, A.P.; Kapoor, M.C. A comparative analysis of femoral nerve block with adductor canal block following total knee arthroplasty: A systematic literature review. J. Anaesthesiol. Clin. Pharmacol. 2018, 34, 433–438. [Google Scholar] [CrossRef]
- Sercia, Q.P.; Bergeron, J.J.; Pelet, S.; Belzile, É.L. Continuous vs. single-shot adductor canal block for pain management following primary total knee arthroplasty: A systematic review and meta-analysis of randomized controlled trials. Orthop. Traumatol. Surg. Res. 2022, 108, 103290. [Google Scholar] [CrossRef]
- D’Souza, R.S.; Langford, B.J.; Olsen, D.A.; Johnson, R.L. Ultrasound-Guided Local Anesthetic Infiltration Between the Popliteal Artery and the Capsule of the Posterior Knee (IPACK) Block for Primary Total Knee Arthroplasty: A Systematic Review of Randomized Controlled Trials. Local Reg. Anesth. 2021, 14, 85–98. [Google Scholar] [CrossRef]
- Thorsell, M.; Holst, P.; Hyldahl, H.C.; Weidenhielm, L. Pain control after total knee arthroplasty: A prospective study comparing local infiltration anesthesia and epidural anesthesia. Orthopedics 2010, 33, 75–80. [Google Scholar] [CrossRef]
- Zhang, L.K.; Ma, J.X.; Kuang, M.J.; Ma, X.L. Comparison of Periarticular Local Infiltration Analgesia With Femoral Nerve Block for Total Knee Arthroplasty: A Meta-Analysis of Randomized Controlled Trials. J. Arthroplast. 2018, 33, 1972–1978.e4. [Google Scholar] [CrossRef]
- Sardana, V.; Burzynski, J.M.; Scuderi, G.R. Adductor Canal Block or Local Infiltrate Analgesia for Pain Control After Total Knee Arthroplasty? A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Arthroplast. 2019, 34, 183–189. [Google Scholar] [CrossRef]
- Wang, C.; Cai, X.Z.; Yan, S.G. Comparison of Periarticular Multimodal Drug Injection and Femoral Nerve Block for Postoperative Pain Management in Total Knee Arthroplasty: A Systematic Review and Meta-Analysis. J. Arthroplast. 2015, 30, 1281–1286. [Google Scholar] [CrossRef]
- Xue, X.; Lv, X.; Ma, X.; Zhou, Y.; Yu, N. Postoperative pain relief after total knee arthroplasty: A Bayesian network meta-analysis and systematic review of analgesic strategies based on nerve blocks. J. Clin. Anesth. 2024, 96, 111490. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Li, Y.; Xu, Z.; Geng, Z.-Y.; Wang, D.-X. Comparison of the ultrasound-guided single-injection femoral triangle block versus adductor canal block for analgesia following total knee arthroplasty: A randomized, double-blind trial. J. Anesth. 2020, 34, 702–711. [Google Scholar] [CrossRef]
Author and Year | Journal | Treatment Group | Patients (n) | Women (n) | Mean Age | Mean BMI |
---|---|---|---|---|---|---|
Adams et al., 2002 [21] | Eur J Anaesthesiol | Three-In-One Block | 21 | 16 | 70.0 | |
EDA | 21 | 14 | 69.0 | |||
PCA | 21 | 14 | 69.0 | |||
Akesen et al., 2021 [22] | Acta Orthop Traumatol Turc | Single-Shot IPACK | 20 | 17 | 67.5 | 31.8 |
Single-Shot GNB | 20 | 16 | 68.0 | 33.5 | ||
PCA | 20 | 17 | 63.0 | 34.4 | ||
Albrecht et al., 2013 [23] | Clin Orthop Relat Res | Continuous FNB | 28 | 13 | 61.0 | 32.0 |
Continuous FNB | 32 | 14 | 63.0 | 32.0 | ||
Sham Block and Single-Shot FNB | 33 | 17 | 63.0 | 31.0 | ||
Al-Zahrani et al., 2015 [24] | J Arthroplasty | Continuous EDA | 25 | 18 | 60.0 | 33.0 |
Continuous FNB and Single-Shot SNB | 25 | 17 | 62.0 | 33.0 | ||
Ardon et al., 2016 [25] | J Clin Anesth | Continuous FNB and Intermittent SNB | 45 | 31 | 67.7 | |
Continuous ACB and Intermittent SNB | 45 | 31 | 64.9 | |||
Ashraf et al., 2013 [26] | Knee | Single-Shot FNB | 22 | |||
LIA | 20 | |||||
Bagry et al., 2008 [27] | Reg Anesth Pain Med | Continuous Lumbar Plexus Block and Continuous SNB | 6 | 3 | 69.0 | |
PCA | 6 | 4 | 74.0 | |||
Bali et al., 2016 [28] | J Clin Anesth | Single-Shot Fascia Iliaca Block | 33 | 18 | 63.3 | |
PAI | 35 | 21 | 61.7 | |||
Baranovic et al., 2011 [29] | Coll Antropol | Continuous FNB | 35 | 16 | 69.0 | 26.0 |
PCA | 36 | 18 | 70.0 | 27.2 | ||
Campbell et al., 2008 [30] | Eur J Anaesthesiol | Continuous EDA | 31 | 17 | 70.0 | 30.8 |
Continuous Lumbar Plexus Block | 29 | 15 | 72.0 | 29.1 | ||
Canbek et al., 2019 [31] | Acta Orthop Traumatol Turc | Continuous ACB | 63 | 48 | 66.9 | 31.4 |
Single-Shot ACB | 60 | 50 | 67.1 | 32.3 | ||
Cappelleri et al., 2011 [32] | Reg Anesth Pain Med | Continuous Lumbar Plexus Block and Continuous SNB | 19 | 13 | 69.0 | 29.0 |
Continuous Lumbar Plexus Block and Sham SNB and Single-Shot SNB | 19 | 11 | 67.0 | 28.0 | ||
Cartli et al., 2010 [33] | Br J Anaesth | Continuous FNB and Sham Peri- and Intra-articular Analgesia | 20 | 14 | 71.1 | 27.0 |
Peri- and Intra-articular Analgesia and Sham Block | 20 | 15 | 70.8 | 28.5 | ||
Carvalho et al., 2012 [34] | Open Journal of Anesthesiology | Continuous FNB and Single-Shot SNB | 25 | 16 | 65.0 | 29.9 |
Continuous FNB | 25 | 20 | 68.0 | 28.1 | ||
Casati et al., 2005 [35] | Anesth Analg | Continuous FNB and Single-Shot SNB | 20 | 12 | 66.0 | |
Continuous FNB and Single-Shot SNB | 20 | 13 | 65.0 | |||
Continuous FNB and Single-Shot SNB | 20 | 11 | 70.0 | |||
Chan et al., 2012 [36] | Acta Anaesthesiol Taiwan | Single-Shot FNB | 20 | 16 | 68.1 | |
Single-Shot FNB | 21 | 15 | 67.3 | |||
Sham Block | 20 | 15 | 70.9 | |||
Sham Block | 21 | 14 | 71.8 | |||
Chan et al., 2013 [37] | J Arthroplasty | Continuous FNB | 65 | 53 | 66.4 | 27.7 |
Single-Shot FNB | 69 | 57 | 66.1 | 26.7 | ||
PCA | 66 | 53 | 64.7 | 26.3 | ||
Chaumeron et al., 2013 [38] | Clin Orthop Relat Res | Continuous FNB and Sham PAI | 30 | 23 | 66.6 | |
PAI and Sham FNB | 30 | 16 | 67.3 | |||
Cicekci et al., 2019 [39] | Sao Paulo Med J | PAI | 40 | 30 | 68.5 | 32.0 |
Single-Shot ACB | 39 | 28 | 69.1 | 32.5 | ||
Elkassabany et al., 2016 [40] | Anesth Analg | Continuous FNB | 31 | 19 | 65.0 | 32.0 |
Continuous ACB | 31 | 22 | 63.0 | 31.0 | ||
Elkassabany et al., 2019 [41] | Bone Joint J | Continuous ACB and PAI | 51 | 22 | 66.5 | 31.2 |
Continuous ACB and PAI | 52 | 18 | 62.2 | 31.9 | ||
PAI and Single-Shot ACB | 53 | 16 | 63.9 | 31.5 | ||
Fritze et al., 2009 [42] | Schmerz | Continuous EDA | 18 | 15 | ||
Continuous FNB | 17 | 16 | ||||
Continuous SNB | 17 | 11 | ||||
Gi et al., 2014 [43] | J Anesth | PAI and Single-Shot FNB | 25 | 24 | 77.0 | 27.0 |
Sham PAI and Single-Shot FNB and Single-Shot SNB | 24 | 21 | 78.0 | 28.0 | ||
Good et al., 2007 [44] | Am J Orthop (Belle Mead NJ) | Single-Shot FNB | 22 | 8 | 70.0 | |
Sham Block | 20 | 8 | 70.0 | |||
Grosso et al., 2018 [45] | J Bone Joint Surg Am | Single-Shot ACB | 53 | 39 | 69.0 | 30.2 |
PAI | 51 | 33 | 73.0 | 29.8 | ||
PAI and Single-Shot ACB | 51 | 37 | 71.0 | 30.4 | ||
Kanadli et al., 2018 [46] | Minerva Anestesiol | Single-Shot Fascia Iliaca Block | 45 | 31 | 62.6 | 30.0 |
Single-Shot FNB | 45 | 37 | 66.9 | 28.7 | ||
Kovalak et al., 2015 [47] | Acta Orthop Traumatol Turc | Continuous FNB and PCI | 32 | 30 | 69.5 | 36.7 |
PAI and PCI | 28 | 24 | 66.9 | 34.0 | ||
Kulkarni et al., 2019 [48] | J Arthroplasty | Single-Shot ACB | 50 | 33 | 67.4 | |
PAI | 50 | 33 | 67.7 | |||
Kurosaka et al., 2015 [49] | J Arthroplasty | LIA | 22 | 19 | 75.6 | 26.3 |
Continuous FNB | 23 | 19 | 77.5 | 26.7 | ||
Kutzner et al., 2015 [50] | Orthopade | Continuous Intra-articular Analgesia | 60 | 39 | 70.5 | |
Continuous FNB | 60 | |||||
Li et al., 2017 [51] | Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi | Continuous ACB | 30 | |||
Single-Shot ACB | 30 | |||||
Li et al., 2020 [52] | Int Orthop | Sham PAI and Single-Shot ACB and Single-Shot AFCNB | 80 | 60 | 66.6 | 25.7 |
PAI and Sham Block | 80 | 60 | 65.2 | 25.3 | ||
Li et al., 2020 [53] | J Arthroplasty | LIA and Single-Shot ACB and Single-Shot AFCNB and Single-Shot IPACK | 50 | 33 | 66.3 | 24.8 |
LIA and Single-Shot ACB and Single-Shot IPACK | 50 | 40 | 66.8 | 24.7 | ||
LIA and Single-Shot ACB and Single-Shot AFCNB | 50 | 32 | 66.4 | 24.8 | ||
LIA and Single-Shot ACB | 50 | 31 | 65.6 | 25.0 | ||
Li et al., 2022 [54] | J Knee Surg | Single-Shot FTB and Single-Shot IPACK | 40 | 25 | 67.8 | 25.4 |
Intra-articular Analgesia and Sham Block | 40 | 22 | 70.8 | 24.3 | ||
Long et al., 2006 [55] | J Knee Surg | Continuous EDA and Intra-articular Analgesia | 35 | 20 | 69.0 | |
Continuous FNB and Intra-articular Analgesia | 35 | |||||
Luo et al., 2022 [56] | BMC Musculoskelet Disord | LIA and Sham ACB | 30 | 22 | 65.3 | 24.9 |
LIA and Single-Shot ACB | 30 | 23 | 65.4 | 24.8 | ||
Macrinici et al., 2017 [57] | Reg Anesth Pain Med | Sham FNB and Single-Shot ACB | 49 | 30 | 67.0 | 31.5 |
Sham ACB and Single-Shot FNB | 49 | 31 | 67.0 | 31.7 | ||
Marino et al., 2019 [58] | J Arthroplasty | Continuous FNB and PAI | 33 | 15 | 62.3 | 32.6 |
PAI | 32 | 17 | 64.2 | 33.1 | ||
Memtsoudis et al., 2014 [59] | Int Orthop | Patient-controlled EDA and Single-Shot FNB | 30 | 17 | 64.4 | 28.4 |
Patient-controlled EDA and Single-Shot ACB | 29 | 16 | 64.4 | 28.4 | ||
Mistraletti et al., 2006 [60] | Reg Anesth Pain Med | Continuous FNB and Continuous SNB | 8 | 2 | 67.3 | 29.3 |
Continuous EDA | 8 | 2 | 64.0 | 28.8 | ||
PCA | 8 | 4 | 70.5 | 27.5 | ||
Moreno et al., 2022 [61] | Anaesthesiol Intensive Ther | Continuous FNB | 25 | 15 | 63.0 | 30.1 |
LIA | 25 | 14 | 65.0 | 29.3 | ||
Mu et al., 2022 [62] | J Healthc Eng | Single-Shot ACB | 35 | 28 | 66.6 | 25.4 |
Single-Shot ACB | 35 | 25 | 66.4 | 25.0 | ||
Mudumbai et al., 2013 [63] | Clin Orthop Relat Res | Continuous FNB and PAI | 102 | 4 | 66.0 | 33.0 |
Continuous ACB and PAI | 66 | 5 | 65.0 | 33.0 | ||
Ng et al., 2012 [64] | J Arthroplasty | Continuous FNB and Sham PAI | 16 | 14 | 70.0 | |
PAI and Sham Block | 16 | 14 | 70.0 | |||
Nicolino et al., 2020 [65] | J Arthroplasty | Intra-articular Analgesia and Single-Shot SNB | 34 | 23 | 72.0 | 31.0 |
Intra-articular Analgesia and Sham Block | 36 | 27 | 72.6 | 30.1 | ||
Paauwe et al., 2008 [66] | Anaesthesia | Continuous FNB and Intermittent FNB | 12 | 8 | 71.5 | 29.1 |
Continuous FNB and Intermittent FNB | 12 | 7 | 68.3 | 29.9 | ||
Continuous FNB and Intermittent FNB | 12 | 8 | 68.5 | 28.3 | ||
Parvataneni et al., 2007 [67] | J Arthroplasty | PAI | 31 | 14 | 68.5 | 29.0 |
Single-Shot FNB | 29 | 15 | 70.5 | 29.4 | ||
Patterson et al., 2020 [68] | J Arthroplasty | Continuous ACB and Single-Shot IPACK | 35 | 21 | 67.0 | 31.0 |
Continuous ACB and Sham IPACK | 34 | 21 | 68.0 | 30.0 | ||
Rousseau-Saine et al., 2018 [69] | Anesth Analg | Continuous ACB | 30 | 21 | 69.0 | 34.0 |
Sham Block | 30 | 20 | 67.0 | 33.0 | ||
Salinas et al., 2006 [70] | Anesth Analg | Single-Shot FNB | 18 | 11 | 67.0 | 32.0 |
Continuous FNB | 18 | 7 | 68.0 | 31.0 | ||
Sankineani et al., 2017 [71] | Musculoskelet Surg | Single-Shot ACB | 100 | 67.0 | ||
PAI and Single-Shot ACB | 100 | 65.0 | ||||
Sankineani et al., 2018 [72] | Eur J Orthop Surg Traumatol | Single-Shot ACB and Single-Shot IPACK | 60 | 22 | 60.0 | |
Single-Shot ACB | 60 | 18 | 61.0 | |||
Shah et al., 2014 [73] | J Arthroplasty | Intermittent ACB and Intra-articular Analgesia | 48 | 35 | 68.3 | 29.5 |
Intermittent FNB and Intra-articular Analgesia | 50 | 36 | 65.9 | 30.5 | ||
Shah et al., 2015 [74] | J Arthroplasty | Continuous ACB | 46 | 33 | 68.3 | 29.6 |
Single-Shot ACB | 39 | 32 | 66.3 | 30.3 | ||
Sites et al., 2004 [75] | Anesth Analg | ITM | 20 | 11 | 65.0 | |
Single-Shot FNB | 20 | 10 | 63.0 | |||
Stathellis et al., 2015 [76] | Knee Surg Sports Traumatol Arthrosc | Continuous FNB and Single-Shot SNB | 25 | 15 | 67.4 | |
Continuous Intra-articular Analgesia and PAI | 25 | 16 | 69.4 | |||
Tak et al., 2020 [77] | Musculoskelet Surg | Single-Shot ACB | 58 | 37 | 64.1 | 26.6 |
Continuous ACB | 57 | 38 | 63.3 | 26.0 | ||
Single-Shot ACB and Single-Shot IPACK | 56 | 29 | 65.5 | 26.0 | ||
Talmo et al., 2018 [78] | J Arthroplasty | PCI and Single-Shot FNB | 161 | 73 | 62.3 | 30.1 |
PAI and Sham Block | 151 | 81 | 62.0 | 30.7 | ||
Tan et al., 2018 [79] | Medicine (Baltimore) | LIA and Single-Shot ACB | 100 | 56 | 64.2 | 26.1 |
LIA and Single-Shot FNB | 100 | 58 | 63.5 | 25.7 | ||
Tang et al., 2016 [80] | J Orthop Surg (Hong Kong) | Single-Shot FNB | 15 | 12 | 65.0 | |
Single-Shot FNB | 15 | 12 | 66.0 | |||
Single-Shot FNB | 15 | 11 | 64.0 | |||
Control | 15 | 11 | 64.0 | |||
Tanikawa et al., 2014 [81] | J Arthroplasty | Continuous FNB and Single-Shot SNB | 23 | 20 | 72.0 | 24.5 |
Continuous FNB and LIA | 23 | 19 | 71.0 | 23.5 | ||
Tanikawa et al., 2017 [82] | J Orthop Surg Res | Continuous FNB and Single-Shot SNB | 38 | 29 | 76.0 | 24.6 |
Continuous FNB and LIA | 41 | 30 | 74.0 | 25.0 | ||
Theodosiadis et al., 2013 [83] | J Orthop Surg (Hong Kong) | Single-Shot SNB and Three-In-One Block | 20 | 12 | 73.0 | |
Single-Shot SNB and Three-In-One Block | 20 | 14 | 70.0 | |||
Thobhani et al., 2017 [84] | Ochsner J. | Continuous FNB | 61 | 38 | 67.0 | 33.0 |
Continuous FNB and Single-Shot IPACK | 23 | 14 | 69.0 | 32.0 | ||
Continuous ACB and Single-Shot IPACK | 22 | 14 | 63.0 | 36.0 | ||
Tsukada et al., 2014 [85] | J Bone Joint Surg Am | PAI | 50 | |||
Continuous EDA | 61 | |||||
Wall et al., 2017 [86] | Bone Joint J | Single-Shot FNB | 131 | 80 | 68.2 | |
PAI | 131 | 77 | 68.7 | |||
Wang et al., 2002 [87] | Reg Anesth Pain Med | Single-Shot FNB | 15 | 9 | 67.0 | |
Sham Block | 15 | 10 | 66.0 | |||
Wang et al., 2019 [88] | J Arthroplasty | PCI and Single-Shot ACB | 45 | 30 | 64.8 | 25.2 |
PAI | 45 | 33 | 64.0 | 25.1 | ||
Wang et al., 2020 [89] | Clin J Pain | Continuous ACB | 30 | 14 | 61.7 | |
Continuous FTB | 30 | 15 | 61.8 | |||
Wang et al., 2022 [90] | BMC Anesthesiol | Patient-controlled ACB and Sham IPACK | 35 | 29 | 64.2 | 27.8 |
Patient-controlled ACB and Single-Shot IPACK | 35 | 28 | 66.5 | 27.1 | ||
Wu et al., 2014 [91] | Hong Kong Med J | Continuous FNB | 30 | 22 | 68.8 | 27.8 |
PCA | 30 | 22 | 68.9 | 28.3 | ||
Yao et al., 2019 [92] | Medicine (Baltimore) | Single-Shot FNB | 266 | 195 | 66.9 | 25.7 |
PCA | 470 | 328 | 66.6 | 25.5 | ||
Zaric et al., 2006 [93] | Anesth Analg | Continuous EDA | 23 | 11 | 67.0 | |
Continuous FNB and Continuous SNB | 26 | 15 | 66.0 | |||
Zhao et al., 2019 [94] | Med Princ Pract | Continuous FNB | 30 | 12 | 70.4 | |
Continuous FNB | 30 | 16 | 73.2 | |||
Continuous FNB | 30 | 20 | 71.5 | |||
Zinkus et al., 2017 [95] | Med Sci Monit | Continuous FNB and PCI | 27 | 16 | 70.4 | 29.4 |
Continuous Intra-articular Analgesia and LIA and PCI | 27 | 25 | 66.9 | 30.3 | ||
Zoratto et al., 2021 [96] | Can J Anaesth | PAI and Single-Shot ACB | 39 | 18 | 66.7 | 32.4 |
PAI and Single-Shot ACB | 41 | 19 | 67.5 | 32.8 | ||
PAI and Sham ACB | 41 | 19 | 67.5 | 33.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migliorini, F.; Betsch, M.; Bardazzi, T.; Colarossi, G.; Elezabi, H.A.M.; Driessen, A.; Hildebrand, F.; Pasurka, M. Management of Postoperative Pain Following Primary Total Knee Arthroplasty: A Level I Evidence-Based Bayesian Network Meta-Analysis. Pharmaceuticals 2025, 18, 556. https://doi.org/10.3390/ph18040556
Migliorini F, Betsch M, Bardazzi T, Colarossi G, Elezabi HAM, Driessen A, Hildebrand F, Pasurka M. Management of Postoperative Pain Following Primary Total Knee Arthroplasty: A Level I Evidence-Based Bayesian Network Meta-Analysis. Pharmaceuticals. 2025; 18(4):556. https://doi.org/10.3390/ph18040556
Chicago/Turabian StyleMigliorini, Filippo, Marcel Betsch, Tommaso Bardazzi, Giorgia Colarossi, Hani Ayad Mohamed Elezabi, Arne Driessen, Frank Hildebrand, and Mario Pasurka. 2025. "Management of Postoperative Pain Following Primary Total Knee Arthroplasty: A Level I Evidence-Based Bayesian Network Meta-Analysis" Pharmaceuticals 18, no. 4: 556. https://doi.org/10.3390/ph18040556
APA StyleMigliorini, F., Betsch, M., Bardazzi, T., Colarossi, G., Elezabi, H. A. M., Driessen, A., Hildebrand, F., & Pasurka, M. (2025). Management of Postoperative Pain Following Primary Total Knee Arthroplasty: A Level I Evidence-Based Bayesian Network Meta-Analysis. Pharmaceuticals, 18(4), 556. https://doi.org/10.3390/ph18040556