Green Tea: A Novel Perspective on the Traditional Plant’s Potential in Managing Periodontal Diseases
Abstract
:1. Introduction
2. The Active Compounds and Health Benefits of Green Tea
2.1. Active Compounds of Camellia sinensis
2.1.1. Polyphenols
Catechins
Other Flavonoids
Phenolic Acids
2.1.2. Amino Acids
2.1.3. Alkaloids
2.1.4. Saccharides
2.1.5. Volatile Compounds
2.1.6. Minerals
2.1.7. Other Compounds
2.2. Green Tea Compounds and Oral Health
2.2.1. Antimicrobial Effect
2.2.2. Antioxidant and Anti-Inflammatory Effect as Protection of Bones and Tissues
Study | Addressed Conditions | Green Tea/ Catechins Used | Doses | Effect | Reference |
---|---|---|---|---|---|
Fournier-Larente et al. | P. gingivalis infection | Green tea extract EGCG | 20 mg/mL 10 mg/mL | Inhibits biofilm formation and colonization, prevents adhesion and growth | [66] |
Khan et al. | Bacterial infection (Gram-positive and Gram-negative) | Green tea aqueous extracts, (DER 1:1) | 1 g/mL and further diluted | Inhibitory effect on bacterial growth | [67] |
Tominari et al. | Bone resorption | EGCG | 30, 60, and 90 μM (in vitro) 0.5 mg (in vivo) | Inhibition of inflammatory bone resorption induced by LPS both in vitro and in vivo | [76] |
Kaboosaya et al. | Alveolar bone resorption | Green tea extract (DER 1:40, 1:20, 1:10) | 1.5 g/60 mL, 3 g/60 mL, 6 g/60 mL | Prevents osteoclastic resorption, inhibits NF-kB, IL-6, and TNF pathways | [79] |
De Almeida | Periodontitis treatment adjunct | Green tea extract | 20 mg/mL | Combined with SRP, reduces inflammation, alveolar bone loss, IL-1ß, and TNF-α | [80] |
3. Clinical Trials
Study | Year | Disease | Subjects | Intervention | Duration | Outcome | Reference |
---|---|---|---|---|---|---|---|
Rezvani et al. | 2022 | Chronic periodontitis | 30 | 2 cups a day (each cup contained 25 g of green tea leaves) following SRP treatment | 6 weeks | Reduction of IL-1β levels | [84] |
Chopra et al. | 2016 | Mild to moderate chronic periodontitis | 120 | 2 cups daily of green tea beverage over 12 weeks as an adjunct to SRP | 12 weeks | Increase in antioxidant levels in GCF and plasma; improvements in GI, PI, BOP, and CAL | [83] |
Hrishi et al. | 2016 | Mild to moderate periodontitis | 30 | Green tea toothpaste containing 1.4% green tea extract (60–90% EGCG content) as an adjunct to SRP | 4 weeks | Improvements in GI, BOP, CAL, TAOC and GST levels on intra- and intergroup comparisons at 4 weeks | [85] |
Rattanasuwan et al. | 2014 | Chronic periodontitis | 48 | Green tea thermosensitive hydroalcoholic gel containing 12% of green tea extract (no less than 80% total catechins) as an adjunct to non-surgical periodontal treatment | 6 months | Reduction of PPD and BOP, improvement in attachment levels reduced gingival inflammation | [86] |
Rassameemasmaung et al. | 2013 | Gingivitis, oral malodor | 60 | Hydroalcoholic green tea mouthwash | 4 weeks | Reduction of VSC level in gingivitis subjects without causing remarkable side effects | [89] |
4. Future Perspective
- Development of Specialized Green Tea-Based Products—Integrating green tea compounds into dental care products, such as toothpaste, mouthwash, gels, and chewing gums, holds significant promise. Future innovations may focus on increasing the bioavailability of active components like epigallocatechin gallate (EGCG) to ensure sustained effects. Encapsulation technologies or controlled-release formulations could be used to enhance the effectiveness of these products.
- Green Tea as a Natural Alternative to Conventional Treatments—Green tea can replace or complement existing chemical agents like chlorhexidine, reducing side effects such as staining and taste alteration. Long-term studies must establish its efficacy as a primary treatment modality in managing conditions like gingivitis and periodontitis.
- Synergy with Probiotics and Prebiotics—Emerging research suggests that green tea catechins can positively interact with beneficial oral microbiota. Exploring the synergy between green tea and probiotics could lead to innovative solutions for maintaining oral microbiome balance and enhancing resistance to pathogenic bacteria.
- Application in Dental Implants and Biomaterials—Green tea’s antimicrobial and osteoprotective properties make it a potential candidate for coating dental implants or other biomaterials. Such applications may reduce the risk of peri-implantitis and promote bone integration, extending the longevity of dental implants.
- Role in Personalized Oral Health Care—With genomics and personalized medicine advancements, green tea extracts could be tailored to individual patient needs. Variations in oral microbiota and genetic predispositions could guide the formulation of green tea-based therapeutics for targeted interventions.
- Green Tea in Community Oral Health Programs—Given its affordability and widespread availability, green tea could be integrated into public health initiatives, particularly in low-resource settings. Programs encouraging the use of green tea infusions for oral rinsing may reduce the burden of oral diseases in underserved populations.
- Exploration of Nano-Formulations—Nanotechnology offers an exciting avenue for enhancing the delivery and effectiveness of green tea compounds. Nanoemulsions, liposomes, or nanoparticles carrying EGCG could improve penetration into periodontal pockets or other hard-to-reach areas.
- Long-Term Safety and Regulatory Approvals—While green tea is generally considered safe, concentrated extracts require further safety evaluations for widespread clinical use. Future research must focus on establishing clear dosage guidelines and obtaining regulatory approvals to ensure safe and practical application.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Oral Health Status Report: Towards Universal Health Coverage for Oral Health by 2030, 1st ed.; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Peres, M.A.; Macpherson, L.M.D.; Weyant, R.J.; Daly, B.; Venturelli, R.; Mathur, M.R.; Listl, S.; Celeste, R.K.; Guarnizo-Herreño, C.C.; Kearns, C.; et al. Oral Diseases: A Global Public Health Challenge. Lancet 2019, 394, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.; Al-Ansari, A.; Al-Khalifa, K.; Alhareky, M.; Gaffar, B.; Almas, K. Global Prevalence of Periodontal Disease and Lack of Its Surveillance. Sci. World J. 2020, 2020, 2146160. [Google Scholar] [CrossRef] [PubMed]
- Buset, S.L.; Walter, C.; Friedmann, A.; Weiger, R.; Borgnakke, W.S.; Zitzmann, N.U. Are Periodontal Diseases Really Silent? A Systematic Review of Their Effect on Quality of Life. J. Clin. Periodontol. 2016, 43, 333–344. [Google Scholar] [CrossRef]
- Valm, A.M. The Structure of Dental Plaque Microbial Communities in the Transition from Health to Dental Caries and Periodontal Disease. J. Mol. Biol. 2019, 431, 2957–2969. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, D.; Liu, S.; Zhang, S.; Pan, Y. The Role of Porphyromonas gingivalis Outer Membrane Vesicles in Periodontal Disease and Related Systemic Diseases. Front. Cell Infect. Microbiol. 2021, 10, 585917. [Google Scholar] [CrossRef]
- Baker, J.L.; Mark Welch, J.L.; Kauffman, K.M.; McLean, J.S.; He, X. The Oral Microbiome: Diversity, Biogeography and Human Health. Nat. Rev. Microbiol. 2024, 22, 89–104. [Google Scholar] [CrossRef]
- Sadek, K.; El Moshy, S.; Radwan, I.; Rady, D.; Abbass, M.; El-Rashidy, A.; Dörfer, C.; Fawzy El-Sayed, K. Molecular Basis beyond Interrelated Bone Resorption/Regeneration in Periodontal Diseases: A Concise Review. Int. J. Mol. Sci. 2023, 24, 4599. [Google Scholar] [CrossRef]
- Patil, R.T.; Dhadse, P.V.; Salian, S.S.; Punse, S.D. Role of Oxidative Stress in Periodontal Diseases. Cureus 2024, 16, e60779. [Google Scholar] [CrossRef]
- Sczepanik, F.S.C.; Grossi, M.L.; Casati, M.; Goldberg, M.; Glogauer, M.; Fine, N.; Tenenbaum, H.C. Periodontitis Is an Inflammatory Disease of Oxidative Stress: We Should Treat It That Way. Periodontology 2000 2020, 84, 45–68. [Google Scholar] [CrossRef]
- Janakiram, C.; Dye, B.A. A Public Health Approach for Prevention of Periodontal Disease. Periodontology 2000 2020, 84, 202–214. [Google Scholar] [CrossRef]
- Sälzer, S.; Graetz, C.; Dörfer, C.E.; Slot, D.E.; Van Der Weijden, F.A. Contemporary Practices for Mechanical Oral Hygiene to Prevent Periodontal Disease. Periodontology 2000 2020, 84, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Rajendiran, M.; Trivedi, H.M.; Chen, D.; Gajendrareddy, P.; Chen, L. Recent Development of Active Ingredients in Mouthwashes and Toothpastes for Periodontal Diseases. Molecules 2021, 26, 2001. [Google Scholar] [CrossRef] [PubMed]
- Brookes, Z.L.S.; Bescos, R.; Belfield, L.A.; Ali, K.; Roberts, A. Current Uses of Chlorhexidine for Management of Oral Disease: A Narrative Review. J. Dent. 2020, 103, 103497. [Google Scholar] [CrossRef]
- Senkalvarayan, V.; Kesavan, P.; Dorairaj, J.; Madhumala, R.; Ravi, S.; Tomy, A.T. Comparative Evaluation of Efficacy of Herbal and Chlorhexidine Mouthwash on Gingival Health. Indian J. Dent. Res. 2023, 34, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, M.A. Comparative Evaluation of the Efficacy of Probiotic, Herbal and Chlorhexidine Mouthwash on Gingival Health: A Randomized Clinical Trial. J. Clin. Diagn. Res. 2017, 11, ZC13–ZC16. [Google Scholar] [CrossRef]
- Amanpour, S.; Akbari Javar, M.; Sarhadinejad, Z.; Doustmohammadi, M.; Moghadari, M.; Sarhadynejad, Z. A Systematic Review of Medicinal Plants and Herbal Products’ Effectiveness in Oral Health and Dental Cure with Health Promotion Approach. J. Educ. Health Promot. 2023, 12, 306. [Google Scholar] [CrossRef]
- Gościniak, A.; Paczkowska-Walendowska, M.; Skotnicka, A.; Ruchała, M.A.; Cielecka-Piontek, J. Can Plant Materials Be Valuable in the Treatment of Periodontal Diseases? Practical Review. Pharmaceutics 2021, 13, 2185. [Google Scholar] [CrossRef]
- RezaeiTazangi, F.; Forutan Mirhosseini, A.; Fathi, A.; RoghaniShahraki, H.; Arefnezhad, R.; Vasei, F. Herbal and Nano-Based Herbal Medicine: New Insights into Their Therapeutic Aspects against Periodontitis. Avicenna J. Phytomed. 2023, 14, 430–454. [Google Scholar] [CrossRef]
- Pasupuleti, M.K.; Nagate, R.R.; Alqahtani, S.M.; Penmetsa, G.S.; Gottumukkala, S.N.V.S.; Ramesh, K.S.V. Role of Medicinal Herbs in Periodontal Therapy: A Systematic Review. J. Int. Soc. Prev. Community Dent. 2023, 13, 9–16. [Google Scholar] [CrossRef]
- Mekhemar, M.; Hassan, Y.; Dörfer, C. Nigella Sativa and Thymoquinone: A Natural Blessing for Periodontal Therapy. Antioxidants 2020, 9, 1260. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhu, X.; Cao, P.; Wei, S.; Lu, Y. Antibacterial and Antibiofilm Activities of Eugenol from Essential Oil of Syzygium aromaticum (L.) Merr. & L. M. Perry (Clove) Leaf against Periodontal Pathogen Porphyromonas gingivalis. Microb. Pathog. 2017, 113, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.D.R.; Lopes, A.P.; Martins, C.; Brito, G.A.C.; Carneiro, V.C.; Goes, P. The Effect of Calendula officinalis on Oxidative Stress and Bone Loss in Experimental Periodontitis. Front. Physiol. 2017, 8, 440. [Google Scholar] [CrossRef] [PubMed]
- Mahyari, S.; Mahyari, B.; Emami, S.A.; Malaekeh-Nikouei, B.; Jahanbakhsh, S.P.; Sahebkar, A.; Mohammadpour, A.H. Evaluation of the Efficacy of a Polyherbal Mouthwash Containing Zingiber officinale, Rosmarinus officinalis and Calendula officinalis Extracts in Patients with Gingivitis: A Randomized Double-Blind Placebo-Controlled Trial. Complement. Ther. Clin. Pract. 2016, 22, 93–98. [Google Scholar] [CrossRef]
- López-Valverde, N.; López-Valverde, A.; Montero, J.; Rodríguez, C.; Macedo De Sousa, B.; Aragoneses, J.M. Antioxidant, Anti-Inflammatory and Antimicrobial Activity of Natural Products in Periodontal Disease: A Comprehensive Review. Front. Bioeng. Biotechnol. 2023, 11, 1226907. [Google Scholar] [CrossRef]
- Schönknecht, K.; Surdacka, A.; Rudenko, L. Effectiveness of Composed Herbal Extract in the Treatment of Gingivitis and Oral and Pharyngeal Mucosa—Review of Studies. Wiad. Lek. 2021, 74, 1737–1749. [Google Scholar] [CrossRef]
- Meng, X.-H.; Li, N.; Zhu, H.-T.; Wang, D.; Yang, C.-R.; Zhang, Y.-J. Plant Resources, Chemical Constituents, and Bioactivities of Tea Plants from the Genus Camellia Section. Thea. J. Agric. Food Chem. 2019, 67, 5318–5349. [Google Scholar] [CrossRef]
- Na, H.-K.; Surh, Y.-J. Modulation of Nrf2-Mediated Antioxidant and Detoxifying Enzyme Induction by the Green Tea Polyphenol EGCG. Food Chem. Toxicol. 2008, 46, 1271–1278. [Google Scholar] [CrossRef]
- Ohishi, T.; Goto, S.; Monira, P.; Isemura, M.; Nakamura, Y. Anti-Inflammatory Action of Green Tea. AIA AMC 2016, 15, 74–90. [Google Scholar] [CrossRef]
- Alam, M.; Ali, S.; Ashraf, G.M.; Bilgrami, A.L.; Yadav, D.K.; Hassan, I. Epigallocatechin 3-Gallate: From Green Tea to Cancer Therapeutics. Food Chem. 2022, 379, 132135. [Google Scholar] [CrossRef]
- Santos, R.A.; Pessoa, H.R.; Daleprane, J.B.; De Faria Lopes, G.P.; Da Costa, D.C.F. Comparative Anticancer Potential of Green Tea Extract and Epigallocatechin-3-Gallate on Breast Cancer Spheroids. Foods 2023, 13, 64. [Google Scholar] [CrossRef]
- Li, X.-X.; Liu, C.; Dong, S.-L.; Ou, C.-S.; Lu, J.-L.; Ye, J.-H.; Liang, Y.-R.; Zheng, X.-Q. Anticarcinogenic Potentials of Tea Catechins. Front. Nutr. 2022, 9, 1060783. [Google Scholar] [CrossRef] [PubMed]
- Farhan, M. Green Tea Catechins: Nature’s Way of Preventing and Treating Cancer. Int. J. Mol. Sci. 2022, 23, 10713. [Google Scholar] [CrossRef]
- Shivakumar, V.; Tegginamani, A.; Rath, A.; Mohamad Zain, N.; Termizi Bin Zamzuri, A. Antifungal Efficiency of Different Forms of Tea Extract (Camellia sinensis) against Candida Albicans: An in Vitro Experimental Study. J Int. Oral Heal. 2023, 15, 304. [Google Scholar] [CrossRef]
- Higuchi, M.; Abiko, Y.; Washio, J.; Takahashi, N. Antimicrobial Effects of Epigallocatechin-3-Gallate, a Catechin Abundant in Green Tea, on Periodontal Disease-Associated Bacteria. Arch. Oral Biol. 2024, 167, 106063. [Google Scholar] [CrossRef]
- Reygaert, W.C. Green Tea Catechins: Their Use in Treating and Preventing Infectious Diseases. BioMed Res. Int. 2018, 2018, 9105261. [Google Scholar] [CrossRef]
- Alkhatib, A.; Tsang, C.; Tiss, A.; Bahorun, T.; Arefanian, H.; Barake, R.; Khadir, A.; Tuomilehto, J. Functional Foods and Lifestyle Approaches for Diabetes Prevention and Management. Nutrients 2017, 9, 1310. [Google Scholar] [CrossRef]
- Afzal, O.; Dalhat, M.H.; Altamimi, A.S.A.; Rasool, R.; Alzarea, S.I.; Almalki, W.H.; Murtaza, B.N.; Iftikhar, S.; Nadeem, S.; Nadeem, M.S.; et al. Green Tea Catechins Attenuate Neurodegenerative Diseases and Cognitive Deficits. Molecules 2022, 27, 7604. [Google Scholar] [CrossRef]
- Williams, J.L.; Everett, J.M.; D’Cunha, N.M.; Sergi, D.; Georgousopoulou, E.N.; Keegan, R.J.; McKune, A.J.; Mellor, D.D.; Anstice, N.; Naumovski, N. The Effects of Green Tea Amino Acid L-Theanine Consumption on the Ability to Manage Stress and Anxiety Levels: A Systematic Review. Plant Foods Hum. Nutr. 2020, 75, 12–23. [Google Scholar] [CrossRef]
- Dietz, C.; Dekker, M. Effect of Green Tea Phytochemicals on Mood and Cognition. Curr. Pharm. Des. 2017, 23, 2876–2905. [Google Scholar] [CrossRef]
- Wang, Z.-M.; Chen, B.; Zhou, B.; Zhao, D.; Wang, L.-S. Green Tea Consumption and the Risk of Stroke: A Systematic Review and Meta-Analysis of Cohort Studies. Nutrition 2023, 107, 111936. [Google Scholar] [CrossRef]
- Chieng, D.; Kistler, P.M. Coffee and Tea on Cardiovascular Disease (CVD) Prevention. Trends Cardiovasc. Med. 2022, 32, 399–405. [Google Scholar] [CrossRef]
- European Medicines Agency. Assessment Report on Camellia sinensis (L.) Kuntze, Non Fermentatum Folium. 2013. Available online: https://www.ema.europa.eu/en/medicines/herbal/camelliae-sinensis-non-fermentatum-folium (accessed on 5 January 2025).
- Hu, J.; Webster, D.; Cao, J.; Shao, A. The Safety of Green Tea and Green Tea Extract Consumption in Adults—Results of a Systematic Review. Regul. Toxicol. Pharmacol. 2018, 95, 412–433. [Google Scholar] [CrossRef] [PubMed]
- Dekant, W.; Fujii, K.; Shibata, E.; Morita, O.; Shimotoyodome, A. Safety Assessment of Green Tea Based Beverages and Dried Green Tea Extracts as Nutritional Supplements. Toxicol. Lett. 2017, 277, 104–108. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gott, D.; et al. Scientific opinion on the safety of green tea catechins. EFSA 2018, 16, e05239. [Google Scholar] [CrossRef]
- Han, K.; Hwang, E.; Park, J.-B. Excessive Consumption of Green Tea as a Risk Factor for Periodontal Disease among Korean Adults. Nutrients 2016, 8, 408. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Luo, L.; Zhao, J.; Wang, Y.; Luo, H. Biological Potential and Mechanisms of Tea’s Bioactive Compounds: An Updated Review. J. Adv. Res. 2024, 65, 345–363. [Google Scholar] [CrossRef]
- Hayat, K.; Iqbal, H.; Malik, U.; Bilal, U.; Mushtaq, S. Tea and Its Consumption: Benefits and Risks. Crit. Rev. Food Sci. Nutr. 2015, 55, 939–954. [Google Scholar] [CrossRef]
- Samanta, S. Potential Bioactive Components and Health Promotional Benefits of Tea (Camellia sinensis). J. Am. Nutr. Assoc. 2022, 41, 65–93. [Google Scholar] [CrossRef]
- Tang, G.-Y.; Meng, X.; Gan, R.-Y.; Zhao, C.-N.; Liu, Q.; Feng, Y.-B.; Li, S.; Wei, X.-L.; Atanasov, A.G.; Corke, H.; et al. Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. Int. J. Mol. Sci. 2019, 20, 6196. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Li, C.; Wang, S.; Song, X. Green Tea (Camellia sinensis): A Review of Its Phytochemistry, Pharmacology, and Toxicology. Molecules 2022, 27, 3909. [Google Scholar] [CrossRef]
- Khan, N.; Mukhtar, H. Tea Polyphenols in Promotion of Human Health. Nutrients 2018, 11, 39. [Google Scholar] [CrossRef] [PubMed]
- Aboulwafa, M.M.; Youssef, F.S.; Gad, H.A.; Altyar, A.E.; Al-Azizi, M.M.; Ashour, M.L. A Comprehensive Insight on the Health Benefits and Phytoconstituents of Camellia sinensis and Recent Approaches for Its Quality Control. Antioxidants 2019, 8, 455. [Google Scholar] [CrossRef]
- Li, M.-Y.; Liu, H.-Y.; Wu, D.-T.; Kenaan, A.; Geng, F.; Li, H.-B.; Gunaratne, A.; Li, H.; Gan, R.-Y. L-Theanine: A Unique Functional Amino Acid in Tea (Camellia sinensis, L.) with Multiple Health Benefits and Food Applications. Front. Nutr. 2022, 9, 853846. [Google Scholar] [CrossRef] [PubMed]
- Renzetti, A.; Betts, J.W.; Fukumoto, K.; Rutherford, R.N. Antibacterial Green Tea Catechins from a Molecular Perspective: Mechanisms of Action and Structure–Activity Relationships. Food Funct. 2020, 11, 9370–9396. [Google Scholar] [CrossRef]
- Reygaert, W.C. The Antimicrobial Possibilities of Green Tea. Front. Microbiol. 2014, 5, 434. [Google Scholar] [CrossRef]
- Stapleton, P.D.; Shah, S.; Ehlert, K.; Hara, Y.; Taylor, P.W. The β-Lactam-Resistance Modifier (−)-Epicatechin Gallate Alters the Architecture of the Cell Wall of Staphylococcus aureus. Microbiology 2007, 153, 2093–2103. [Google Scholar] [CrossRef]
- Yam, T. The Effect of a Component of Tea (Camellia sinensis) on Methicillin Resistance, PBP2′ Synthesis, and Beta-Lactamase Production in Staphylococcus aureus. J. Antimicrob. Chemother. 1998, 42, 211–216. [Google Scholar] [CrossRef]
- Stapleton, P.D.; Shah, S.; Anderson, J.C.; Hara, Y.; Hamilton-Miller, J.M.T.; Taylor, P.W. Modulation of β-Lactam Resistance in Staphylococcus aureus by Catechins and Gallates. Int. J. Antimicrob. Agents 2004, 23, 462–467. [Google Scholar] [CrossRef]
- Lee, S.; Razqan, G.S.A.; Kwon, D.H. Antibacterial Activity of Epigallocatechin-3-Gallate (EGCG) and Its Synergism with β-Lactam Antibiotics Sensitizing Carbapenem-Associated Multidrug Resistant Clinical Isolates of Acinetobacter baumannii. Phytomedicine 2017, 24, 49–55. [Google Scholar] [CrossRef]
- Betts, J.W.; Hornsey, M.; Higgins, P.G.; Lucassen, K.; Wille, J.; Salguero, F.J.; Seifert, H.; La Ragione, R.M. Restoring the Activity of the Antibiotic Aztreonam Using the Polyphenol Epigallocatechin Gallate (EGCG) against Multidrug-Resistant Clinical Isolates of Pseudomonas aeruginosa. J. Med. Microbiol. 2019, 68, 1552–1559. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Brown, A.C. Applications of Catechins in the Treatment of Bacterial Infections. Pathogens 2021, 10, 546. [Google Scholar] [CrossRef] [PubMed]
- Sudano Roccaro, A.; Blanco, A.R.; Giuliano, F.; Rusciano, D.; Enea, V. Epigallocatechin-Gallate Enhances the Activity of Tetracycline in Staphylococci by Inhibiting Its Efflux from Bacterial Cells. Antimicrob. Agents Chemother. 2004, 48, 1968–1973. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.; Zhang, H.; Li, L.; Liu, Z. Effects of Green Tea Extract Epigallocatechin-3-Gallate (EGCG) on Oral Disease-Associated Microbes: A Review. J. Oral Microbiol. 2022, 14, 2131117. [Google Scholar] [CrossRef]
- Fournier-Larente, J.; Morin, M.-P.; Grenier, D. Green Tea Catechins Potentiate the Effect of Antibiotics and Modulate Adherence and Gene Expression in Porphyromonas gingivalis. Arch. Oral Biol. 2016, 65, 35–43. [Google Scholar] [CrossRef]
- Khan, I.; Abbas, T.; Anjum, K.; Abbas, S.Q.; Shagufta, B.I.; Shah, S.A.A.; Akhter, N.; Hassan, S.S. Antimicrobial Potential of Aqueous Extract of Camellia sinensis against Representative Microbes. Pak. J. Pharm. Sci. 2019, 32, 631–636. [Google Scholar]
- Wasti, J.; Wasti, A.; Singh, R. Efficacy of Antioxidants Therapy on Progression of Periodontal Disease—A Randomized Control Trial. Indian J. Dent. Res. 2021, 32, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Mei, Y.; Zou, R.; Niu, L.; Dong, S. Reactive Oxygen Species Enlightened Therapeutic Strategy for Oral and Maxillofacial Diseases—Art of Destruction and Reconstruction. Biomedicines 2022, 10, 2905. [Google Scholar] [CrossRef]
- Koch, W.; Zagórska, J.; Marzec, Z.; Kukula-Koch, W. Applications of Tea (Camellia sinensis) and Its Active Constituents in Cosmetics. Molecules 2019, 24, 4277. [Google Scholar] [CrossRef]
- Tkaczenko, H.; Kurhaluk, N. Antioxidant-Rich Functional Foods and Exercise: Unlocking Metabolic Health Through Nrf2 and Related Pathways. Int. J. Mol. Sci. 2025, 26, 1098. [Google Scholar] [CrossRef]
- Zawani, M.; Fauzi, M. Epigallocatechin Gallate: The Emerging Wound Healing Potential of Multifunctional Biomaterials for Future Precision Medicine Treatment Strategies. Polymers 2021, 13, 3656. [Google Scholar] [CrossRef]
- German, I.J.S.; Barbalho, S.M.; Andreo, J.C.; Zutin, T.L.M.; Laurindo, L.F.; Rodrigues, V.D.; Araújo, A.C.; Guiguer, E.L.; Direito, R.; Pomini, K.T.; et al. Exploring the Impact of Catechins on Bone Metabolism: A Comprehensive Review of Current Research and Future Directions. Metabolites 2024, 14, 560. [Google Scholar] [CrossRef]
- Vargas-Sanchez, P.K.; Pitol, D.L.; De Sousa, L.G.; Beloti, M.M.; Rosa, A.L.; Rossi, A.C.; Siéssere, S.; Bombonato-Prado, K.F. Green Tea Extract Rich in Epigallocatechin Gallate Impairs Alveolar Bone Loss in Ovariectomized Rats with Experimental Periodontal Disease. Int. J. Exp. Path. 2020, 101, 277–288. [Google Scholar] [CrossRef]
- Chen, S.-T.; Kang, L.; Wang, C.-Z.; Huang, P.-J.; Huang, H.-T.; Lin, S.-Y.; Chou, S.-H.; Lu, C.-C.; Shen, P.-C.; Lin, Y.-S.; et al. (−)-Epigallocatechin-3-Gallate Decreases Osteoclastogenesis via Modulation of RANKL and Osteoprotegrin. Molecules 2019, 24, 156. [Google Scholar] [CrossRef]
- Tominari, T.; Matsumoto, C.; Watanabe, K.; Hirata, M.; Grundler, F.M.W.; Miyaura, C.; Inada, M. Epigallocatechin Gallate (EGCG) Suppresses Lipopolysaccharide-induced Inflammatory Bone Resorption, and Protects against Alveolar Bone Loss in Mice. FEBS Open Bio 2015, 5, 522–527. [Google Scholar] [CrossRef]
- Xu, H.; Liu, T.; Jia, Y.; Li, J.; Jiang, L.; Hu, C.; Wang, X.; Sheng, J. (-)-Epigallocatechin-3-Gallate Inhibits Osteoclastogenesis by Blocking RANKL–RANK Interaction and Suppressing NF-κB and MAPK Signaling Pathways. Int. Immunopharmacol. 2021, 95, 107464. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, Z.; Liu, H.; Xuan, Y.; Wang, X.; Luan, Q. Green Tea Epigallocatechin-3-Gallate Alleviates Porphyromonas gingivalis-Induced Periodontitis in Mice. Int. Immunopharmacol. 2015, 29, 839–845. [Google Scholar] [CrossRef]
- Kaboosaya, B.; Wulansari, L.K.; Trang Nguyen, V.N.; Kasugai, S. Drinking Green Tea Alleviates Alveolar Bone Resorption in Ligature-Induced Periodontitis in Mice. J. Oral Biosci. 2020, 62, 162–168. [Google Scholar] [CrossRef]
- De Almeida, J.M.; Marques, B.M.; Novaes, V.C.N.; De Oliveira, F.L.P.; Matheus, H.R.; Fiorin, L.G.; Ervolino, E. Influence of Adjuvant Therapy with Green Tea Extract in the Treatment of Experimental Periodontitis. Arch. Oral Biol. 2019, 102, 65–73. [Google Scholar] [CrossRef]
- Mazur, M.; Ndokaj, A.; Jedlinski, M.; Ardan, R.; Bietolini, S.; Ottolenghi, L. Impact of Green Tea (Camellia sinensis) on Periodontitis and Caries. Systematic Review and Meta-Analysis. Jpn. Dent. Sci. Rev. 2021, 57, 1–11. [Google Scholar] [CrossRef]
- Kushiyama, M.; Shimazaki, Y.; Murakami, M.; Yamashita, Y. Relationship Between Intake of Green Tea and Periodontal Disease. J. Periodontol. 2009, 80, 372–377. [Google Scholar] [CrossRef]
- Chopra, A.; Thomas, B.S.; Sivaraman, K.; Prasad, H.K.; Khamath, S.U. Green Tea Intake as an Adjunct to Mechanical Periodontal Therapy for the Management of Mild to Moderate Chronic Periodontitis: A Randomized Controlled Clinical Trial. Oral Health Prev. Dent. 2016, 14, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Rezvani, G.; Taleghani, F.; Valizadeh, M. Effect of Green Tea on the Level of Salivary Interleukin-1 Beta in Patients with Chronic Periodontitis: A Randomized Clinical Trial. Int. J. Dent. 2022, 2022, 8992313. [Google Scholar] [CrossRef] [PubMed]
- Hrishi, T.; Kundapur, P.; Naha, A.; Thomas, B.; Kamath, S.; Bhat, G. Effect of Adjunctive Use of Green Tea Dentifrice in Periodontitis Patients—A Randomized Controlled Pilot Study. Int. J. Dent. Hyg. 2016, 14, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Rattanasuwan, K.; Rassameemasmaung, S.; Sangalungkarn, V.; Komoltri, C. Clinical Effect of Locally Delivered Gel Containing Green Tea Extract as an Adjunct to Non-Surgical Periodontal Treatment. Odontology 2016, 104, 89–97. [Google Scholar] [CrossRef]
- Gartenmann, S.J.; Weydlich, Y.V.; Steppacher, S.L.; Heumann, C.; Attin, T.; Schmidlin, P.R. The Effect of Green Tea as an Adjunct to Scaling and Root Planing in Non-Surgical Periodontitis Therapy: A Systematic Review. Clin. Oral Investig. 2019, 23, 1–20. [Google Scholar] [CrossRef]
- Tafazoli, A.; Tafazoli Moghadam, E. Camellia sinensis Mouthwashes in Oral Care: A Systematic Review. J. Dent. 2020, 21, 249–262. [Google Scholar] [CrossRef]
- Rassameemasmaung, S.; Phusudsawang, P.; Sangalungkarn, V. Effect of Green Tea Mouthwash on Oral Malodor. ISRN Prev. Med. 2013, 2013, 975148. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paczkowska-Walendowska, M.; Grzegorzewski, J.; Kwiatek, J.; Leśna, M.; Cielecka-Piontek, J. Green Tea: A Novel Perspective on the Traditional Plant’s Potential in Managing Periodontal Diseases. Pharmaceuticals 2025, 18, 409. https://doi.org/10.3390/ph18030409
Paczkowska-Walendowska M, Grzegorzewski J, Kwiatek J, Leśna M, Cielecka-Piontek J. Green Tea: A Novel Perspective on the Traditional Plant’s Potential in Managing Periodontal Diseases. Pharmaceuticals. 2025; 18(3):409. https://doi.org/10.3390/ph18030409
Chicago/Turabian StylePaczkowska-Walendowska, Magdalena, Jan Grzegorzewski, Jakub Kwiatek, Marta Leśna, and Judyta Cielecka-Piontek. 2025. "Green Tea: A Novel Perspective on the Traditional Plant’s Potential in Managing Periodontal Diseases" Pharmaceuticals 18, no. 3: 409. https://doi.org/10.3390/ph18030409
APA StylePaczkowska-Walendowska, M., Grzegorzewski, J., Kwiatek, J., Leśna, M., & Cielecka-Piontek, J. (2025). Green Tea: A Novel Perspective on the Traditional Plant’s Potential in Managing Periodontal Diseases. Pharmaceuticals, 18(3), 409. https://doi.org/10.3390/ph18030409