Awakening Recovery: Enhancing Orexinergic Tone After Acute CNS Damage
Abstract
1. Introduction
2. Methods
3. Pathophysiology of Acute CNS Damage: Common Cascades and Points of Divergence
3.1. Common Temporal Sequence Across Etiologies
3.2. Cardiovascular Etiologies: Focal Arterial Occlusion, Parenchymal Bleeding, and Whole-Brain Ischemia
3.2.1. Ischemic Stroke
3.2.2. Intracerebral Hemorrhage (ICH)
3.2.3. Subarachnoid Hemorrhage (SAH) and Global Ischemia After Cardiac Arrest
3.3. Traumatic CNS Injury: Mechanical Initiation, Biochemical Propagation
3.3.1. Traumatic Brain Injury (TBI)
3.3.2. Spinal Cord Injury (SCI)
3.4. Systemic and Metabolic Causes of Acute CNS Dysfunction
3.5. Cross-Cutting Mechanisms and Therapeutic Objectives
3.6. Therapeutic Objectives Across Time: What Current Care Tries to Achieve
4. The Orexin/Hypocretin System in Brief
4.1. Cellular Mechanisms and Receptor Signaling
4.2. State Control and Homeostatic Integration
4.3. From Drive to Movement: Orexins and the Neural Implementation of Action
4.4. System-Wide Neuromodulatory Integration
5. Strategies for Enhancing Orexinergic Tone
5.1. Synthetic Small-Molecule Agonists
5.2. Peptide-Based Orexin Replacement
5.3. Physiological and Behavioral Modulation
5.4. Neuromodulation and Electrical Stimulation
5.5. Cell and Gene Therapy
6. Experimental and Clinical Evidence of Orexinergic Modulation in Acute CNS Damage
6.1. Cerebrovascular and Global Ischemic Injuries
6.1.1. Orexin Alterations After Ischemic or Hemorrhagic Events
6.1.2. Experimental Modulation of Orexin Signaling
6.2. Traumatic Brain and Spinal Cord Injury
6.2.1. Orexin Alterations After Mechanical Trauma
6.2.2. Experimental Modulation of Orexin Signaling
6.3. Systemic Biological and Toxic Insults
6.3.1. Orexin Alterations During Sepsis and Systemic Metabolic Failure
6.3.2. Experimental Modulation of Orexin Signaling
6.4. Mechanistic Convergence Across Injury Types
6.4.1. Convergent Mechanisms: What Is Consistently Observed?
6.4.2. Divergent Mechanisms: What Varies Between Etiologies?
6.4.3. Temporal Evolution: From Acute Stabilization to Chronic Circuit Dynamics
6.4.4. Conceptual Boundaries and Remaining Uncertainties
7. Translational Opportunities, Challenges and Perspectives
7.1. Temporal Precision: From Injury Phase to Circadian Alignment
7.2. Delivery Routes and Formulation Strategies
7.3. Receptor Selectivity and Subtype Balance
7.4. Combination and Multimodal Approaches
7.5. Safety Considerations and Potential Risks
8. Limitations of the Current Evidence
9. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dirnagl, U.; Iadecola, C.; Moskowitz, M.A. Pathobiology of Ischaemic Stroke: An Integrated View. Trends Neurosci. 1999, 22, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Lo, E.H.; Dalkara, T.; Moskowitz, M.A. Mechanisms, Challenges and Opportunities in Stroke. Nat. Rev. Neurosci. 2003, 4, 399–415. [Google Scholar] [CrossRef] [PubMed]
- Sofroniew, M.V. Astrocyte Barriers to Neurotoxic Inflammation. Nat. Rev. Neurosci. 2015, 16, 249–263, Erratum in Nat. Rev. Neurosci. 2015, 16, 372. https://doi.org/10.1038/nrn3966. [Google Scholar] [CrossRef] [PubMed]
- Maas, A.I.R.; Menon, D.K.; Manley, G.T.; Abrams, M.; Åkerlund, C.; Andelic, N.; Aries, M.; Bashford, T.; Bell, M.J.; Bodien, Y.G.; et al. Traumatic Brain Injury: Progress and Challenges in Prevention, Clinical Care, and Research. Lancet Neurol. 2022, 21, 1004–1060, Correction in Lancet Neurol. 2022, 21, E10. https://doi.org/10.1016/S1474-4422(22)00411-2. [Google Scholar] [CrossRef]
- Burdakov, D. Subsecond Ensemble Dynamics of Orexin Neurons Link Sensation and Action. Front. Neurol. Neurosci. 2021, 45, 52–60. [Google Scholar] [CrossRef]
- Li, J.; Hu, Z.; de Lecea, L. The Hypocretins/Orexins: Integrators of Multiple Physiological Functions. Br. J. Pharmacol. 2014, 171, 332–350. [Google Scholar] [CrossRef]
- Sakurai, T. The Role of Orexin in Motivated Behaviours. Nat. Rev. Neurosci. 2014, 15, 719–731, Erratum in Nat. Rev. Neurosci. 2014, 15, 816. https://doi.org/10.1038/nrn3862. [Google Scholar] [CrossRef]
- Seigneur, E.; de Lecea, L. Hypocretin (Orexin) Replacement Therapies. Med. Drug Discov. 2020, 8, 100070. [Google Scholar] [CrossRef]
- Hilkens, N.A.; Casolla, B.; Leung, T.W.; de Leeuw, F.-E. Stroke. Lancet 2024, 403, 2820–2836. [Google Scholar] [CrossRef]
- Dorrier, C.E.; Jones, H.E.; Pintarić, L.; Siegenthaler, J.A.; Daneman, R. Emerging Roles for CNS Fibroblasts in Health, Injury and Disease. Nat. Rev. Neurosci. 2022, 23, 23–34. [Google Scholar] [CrossRef]
- O’Shea, T.M.; Ao, Y.; Wang, S.; Ren, Y.; Cheng, A.L.; Kawaguchi, R.; Shi, Z.; Swarup, V.; Sofroniew, M.V. Derivation and Transcriptional Reprogramming of Border-Forming Wound Repair Astrocytes After Spinal Cord Injury or Stroke in Mice. Nat. Neurosci. 2024, 27, 1505–1521. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.C.V.; Khatri, P. Stroke. Lancet 2020, 396, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, Q.; Guo, H.; He, Q. Ferroptosis and Iron Metabolism After Intracerebral Hemorrhage. Cells 2022, 12, 90. [Google Scholar] [CrossRef] [PubMed]
- Magid-Bernstein, J.; Girard, R.; Polster, S.; Srinath, A.; Romanos, S.; Awad, I.A.; Sansing, L.H. Cerebral Hemorrhage: Pathophysiology, Treatment, and Future Directions. Circ. Res. 2022, 130, 1204–1229. [Google Scholar] [CrossRef]
- Perkins, G.D.; Neumar, R.; Hsu, C.H.; Hirsch, K.G.; Aneman, A.; Becker, L.B.; Couper, K.; Callaway, C.W.; Hoedemaekers, C.W.E.; Lim, S.L.; et al. Improving Outcomes After Post-Cardiac Arrest Brain Injury: A Scientific Statement from the International Liaison Committee on Resuscitation. Resuscitation 2024, 201, 110196. [Google Scholar] [CrossRef]
- Yenari, M.A.; Han, H.S. Neuroprotective Mechanisms of Hypothermia in Brain Ischaemia. Nat. Rev. Neurosci. 2012, 13, 267–278. [Google Scholar] [CrossRef]
- Theus, M.H. Neuroinflammation and Acquired Traumatic CNS Injury: A Mini Review. Front. Neurol. 2024, 15, 1334847. [Google Scholar] [CrossRef]
- Courtine, G.; Sofroniew, M.V. Spinal Cord Repair: Advances in Biology and Technology. Nat. Med. 2019, 25, 898–908. [Google Scholar] [CrossRef]
- Sonneville, R.; Verdonk, F.; Rauturier, C.; Klein, I.F.; Wolff, M.; Annane, D.; Chretien, F.; Sharshar, T. Understanding Brain Dysfunction in Sepsis. Ann. Intensive Care 2013, 3, 15. [Google Scholar] [CrossRef]
- Barichello, T.; Generoso, J.S.; Singer, M.; Dal-Pizzol, F. Biomarkers for Sepsis: More than Just Fever and Leukocytosis—A Narrative Review. Crit. Care 2022, 26, 14. [Google Scholar] [CrossRef]
- Bémeur, C.; Butterworth, R.F. Liver-Brain Proinflammatory Signalling in Acute Liver Failure: Role in the Pathogenesis of Hepatic Encephalopathy and Brain Edema. Metab. Brain Dis. 2013, 28, 145–150. [Google Scholar] [CrossRef] [PubMed]
- de Lecea, L.; Kilduff, T.S.; Peyron, C.; Gao, X.; Foye, P.E.; Danielson, P.E.; Fukuhara, C.; Battenberg, E.L.; Gautvik, V.T.; Bartlett, F.S.; et al. The Hypocretins: Hypothalamus-Specific Peptides with Neuroexcitatory Activity. Proc. Natl. Acad. Sci. USA 1998, 95, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R.M.; Tanaka, H.; Williams, S.C.; Richardson, J.A.; Kozlowski, G.P.; Wilson, S.; et al. Orexins and Orexin Receptors: A Family of Hypothalamic Neuropeptides and G Protein-Coupled Receptors That Regulate Feeding Behavior. Cell 1998, 92, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, T.; Sakurai, T. The Present and Future of Synthetic Orexin Receptor Agonists. Peptides 2023, 167, 171051. [Google Scholar] [CrossRef]
- Kukkonen, J.P.; Jacobson, L.H.; Hoyer, D.; Rinne, M.K.; Borgland, S.L. International Union of Basic and Clinical Pharmacology CXIV: Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol. Rev. 2024, 76, 625–688. [Google Scholar] [CrossRef]
- Milbank, E.; López, M. Orexins/Hypocretins: Key Regulators of Energy Homeostasis. Front. Endocrinol. 2019, 10, 830. [Google Scholar] [CrossRef]
- Peyron, C.; Tighe, D.K.; van den Pol, A.N.; de Lecea, L.; Heller, H.C.; Sutcliffe, J.G.; Kilduff, T.S. Neurons Containing Hypocretin (Orexin) Project to Multiple Neuronal Systems. J. Neurosci. 1998, 18, 9996–10015. [Google Scholar] [CrossRef]
- Thannickal, T.C.; Moore, R.Y.; Nienhuis, R.; Ramanathan, L.; Gulyani, S.; Aldrich, M.; Cornford, M.; Siegel, J.M. Reduced Number of Hypocretin Neurons in Human Narcolepsy. Neuron 2000, 27, 469–474. [Google Scholar] [CrossRef]
- Peleg-Raibstein, D.; Viskaitis, P.; Burdakov, D. Eat, Seek, Rest? An Orexin/Hypocretin Perspective. J. Neuroendocr. 2023, 35, e13259. [Google Scholar] [CrossRef]
- Yamanaka, A.; Beuckmann, C.T.; Willie, J.T.; Hara, J.; Tsujino, N.; Mieda, M.; Tominaga, M.; Yagami, K.; Sugiyama, F.; Goto, K.; et al. Hypothalamic Orexin Neurons Regulate Arousal According to Energy Balance in Mice. Neuron 2003, 38, 701–713. [Google Scholar] [CrossRef]
- Kuwaki, T. Orexin Links Emotional Stress to Autonomic Functions. Auton. Neurosci. 2011, 161, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Martins, L.; Seoane-Collazo, P.; Contreras, C.; González-García, I.; Martínez-Sánchez, N.; González, F.; Zalvide, J.; Gallego, R.; Diéguez, C.; Nogueiras, R.; et al. A Functional Link Between AMPK and Orexin Mediates the Effect of BMP8B on Energy Balance. Cell Rep. 2016, 16, 2231–2242. [Google Scholar] [CrossRef] [PubMed]
- van den Pol, A.N. Hypothalamic Hypocretin (Orexin): Robust Innervation of the Spinal Cord. J. Neurosci. 1999, 19, 3171–3182. [Google Scholar] [CrossRef] [PubMed]
- Karnani, M.M.; Schöne, C.; Bracey, E.F.; González, J.A.; Viskaitis, P.; Li, H.-T.; Adamantidis, A.; Burdakov, D. Role of Spontaneous and Sensory Orexin Network Dynamics in Rapid Locomotion Initiation. Prog. Neurobiol. 2020, 187, 101771. [Google Scholar] [CrossRef]
- Burdakov, D. Reactive and Predictive Homeostasis: Roles of Orexin/Hypocretin Neurons. Neuropharmacology 2019, 154, 61–67. [Google Scholar] [CrossRef]
- Korotkova, T.M.; Brown, R.E.; Sergeeva, O.A.; Ponomarenko, A.A.; Haas, H.L. Effects of Arousal- and Feeding-Related Neuropeptides on Dopaminergic and GABAergic Neurons in the Ventral Tegmental Area of the Rat. Eur. J. Neurosci. 2006, 23, 2677–2685, Correction in Eur. J. Neurosci. 2006, 23, 3407. https://doi.org/10.1111/j.1460-9568.2006.04977.x. [Google Scholar] [CrossRef]
- Mileykovskiy, B.Y.; Kiyashchenko, L.I.; Siegel, J.M. Behavioral Correlates of Activity in Identified Hypocretin/Orexin Neurons. Neuron 2005, 46, 787–798. [Google Scholar] [CrossRef]
- Biswabharati, S.; Jean-Xavier, C.; Eaton, S.E.A.; Lognon, A.P.; Brett, R.; Hardjasa, L.; Whelan, P.J. Orexinergic Modulation of Spinal Motor Activity in the Neonatal Mouse Spinal Cord. eNeuro 2018, 5, e0226-18. [Google Scholar] [CrossRef]
- Horvath, T.L.; Peyron, C.; Diano, S.; Ivanov, A.; Aston-Jones, G.; Kilduff, T.S.; van Den Pol, A.N. Hypocretin (Orexin) Activation and Synaptic Innervation of the Locus Coeruleus Noradrenergic System. J. Comp. Neurol. 1999, 415, 145–159. [Google Scholar] [CrossRef]
- Liu, R.-J.; van den Pol, A.N.; Aghajanian, G.K. Hypocretins (Orexins) Regulate Serotonin Neurons in the Dorsal Raphe Nucleus by Excitatory Direct and Inhibitory Indirect Actions. J. Neurosci. 2002, 22, 9453–9464. [Google Scholar] [CrossRef]
- Burdakov, D. How Orexin Signals Bias Action: Hypothalamic and Accumbal Circuits. Brain Res. 2020, 1731, 145943. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, K.S.; Sergeeva, O.; Brown, R.E.; Haas, H.L. Orexin/Hypocretin Excites the Histaminergic Neurons of the Tuberomammillary Nucleus. J. Neurosci. 2001, 21, 9273–9279. [Google Scholar] [CrossRef] [PubMed]
- Herring, W.J.; Connor, K.M.; Snyder, E.; Snavely, D.B.; Morin, C.M.; Lines, C.; Michelson, D. Effects of Suvorexant on the Insomnia Severity Index in Patients with Insomnia: Analysis of Pooled Phase 3 Data. Sleep Med. 2019, 56, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J. E2086, a Selective Orexin Receptor-2 Agonist, Study for Promoting Wakefulness in Patients with Narcolepsy Type-1; World Sleep Congress: Singapore, 2025. [Google Scholar]
- Dauvilliers, Y. The Radiant Light: Efficacy and Safety of Oveporexton (TAK-861), an Oral Orexin Receptor 2 Agonist for the Treatment of Narcolepsy Type 1; World Sleep Congress: Singapore, 2025. [Google Scholar]
- Evans, R.; Kimura, H.; Alexander, R.; Davies, C.H.; Faessel, H.; Hartman, D.S.; Ishikawa, T.; Ratti, E.; Shimizu, K.; Suzuki, M.; et al. Orexin 2 Receptor-Selective Agonist Danavorexton Improves Narcolepsy Phenotype in a Mouse Model and in Human Patients. Proc. Natl. Acad. Sci. USA 2022, 119, e2207531119. [Google Scholar] [CrossRef]
- Plazzi, G. Vibrance-1: A Randomized Phase 2 Study Evaluating Safety and Efficacy of the Orexin 2 Receptor Agonist Alixorexton (ALKS 2680) in Patients with Narcolepsy Type 1; World Sleep Congress: Singapore, 2025. [Google Scholar]
- Zhang, D.; Perrey, D.A.; Decker, A.M.; Langston, T.L.; Mavanji, V.; Harris, D.L.; Kotz, C.M.; Zhang, Y. Discovery of Arylsulfonamides as Dual Orexin Receptor Agonists. J. Med. Chem. 2021, 64, 8806–8825. [Google Scholar] [CrossRef]
- España, R.A.; Baldo, B.A.; Kelley, A.E.; Berridge, C.W. Wake-Promoting and Sleep-Suppressing Actions of Hypocretin (Orexin): Basal Forebrain Sites of Action. Neuroscience 2001, 106, 699–715. [Google Scholar] [CrossRef]
- Piper, D.C.; Upton, N.; Smith, M.I.; Hunter, A.J. The Novel Brain Neuropeptide, Orexin-A, Modulates the Sleep-Wake Cycle of Rats. Eur. J. Neurosci. 2000, 12, 726–730. [Google Scholar] [CrossRef]
- Gao, X.-B.; Horvath, T. Function and Dysfunction of Hypocretin/Orexin: An Energetics Point of View. Annu. Rev. Neurosci. 2014, 37, 101–116. [Google Scholar] [CrossRef]
- Sakurai, T. The Neural Circuit of Orexin (Hypocretin): Maintaining Sleep and Wakefulness. Nat. Rev. Neurosci. 2007, 8, 171–181. [Google Scholar] [CrossRef]
- Illum, L. Transport of Drugs from the Nasal Cavity to the Central Nervous System. Eur. J. Pharm. Sci. 2000, 11, 1–18. [Google Scholar] [CrossRef]
- Lochhead, J.J.; Thorne, R.G. Intranasal Delivery of Biologics to the Central Nervous System. Adv. Drug Deliv. Rev. 2012, 64, 614–628. [Google Scholar] [CrossRef] [PubMed]
- Baier, P.C.; Hallschmid, M.; Seeck-Hirschner, M.; Weinhold, S.L.; Burkert, S.; Diessner, N.; Göder, R.; Aldenhoff, J.B.; Hinze-Selch, D. Effects of Intranasal Hypocretin-1 (Orexin A) on Sleep in Narcolepsy with Cataplexy. Sleep Med. 2011, 12, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Meusel, M.; Voß, J.; Krapalis, A.; Machleidt, F.; Vonthein, R.; Hallschmid, M.; Sayk, F. Intranasal Orexin A Modulates Sympathetic Vascular Tone: A Pilot Study in Healthy Male Humans. J. Neurophysiol. 2022, 127, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Dhuria, S.V.; Hanson, L.R.; Frey, W.H. Intranasal Delivery to the Central Nervous System: Mechanisms and Experimental Considerations. J. Pharm. Sci. 2010, 99, 1654–1673. [Google Scholar] [CrossRef]
- Djupesland, P.G. Nasal Drug Delivery Devices: Characteristics and Performance in a Clinical Perspective-a Review. Drug Deliv. Transl. Res. 2013, 3, 42–62. [Google Scholar] [CrossRef]
- Born, J.; Lange, T.; Kern, W.; McGregor, G.P.; Bickel, U.; Fehm, H.L. Sniffing Neuropeptides: A Transnasal Approach to the Human Brain. Nat. Neurosci. 2002, 5, 514–516. [Google Scholar] [CrossRef]
- Quintana, D.S.; Lischke, A.; Grace, S.; Scheele, D.; Ma, Y.; Becker, B. Advances in the Field of Intranasal Oxytocin Research: Lessons Learned and Future Directions for Clinical Research. Mol. Psychiatry 2021, 26, 80–91. [Google Scholar] [CrossRef]
- Lai, F.; Cucca, F.; Frau, R.; Corrias, F.; Schlich, M.; Caboni, P.; Fadda, A.M.; Bassareo, V. Systemic Administration of Orexin a Loaded Liposomes Potentiates Nucleus Accumbens Shell Dopamine Release by Sucrose Feeding. Front. Psychiatry 2018, 9, 640. [Google Scholar] [CrossRef]
- Wang, T.; Li, Y.; Guo, M.; Dong, X.; Liao, M.; Du, M.; Wang, X.; Yin, H.; Yan, H. Exosome-Mediated Delivery of the Neuroprotective Peptide PACAP38 Promotes Retinal Ganglion Cell Survival and Axon Regeneration in Rats with Traumatic Optic Neuropathy. Front. Cell Dev. Biol. 2021, 9, 659783. [Google Scholar] [CrossRef]
- Wong, J.C.; Shapiro, L.; Thelin, J.T.; Heaton, E.C.; Zaman, R.U.; D’Souza, M.J.; Murnane, K.S.; Escayg, A. Nanoparticle Encapsulated Oxytocin Increases Resistance to Induced Seizures and Restores Social Behavior in Scn1a-Derived Epilepsy. Neurobiol. Dis. 2021, 147, 105147. [Google Scholar] [CrossRef]
- Islam, M.T.; Rumpf, F.; Tsuno, Y.; Kodani, S.; Sakurai, T.; Matsui, A.; Maejima, T.; Mieda, M. Vasopressin Neurons in the Paraventricular Hypothalamus Promote Wakefulness via Lateral Hypothalamic Orexin Neurons. Curr. Biol. 2022, 32, 3871–3885.e4. [Google Scholar] [CrossRef]
- Yoshida, Y.; Fujiki, N.; Nakajima, T.; Ripley, B.; Matsumura, H.; Yoneda, H.; Mignot, E.; Nishino, S. Fluctuation of Extracellular Hypocretin-1 (Orexin A) Levels in the Rat in Relation to the Light-Dark Cycle and Sleep-Wake Activities. Eur. J. Neurosci. 2001, 14, 1075–1081. [Google Scholar] [CrossRef]
- Zeitzer, J.M.; Buckmaster, C.L.; Parker, K.J.; Hauck, C.M.; Lyons, D.M.; Mignot, E. Circadian and Homeostatic Regulation of Hypocretin in a Primate Model: Implications for the Consolidation of Wakefulness. J. Neurosci. 2003, 23, 3555–3560. [Google Scholar] [CrossRef]
- Messina, G.; Dalia, C.; Tafuri, D.; Monda, V.; Palmieri, F.; Dato, A.; Russo, A.; De Blasio, S.; Messina, A.; De Luca, V.; et al. Orexin-A Controls Sympathetic Activity and Eating Behavior. Front. Psychol. 2014, 5, 997. [Google Scholar] [CrossRef] [PubMed]
- Tesmer, A.L.; Viskaitis, P.; Donegan, D.; Bracey, E.F.; Grujic, N.; Patriarchi, T.; Peleg-Raibstein, D.; Burdakov, D. Orexin Population Activity Precisely Reflects Net Body Movement Across Behavioral and Metabolic States. eLife 2025, 14, RP103738. [Google Scholar] [CrossRef] [PubMed]
- Tesmer, A.L.; Li, X.; Bracey, E.; Schmandt, C.; Polania, R.; Peleg-Raibstein, D.; Burdakov, D. Orexin Neurons Mediate Temptation-Resistant Voluntary Exercise. Nat. Neurosci. 2024, 27, 1774–1782. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.M.; Elkind, J.; Xiong, G.; Galante, R.; Zhu, J.; Zhang, L.; Lian, J.; Rodin, J.; Kuzma, N.N.; Pack, A.I.; et al. Dietary Therapy Mitigates Persistent Wake Deficits Caused by Mild Traumatic Brain Injury. Sci. Transl. Med. 2013, 5, ra173–ra215. [Google Scholar] [CrossRef]
- Ren, B.; Kang, J.; Wang, Y.; Meng, X.; Huang, Y.; Bai, Y.; Feng, Z. Transcranial Direct Current Stimulation Promotes Angiogenesis and Improves Neurological Function via the OXA-TF-AKT/ERK Signaling Pathway in Traumatic Brain Injury. Aging 2024, 16, 6566–6587. [Google Scholar] [CrossRef]
- Yao, P.; Zhou, Q.; Ren, B.; Yang, L.; Bai, Y.; Feng, Z. Transcranial Pulsed Current Stimulation Alleviates Neuronal Pyroptosis and Neurological Dysfunction Following Traumatic Brain Injury via the Orexin-A/NLRP3 Pathway. Neuropeptides 2025, 110, 102501. [Google Scholar] [CrossRef]
- Dong, X.-Y.; Feng, Z. Wake-Promoting Effects of Vagus Nerve Stimulation After Traumatic Brain Injury: Upregulation of Orexin-A and Orexin Receptor Type 1 Expression in the Prefrontal Cortex. Neural Regen. Res. 2018, 13, 244–251. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, X.; Hu, L. Transcutaneous Auricular Vagus Nerve Stimulation Facilitates Cortical Arousal and Alertness. Int. J. Environ. Res. Public Health 2023, 20, 1402. [Google Scholar] [CrossRef] [PubMed]
- Whiting, D.M.; Tomycz, N.D.; Bailes, J.; de Jonge, L.; Lecoultre, V.; Wilent, B.; Alcindor, D.; Prostko, E.R.; Cheng, B.C.; Angle, C.; et al. Lateral Hypothalamic Area Deep Brain Stimulation for Refractory Obesity: A Pilot Study with Preliminary Data on Safety, Body Weight, and Energy Metabolism. J. Neurosurg. 2013, 119, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Mofatteh, M.; Mohamed, A.; Mashayekhi, M.S.; Skandalakis, G.P.; Neudorfer, C.; Arfaie, S.; MohanaSundaram, A.; Sabahi, M.; Anand, A.; Aboulhosn, R.; et al. Deep Brain Stimulation of the Hypothalamic Region: A Systematic Review. Acta Neurochir. 2025, 167, 33. [Google Scholar] [CrossRef] [PubMed]
- Equihua-Benítez, A.C.; Equihua-Benítez, J.A.; Guzmán-Vásquez, K.; Prospero-García, O.; Drucker-Colín, R. Orexin Cell Transplant Reduces Behavioral Arrest Severity in Narcoleptic Mice. Brain Res. 2020, 1745, 146951. [Google Scholar] [CrossRef]
- Pintwala, S.K.; Fraigne, J.J.; Belsham, D.D.; Peever, J.H. Immortal Orexin Cell Transplants Restore Motor-Arousal Synchrony during Cataplexy. Curr. Biol. 2023, 33, 1550–1564.e5. [Google Scholar] [CrossRef]
- Blanco-Centurion, C.; Liu, M.; Konadhode, R.; Pelluru, D.; Shiromani, P.J. Effects of Orexin Gene Transfer in the Dorsolateral Pons in Orexin Knockout Mice. Sleep 2013, 36, 31–40. [Google Scholar] [CrossRef]
- Liu, M.; Blanco-Centurion, C.; Konadhode, R.R.; Luan, L.; Shiromani, P.J. Orexin Gene Transfer into the Amygdala Suppresses Both Spontaneous and Emotion-Induced Cataplexy in Orexin-Knockout Mice. Eur. J. Neurosci. 2016, 43, 681–688. [Google Scholar] [CrossRef][Green Version]
- Christiansen, J.R.; Kirkeby, A. Clinical Translation of Pluripotent Stem Cell-Based Therapies: Successes and Challenges. Development 2024, 151, dev202067. [Google Scholar] [CrossRef]
- Rahimi Darehbagh, R.; Seyedoshohadaei, S.A.; Ramezani, R.; Rezaei, N. Stem Cell Therapies for Neurological Disorders: Current Progress, Challenges, and Future Perspectives. Eur. J. Med. Res. 2024, 29, 386. [Google Scholar] [CrossRef]
- Scammell, T.E.; Nishino, S.; Mignot, E.; Saper, C.B. Narcolepsy and Low CSF Orexin (Hypocretin) Concentration After a Diencephalic Stroke. Neurology 2001, 56, 1751–1753. [Google Scholar] [CrossRef]
- Kotan, D.; Deniz, O.; Aygul, R.; Yıldırım, A. Acute Cerebral Ischaemia: Relationship between Serum and Cerebrospinal Fluid Orexin-A Concentration and Infarct Volume. J. Int. Med. Res. 2013, 41, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Ren, L.; Wang, Y.; Lei, Z.; Cai, J.; Pan, S. The Association between Serum Orexin A and Short-Term Neurological Improvement in Patients with Mild to Moderate Acute Ischemic Stroke. Brain Behav. 2023, 13, e2845. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.; Zhang, W.; Guo, R.; He, S.; Yu, S.; Wang, H.; Zhang, Y.; Wu, Y. Inclusion of Hypocretin-1 Improved Performance of Poor Sleep Quality Prediction for Elderly Patients with Acute Ischemic Stroke: A Prospective Cohort Study. Front. Aging Neurosci. 2025, 16, 1509846. [Google Scholar] [CrossRef] [PubMed]
- Dohi, K.; Ripley, B.; Fujiki, N.; Ohtaki, H.; Yamamoto, T.; Goto, Y.; Nakamachi, T.; Shioda, S.; Aruga, T.; Nishino, S. CSF Orexin-A/Hypocretin-1 Concentrations in Patients with Intracerebral Hemorrhage (ICH). Regul. Pept. 2008, 145, 60–64. [Google Scholar] [CrossRef]
- Ang, B.T.; Tan, W.L.; Lim, J.; Ng, I. Cerebrospinal Fluid Orexin in Aneurysmal Subarachnoid Haemorrhage—A Pilot Study. J. Clin. Neurosci. 2005, 12, 758–762. [Google Scholar] [CrossRef]
- Dohi, K.; Ripley, B.; Fujiki, N.; Ohtaki, H.; Shioda, S.; Aruga, T.; Nishino, S. CSF Hypocretin-1/Orexin-A Concentrations in Patients with Subarachnoid Hemorrhage (SAH). Peptides 2005, 26, 2339–2343. [Google Scholar] [CrossRef]
- Rejdak, K.; Petzold, A.; Lin, L.; Smith, M.; Kitchen, N.; Thompson, E.J. Decreased CSF Hypocretin-1 (Orexin-A) After Acute Haemorrhagic Brain Injury. J. Neurol. Neurosurg. Psychiatry 2005, 76, 597–598. [Google Scholar] [CrossRef][Green Version]
- Baumann, C.R.; Stocker, R.; Imhof, H.-G.; Trentz, O.; Hersberger, M.; Mignot, E.; Bassetti, C.L. Hypocretin-1 (Orexin A) Deficiency in Acute Traumatic Brain Injury. Neurology 2005, 65, 147–149. [Google Scholar] [CrossRef]
- Baumann, C.R.; Werth, E.; Stocker, R.; Ludwig, S.; Bassetti, C.L. Sleep–Wake Disturbances 6 Months After Traumatic Brain Injury: A Prospective Study. Brain 2007, 130, 1873–1883. [Google Scholar] [CrossRef]
- Baumann, C.R.; Bassetti, C.L.; Valko, P.O.; Haybaeck, J.; Keller, M.; Clark, E.; Stocker, R.; Tolnay, M.; Scammell, T.E. Loss of Hypocretin (Orexin) Neurons with Traumatic Brain Injury. Ann. Neurol. 2009, 66, 555–559. [Google Scholar] [CrossRef]
- Cangiano-Heath, A.; Wirkowski, E.; Gu, Y.; Adachi, J.; Ashcroft, B.; Fiore, S.; Mofakham, S.; Wright, B. Pilot Study of Orexin as an Indicator of Coma Recovery (820). Neurology 2020, 94, 820. [Google Scholar] [CrossRef]
- Ogawa, Y.; Ezaki, S.; Shimojo, N.; Kawano, S. Case Report: Reduced CSF Orexin Levels in a Patient with Sepsis. Front. Neurosci. 2021, 15, 739323. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, Y.; Shimojo, N.; Ishii, A.; Tamaoka, A.; Kawano, S.; Inoue, Y. Reduced CSF Orexin Levels in Rats and Patients with Systemic Inflammation: A Preliminary Study. BMC Res. Notes 2022, 15, 221. [Google Scholar] [CrossRef] [PubMed]
- Irving, E.A.; Harrison, D.C.; Babbs, A.J.; Mayes, A.C.; Campbell, C.A.; Hunter, A.J.; Upton, N.; Parsons, A.A. Increased Cortical Expression of the Orexin-1 Receptor Following Permanent Middle Cerebral Artery Occlusion in the Rat. Neurosci. Lett. 2002, 324, 53–56. [Google Scholar] [CrossRef]
- Nakamachi, T.; Endo, S.; Ohtaki, H.; Yin, L.; Kenji, D.; Kudo, Y.; Funahashi, H.; Matsuda, K.; Shioda, S. Orexin-1 Receptor Expression after Global Ischemia in Mice. Regul. Pept. 2005, 126, 49–54. [Google Scholar] [CrossRef]
- Kitamura, E.; Hamada, J.; Kanazawa, N.; Yonekura, J.; Masuda, R.; Sakai, F.; Mochizuki, H. The Effect of Orexin-A on the Pathological Mechanism in the Rat Focal Cerebral Ischemia. Neurosci. Res. 2010, 68, 154–157. [Google Scholar] [CrossRef]
- Matsuura, W.; Nakamoto, K.; Tokuyama, S. Involvement of Descending Pain Control System Regulated by Orexin Receptor Signaling in the Induction of Central Post-Stroke Pain in Mice. Eur. J. Pharmacol. 2020, 874, 173029. [Google Scholar] [CrossRef]
- Wang, C.-M.; Pan, Y.-Y.; Liu, M.-H.; Cheng, B.-H.; Bai, B.; Chen, J. RNA-Seq Expression Profiling of Rat MCAO Model Following Reperfusion Orexin-A. Oncotarget 2017, 8, 113066–113081. [Google Scholar] [CrossRef][Green Version]
- Xu, D.; Kong, T.; Shao, Z.; Liu, M.; Zhang, R.; Zhang, S.; Kong, Q.; Chen, J.; Cheng, B.; Wang, C. Orexin-A Alleviates Astrocytic Apoptosis and Inflammation via Inhibiting OX1R-Mediated NF-κB and MAPK Signaling Pathways in Cerebral Ischemia/Reperfusion Injury. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2021, 1867, 166230. [Google Scholar] [CrossRef]
- Xu, D.; Kong, T.; Zhang, S.; Cheng, B.; Chen, J.; Wang, C. Orexin-A Protects against Cerebral Ischemia-Reperfusion Injury by Inhibiting Excessive Autophagy Through OX1R-Mediated MAPK/ERK/mTOR Pathway. Cell. Signal. 2021, 79, 109839. [Google Scholar] [CrossRef]
- Xu, D.; Kong, T.; Cheng, B.; Zhang, R.; Yang, C.; Chen, J.; Wang, C. Orexin-A Alleviates Cerebral Ischemia-Reperfusion Injury by Inhibiting Endoplasmatic Reticulum Stress-Mediated Apoptosis. Mol. Med. Rep. 2021, 23, 266. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Dong, H.; Zhang, H.-P.; Zhao, R.; Gong, G.; Chen, X.; Zhang, L.; Xiong, L. Neuroprotective Effect of Orexin-A Is Mediated by an Increase of Hypoxia-Inducible Factor-1 Activity in Rat. Anesthesiology 2011, 114, 340. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Zeng, Z.; Mo, H.; Hu, W.; Tian, S.; Hu, D.; Gong, L.; Hu, K. Orexin-A Inhibits Cerebral Ischaemic Inflammatory Injury Mediated by the Nuclear Factor-κB Signalling Pathway and Alleviates Stroke-Induced Immunodepression in Mice. Brain Res. Bull. 2021, 174, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Li, X.; Guo, J.; Zhang, Z.; Guo, X.; Li, Z.; Lin, J.; Li, P.; Jiang, Z.; Zhu, Y. Orexin A Protects against Cerebral Ischemia-Reperfusion Injury by Enhancing Reperfusion in Ischemic Cortex via HIF-1α-ET-1/eNOS Pathway. Brain Res. Bull. 2024, 218, 111105. [Google Scholar] [CrossRef]
- Pace, M.; Adamantidis, A.; Facchin, L.; Bassetti, C. Role of REM Sleep, Melanin Concentrating Hormone and Orexin/Hypocretin Systems in the Sleep Deprivation Pre-Ischemia. PLoS ONE 2017, 12, e0168430. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, X.; Li, S.; Zhou, D.; Bai, J.; Wang, H.; Shu, Q. Overexpression of ORX or MCH Protects Neurological Function Against Ischemic Stroke. Neurotox. Res. 2022, 40, 44–55. [Google Scholar] [CrossRef]
- Li, F.-T.; Yao, C.-H.; Yao, L.; Huo, Z.-F.; Liu, J. Study on the Effects of Parecoxib on Hypothalamus Orexin Neuron of Cerebral Infarction Rats. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 1499–1505. [Google Scholar] [CrossRef]
- Li, T.; Xu, W.; Ouyang, J.; Lu, X.; Sherchan, P.; Lenahan, C.; Irio, G.; Zhang, J.H.; Zhao, J.; Zhang, Y.; et al. Orexin A Alleviates Neuroinflammation via OXR2/CaMKKβ/AMPK Signaling Pathway After ICH in Mice. J. Neuroinflamm. 2020, 17, 187. [Google Scholar] [CrossRef]
- Zhang, D.; Cui, Y.; Zhao, M.; Zheng, X.; Li, C.; Wei, J.; Wang, K.; Cui, J. Orexin-A Exerts Neuroprotective Effect in Experimental Intracerebral Hemorrhage by Suppressing Autophagy via OXR1-Mediated ERK/mTOR Signaling Pathway. Front. Cell. Neurosci. 2022, 16, 1045034. [Google Scholar] [CrossRef]
- Dohi, K.; Nishino, S.; Nakamachi, T.; Ohtaki, H.; Morikawa, K.; Takeda, T.; Shioda, S.; Aruga, T. CSF Orexin A Concentrations and Expressions of the Orexin-1 Receptor in Rat Hippocampus After Cardiac Arrest. Neuropeptides 2006, 40, 245–250. [Google Scholar] [CrossRef]
- Guo, Y.; Gharibani, P.; Agarwal, P.; Cho, S.-M.; Thakor, N.V.; Geocadin, R.G. Hyperacute Autonomic and Cortical Function Recovery Following Cardiac Arrest Resuscitation in a Rodent Model. Ann. Clin. Transl. Neurol. 2023, 10, 2223–2237. [Google Scholar] [CrossRef]
- Akbari, Y.; Maybhate, A.; Chen, C.; Greenwald, E.; Liang, L.; Buitrago-Blanco, M.; Jia, X.; Thakor, N.; Geocadin, R. Abstract 2: Orexin-A Improves Arousal from Post--Cardiac Arrest Coma in a Rodent Model. Circulation 2012, 126, A2. [Google Scholar] [CrossRef]
- Koenig, M.A.; Jia, X.; Kang, X.; Velasquez, A.; Thakor, N.V.; Geocadin, R.G. Intraventricular Orexin-A Improves Arousal and Early EEG Entropy in Rats After Cardiac Arrest. Brain Res. 2009, 1255, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Modi, H.R.; Wang, Q.; Gd, S.; Sherman, D.; Greenwald, E.; Savonenko, A.V.; Geocadin, R.G.; Thakor, N.V. Intranasal Post-Cardiac Arrest Treatment with Orexin-A Facilitates Arousal from Coma and Ameliorates Neuroinflammation. PLoS ONE 2017, 12, e0182707. [Google Scholar] [CrossRef] [PubMed]
- Sherman, D.L.; Williams, A.; Gd, S.; Modi, H.R.; Wang, Q.; Thakor, N.V.; Geocadin, R.G. Intranasal Orexin After Cardiac Arrest Leads to Increased Electroencephalographic Gamma Activity and Enhanced Neurologic Recovery in Rats. Crit. Care Explor. 2021, 3, e0349. [Google Scholar] [CrossRef]
- Guo, Y.; Gharibani, P.; Agarwal, P.; Modi, H.; Cho, S.-M.; Thakor, N.V.; Geocadin, R.G. Endogenous Orexin and Hyperacute Autonomic Responses After Resuscitation in a Preclinical Model of Cardiac Arrest. Front. Neurosci. 2024, 18, 1437464. [Google Scholar] [CrossRef]
- Kang, Y.-J.; Tian, G.; Bazrafkan, A.; Farahabadi, M.H.; Azadian, M.; Abbasi, H.; Shamaoun, B.E.; Steward, O.; Akbari, Y. Recovery from Coma Post-Cardiac Arrest Is Dependent on the Orexin Pathway. J. Neurotrauma 2017, 34, 2823–2832. [Google Scholar] [CrossRef]
- Azadian, M.; Tian, G.; Bazrafkan, A.; Maki, N.; Rafi, M.; Chetty, N.; Desai, M.; Otarola, I.; Aguirre, F.; Zaher, S.M.; et al. Overnight Caloric Restriction Prior to Cardiac Arrest and Resuscitation Leads to Improved Survival and Neurological Outcome in a Rodent Model. Front. Neurosci. 2021, 14, 609670. [Google Scholar] [CrossRef]
- Palomba, L.; Motta, A.; Imperatore, R.; Piscitelli, F.; Capasso, R.; Mastroiacovo, F.; Battaglia, G.; Bruno, V.; Cristino, L.; Di Marzo, V. Role of 2-Arachidonoyl-Glycerol and CB1 Receptors in Orexin-A-Mediated Prevention of Oxygen–Glucose Deprivation-Induced Neuronal Injury. Cells 2020, 9, 1507. [Google Scholar] [CrossRef]
- Sokołowska, P.; Urbańska, A.; Biegańska, K.; Wagner, W.; Ciszewski, W.; Namiecińska, M.; Zawilska, J.B. Orexins Protect Neuronal Cell Cultures Against Hypoxic Stress: An Involvement of Akt Signaling. J. Mol. Neurosci. 2014, 52, 48–55. [Google Scholar] [CrossRef]
- Zawilska, J. A New Face of Orexins Action—Neuroprotection. SpringerPlus 2015, 4, L59. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mihara, Y.; Dohi, K.; Yofu, S.; Nakamachi, T.; Ohtaki, H.; Shioda, S.; Aruga, T. Expression and Localization of the Orexin-1 Receptor (OX1R) After Traumatic Brain Injury in Mice. J. Mol. Neurosci. 2011, 43, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Skopin, M.D.; Kabadi, S.V.; Viechweg, S.S.; Mong, J.A.; Faden, A.I. Chronic Decrease in Wakefulness and Disruption of Sleep-Wake Behavior After Experimental Traumatic Brain Injury. J. Neurotrauma 2015, 32, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Somach, R.T.; Jean, I.D.; Farrugia, A.M.; Cohen, A.S. Mild Traumatic Brain Injury Affects Orexin/Hypocretin Physiology Differently in Male and Female Mice. J. Neurotrauma 2023, 40, 2146–2163. [Google Scholar] [CrossRef]
- Thomasy, H.E.; Febinger, H.Y.; Ringgold, K.M.; Gemma, C.; Opp, M.R. Hypocretinergic and Cholinergic Contributions to Sleep-Wake Disturbances in a Mouse Model of Traumatic Brain Injury. Neurobiol. Sleep Circadian Rhythm. 2017, 2, 71–84. [Google Scholar] [CrossRef]
- Thomasy, H.E.; Opp, M.R. Hypocretin Mediates Sleep and Wake Disturbances in a Mouse Model of Traumatic Brain Injury. J. Neurotrauma 2019, 36, 802–814. [Google Scholar] [CrossRef]
- Willie, J.T.; Lim, M.M.; Bennett, R.E.; Azarion, A.A.; Schwetye, K.E.; Brody, D.L. Controlled Cortical Impact Traumatic Brain Injury Acutely Disrupts Wakefulness and Extracellular Orexin Dynamics as Determined by Intracerebral Microdialysis in Mice. J. Neurotrauma 2012, 29, 1908–1921. [Google Scholar] [CrossRef]
- Kang, J.; Ren, B.; Huang, L.; Dong, X.; Xiong, Q.; Feng, Z. Orexin-A Alleviates Ferroptosis by Activating the Nrf2/HO-1 Signaling Pathway in Traumatic Brain Injury. Aging 2024, 16, 3404–3419. [Google Scholar] [CrossRef]
- Craig, J.; Carey, S.; Gibbons, A.; Kaplan, G.; Zielinski, M. 0049 Sleep and Electroencephalogram Effects from a Dual Orexin Receptor Antagonist in Mice with Traumatic Brain Injury. Sleep 2024, 47, A22. [Google Scholar] [CrossRef]
- Konduru, S.R.; Isaacson, J.R.; Lasky, D.J.; Zhou, Z.; Rao, R.K.; Vattem, S.S.; Rewey, S.J.; Jones, M.V.; Maganti, R.K. Dual Orexin Antagonist Normalized Sleep Homeostatic Drive, Enhanced GABAergic Inhibition, and Suppressed Seizures After Traumatic Brain Injury. Sleep 2022, 45, zsac238. [Google Scholar] [CrossRef]
- Dong, X.; Papa, E.V.; Liu, H.; Feng, Z.; Huang, F.; Liao, C. Vagus Nerve Stimulation Causes Wake-Promotion by Affecting Neurotransmitters via Orexins Pathway in Traumatic Brain Injury Induced Comatose Rats. Int. J. Clin. Exp. Med. 2018, 11, 4742–4751. [Google Scholar]
- Du, Q.; Huang, L.; Tang, Y.; Kang, J.; Ye, W.; Feng, Z. Median Nerve Stimulation Attenuates Traumatic Brain Injury–Induced Comatose State by Regulating the Orexin-A/RasGRF1 Signaling Pathway. World Neurosurg. 2022, 168, e19–e27. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Zhou, Y.; Xiong, Q.; Dong, X. Trigeminal Nerve Electrical Stimulation Attenuates Early Traumatic Brain Injury Through the TLR4/NF-κB/NLRP3 Signaling Pathway Mediated by Orexin-A/OX1R System. Aging 2024, 16, 7946–7960. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Ren, B.; Wang, J.; Tang, Y.; Dong, X. Vagus Nerve Stimulation: A Promising Strategy to Combat Pyroptosis and Inflammation in Traumatic Brain Injury Through the OX-A/NLRP3/Caspase-1/GSDMD Signaling Pathway. Eur. J. Med. Res. 2025, 30, 586. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.-J.; Feng, Z.; Wang, L.; Wei, T.-Q. Wake-Promoting Actions of Median Nerve Stimulation in TBI-Induced Coma: An Investigation of Orexin-A and Orexin Receptor 1 in the Hypothalamic Region. Mol. Med. Rep. 2015, 12, 4441–4447. [Google Scholar] [CrossRef]
- Dong, X.; Ye, W.; Tang, Y.; Wang, J.; Zhong, L.; Xiong, J.; Liu, H.; Lu, G.; Feng, Z. Wakefulness-Promoting Effects of Lateral Hypothalamic Area–Deep Brain Stimulation in Traumatic Brain Injury-Induced Comatose Rats: Upregulation of A1-Adrenoceptor Subtypes and Downregulation of Gamma-Aminobutyric Acid β Receptor Expression Via the Orexins Pathway. World Neurosurg. 2021, 152, e321–e331. [Google Scholar] [CrossRef]
- Huang, L.; Kang, J.; Chen, G.; Ye, W.; Meng, X.; Du, Q.; Feng, Z. Low-Intensity Focused Ultrasound Attenuates Early Traumatic Brain Injury by OX-A/NF-κB/NLRP3 Signaling Pathway. Aging 2022, 14, 7455–7469. [Google Scholar] [CrossRef]
- Elliott, J.E.; De Luche, S.E.; Churchill, M.J.; Moore, C.; Cohen, A.S.; Meshul, C.K.; Lim, M.M. Dietary Therapy Restores Glutamatergic Input to Orexin/Hypocretin Neurons After Traumatic Brain Injury in Mice. Sleep 2018, 41, zsx212. [Google Scholar] [CrossRef]
- Christensen, J.; MacPherson, N.; Li, C.; Yamakawa, G.R.; Mychasiuk, R. Repeat Mild Traumatic Brain Injuries (RmTBI) Modify Nociception and Disrupt Orexinergic Connectivity within the Descending Pain Pathway. J. Headache Pain 2023, 24, 72. [Google Scholar] [CrossRef]
- Christensen, J.; Vlassopoulos, E.; Barlow, C.K.; Schittenhelm, R.B.; Li, C.N.; Sgro, M.; Warren, S.; Semple, B.D.; Yamakawa, G.R.; Shultz, S.R.; et al. The Beneficial Effects of Modafinil Administration on Repeat Mild Traumatic Brain Injury (RmTBI) Pathology in Adolescent Male Rats Are Not Dependent upon the Orexinergic System. Exp. Neurol. 2024, 382, 114969. [Google Scholar] [CrossRef]
- He, G.; Chu, W.; Li, Y.; Sheng, X.; Luo, H.; Xu, A.; Bian, M.; Zhang, H.; Wang, M.; Zheng, C. Orexin-A promotes motor function recovery of rats with spinal cord injury by regulating ionotropic glutamate receptors. Nan Fang Yi Ke Da Xue Xue Bao 2025, 45, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Gaykema, R.P.A.; Goehler, L.E. Lipopolysaccharide Challenge-Induced Suppression of Fos in Hypothalamic Orexin Neurons: Their Potential Role in Sickness Behavior. Brain Behav. Immun. 2009, 23, 926–930. [Google Scholar] [CrossRef] [PubMed]
- Hirota, K.; Takekawa, D.; Kushikata, T.; Kudo, M. Orexinergic Tone Affects Survival in Sepsis in Rat. Br. J. Anaesth. 2018, 120, e19–e20. [Google Scholar] [CrossRef]
- Perekrest, S.V.; Abramova, T.V.; Novikova, N.S. Comparative analysis of orexin-containing neurons reactions in the rat hypothalamus after lipopolysaccharide injection in different doses. Ross. Fiziol. Zhurnal Im. IM Sechenova 2009, 95, 1336–1345. [Google Scholar]
- Perekrest, S.V.; Shainidze, K.Z.; Loskutov, I.V.; Abramova, T.V.; Novikova, N.S.; Korneva, E.A. Immunoreactivity of hypothalamic orexin neurons and expression level of preproorexin gene in them after lipopolysaccharide injection. Ross. Fiziol. Zhurnal Im. IM Sechenova 2011, 97, 573–579. [Google Scholar]
- Perekrest, S.V.; Shainidze, K.Z.; Loskutov, Y.V.; Abramova, T.V.; Novikova, N.S.; Korneva, E.A. Immunoreactivity of Orexin-Containing Business in the Hypothalamus and the Level of Expression of the Preproorexin Gene in These Cells After Administration of Lipopolysaccharide. Neurosci. Behav. Physiol. 2013, 43, 256–260. [Google Scholar] [CrossRef]
- Takekawa, D.; Kushikata, T.; Akaishi, M.; Nikaido, Y.; Hirota, K. Influence of Orexinergic System on Survival in Septic Rats. Neuropsychobiology 2018, 77, 45–48. [Google Scholar] [CrossRef]
- Tanaka, S.; Toyoda, H.; Honda, Y.; Seki, Y.; Sakurai, T.; Honda, K.; Kodama, T. Hypocretin/Orexin Prevents Recovery from Sickness. Biomed. Rep. 2015, 3, 648–650. [Google Scholar] [CrossRef]
- Tanaka, S.; Takizawa, N.; Honda, Y.; Koike, T.; Oe, S.; Toyoda, H.; Kodama, T.; Yamada, H. Hypocretin/Orexin Loss Changes the Hypothalamic Immune Response. Brain Behav. Immun. 2016, 57, 58–67. [Google Scholar] [CrossRef]
- Hamasaki, M.Y.; Barbeiro, H.V.; Barbeiro, D.F.; Cunha, D.M.G.; Koike, M.K.; Machado, M.C.C.; Silva, F.P.d. Neuropeptides in the Brain Defense against Distant Organ Damage. J. Neuroimmunol. 2016, 290, 33–35. [Google Scholar] [CrossRef]
- Deutschman, C.S.; Raj, N.R.; McGuire, E.O.; Kelz, M.B. Orexinergic Activity Modulates Altered Vital Signs and Pituitary Hormone Secretion in Experimental Sepsis. Crit. Care Med. 2013, 41, e368. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Kong, Z.; Yang, S.; Da, J.; Chu, L.; Han, G.; Liu, J.; Tan, Y.; Zhang, J. Therapeutic Effects of Orexin-A in Sepsis-Associated Encephalopathy in Mice. J. Neuroinflamm. 2024, 21, 131. [Google Scholar] [CrossRef] [PubMed]
- Nedeljkovic-Kurepa, A.; Abraham, M.N.; Fernandes, T.D.; Yaipen, O.; Brewer, M.R.; Taylor, M.D.; Pavlov, V.A.; Deutschman, C.S. Loss of M1 Acetylcholine Receptor-Mediated Orexinergic Activity Contributes to Immune Dysfunction in Experimental Sepsis 2025. Res. Sq. 2025. [Google Scholar] [CrossRef]
- Igarashi, S.; Nozu, T.; Ishioh, M.; Kumei, S.; Saito, T.; Toki, Y.; Hatayama, M.; Yamamoto, M.; Shindo, M.; Tanabe, H.; et al. Centrally Administered Orexin Prevents Lipopolysaccharide and Colchicine Induced Lethality via the Vagal Cholinergic Pathway in a Sepsis Model in Rats. Biochem. Pharmacol. 2020, 182, 114262. [Google Scholar] [CrossRef]
- Ogawa, Y.; Irukayama-Tomobe, Y.; Murakoshi, N.; Kiyama, M.; Ishikawa, Y.; Hosokawa, N.; Tominaga, H.; Uchida, S.; Kimura, S.; Kanuka, M.; et al. Peripherally Administered Orexin Improves Survival of Mice with Endotoxin Shock. eLife 2016, 5, e21055. [Google Scholar] [CrossRef]
- Jia, X.; Yan, J.; Xia, J.; Xiong, J.; Wang, T.; Chen, Y.; Qi, A.; Yang, N.; Fan, S.; Ye, J.; et al. Arousal Effects of Orexin A on Acute Alcohol Intoxication-Induced Coma in Rats. Neuropharmacology 2012, 62, 775–783. [Google Scholar] [CrossRef]
- Xiong, X.; White, R.E.; Xu, L.; Yang, L.; Sun, X.; Zou, B.; Pascual, C.; Sakurai, T.; Giffard, R.G.; Xie, X. (Simon) Mitigation of Murine Focal Cerebral Ischemia by the Hypocretin/Orexin System Is Associated with Reduced Inflammation. Stroke 2013, 44, 764–770. [Google Scholar] [CrossRef]
- Pace, M.; Baracchi, F.; Gao, B.; Bassetti, C. Identification of Sleep-Modulated Pathways Involved in Neuroprotection from Stroke. Sleep 2015, 38, 1707–1718. [Google Scholar] [CrossRef]
- Carrive, P. Orexin, Orexin Receptor Antagonists and Central Cardiovascular Control. Front. Neurosci. 2013, 7, 257. [Google Scholar] [CrossRef]
- Bigford, G.E.; Bracchi-Ricard, V.C.; Nash, M.S.; Bethea, J.R. Alterations in Mouse Hypothalamic Adipokine Gene Expression and Leptin Signaling Following Chronic Spinal Cord Injury and with Advanced Age. PLoS ONE 2012, 7, e41073. [Google Scholar] [CrossRef][Green Version]
- Bigford, G.E.; Bracchi-Ricard, V.C.; Keane, R.W.; Nash, M.S.; Bethea, J.R. Neuroendocrine and Cardiac Metabolic Dysfunction and NLRP3 Inflammasome Activation in Adipose Tissue and Pancreas Following Chronic Spinal Cord Injury in the Mouse. ASN Neuro 2013, 5, 243–255. [Google Scholar] [CrossRef]
- Bonizzato, M.; James, N.D.; Pidpruzhnykova, G.; Pavlova, N.; Shkorbatova, P.; Baud, L.; Martinez-Gonzalez, C.; Squair, J.W.; DiGiovanna, J.; Barraud, Q.; et al. Multi-Pronged Neuromodulation Intervention Engages the Residual Motor Circuitry to Facilitate Walking in a Rat Model of Spinal Cord Injury. Nat. Commun. 2021, 12, 1925. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.; Squair, J.W.; Aureli, V.; James, N.D.; Bole-Feysot, L.; Dewany, I.; Hankov, N.; Baud, L.; Leonhartsberger, A.; Sveistyte, K.; et al. Hypothalamic Deep Brain Stimulation Augments Walking After Spinal Cord Injury. Nat. Med. 2024, 30, 3676–3686. [Google Scholar] [CrossRef]
- Harada, S. Role of orexin-A-mediated communication system between brain and peripheral tissues on the development of post-ischemic glucose intolerance-induced neuronal damage. Yakugaku Zasshi 2014, 134, 1055–1060. [Google Scholar] [CrossRef][Green Version]
- Burdakov, D.; Jensen, L.T.; Alexopoulos, H.; Williams, R.H.; Fearon, I.M.; O’Kelly, I.; Gerasimenko, O.; Fugger, L.; Verkhratsky, A. Tandem-Pore K+ Channels Mediate Inhibition of Orexin Neurons by Glucose. Neuron 2006, 50, 711–722. [Google Scholar] [CrossRef]
- Ten-Blanco, M.; Flores, Á.; Cristino, L.; Pereda-Pérez, I.; Berrendero, F. Targeting the Orexin/Hypocretin System for the Treatment of Neuropsychiatric and Neurodegenerative Diseases: From Animal to Clinical Studies. Front. Neuroendocr. 2023, 69, 101066. [Google Scholar] [CrossRef]
- Li, H.-T.; Viskaitis, P.; Bracey, E.; Peleg-Raibstein, D.; Burdakov, D. Transient Targeting of Hypothalamic Orexin Neurons Alleviates Seizures in a Mouse Model of Epilepsy. Nat. Commun. 2024, 15, 1249. [Google Scholar] [CrossRef]
- Tsuneki, H.; Wada, T.; Sasaoka, T. Chronopathophysiological Implications of Orexin in Sleep Disturbances and Lifestyle-Related Disorders. Pharmacol. Ther. 2018, 186, 25–44. [Google Scholar] [CrossRef]


| Strategy | Main Features | Development Stage | Advantages | Limitations | Potential in Acute CNS Injury | Risks/Concerns |
|---|---|---|---|---|---|---|
| Synthetic small-molecule agonists (OX2 selective) | Oral/iv, BBB-penetrant; strong wake-promoting effect | Late-stage clinical | Drug-like; scalable; predictable PK; circadian-timed dosing feasible | No OX1 activity; long-term safety unclear; hepatotoxicity concerns (TAK-994) | Best for subacute–chronic hypoarousal and rehab engagement | Insomnia; cardiovascular load; possible organ toxicity |
| Peptide replacement (orexin-A/B) | Intranasal delivery; dual-receptor engagement; CNS effects documented | Early translational | Rapid onset; strong biological effects; non-invasive | Short half-life; variable CNS uptake; possible peripheral mediation; supraphysiologic doses | Acute arousal rescue; brief pre-rehab priming | Tachycardia; inconsistent bioavailability; desensitization |
| Endogenous modulation (diet/behavior) | Exercise, BCAA, thermogenic and circadian cues | Preclinical/observational | Accessible; low-cost; scalable; aligns with rehabilitation | Mechanistically nonspecific; state-dependent; variable effects | Supports rehab motivation, circadian stabilization | Limited in highly impaired individuals |
| Neuromodulation (MNS, VNS, DBS) | Circuit-level stimulation; indirect orexin recruitment | Experimental/clinical (for other indications) | Bypasses PK limits; enhances arousal and autonomic stability | Invasive (DBS/VNS); protocols not standardized; access limited | Acute arousal, subacute circuit re-engagement, chronic rehab reinforcement | Autonomic fluctuations; surgical risks; off-target effects |
| Cell/gene therapy replacement | Orexin grafts; AAV orexin re-expression; effective in narcolepsy models | Preclinical/translational (for narcolepsy) | Potential long-term restoration of orexin tone | Invasive; not suited for secondary dysfunction; cost and limited access | Currently no realistic application; future indirect uses possible | Long-term safety unclear: immune rejection; tumorigenesis risks |
| Condition | N | Assessment Phase | Primary Outcomes | References |
|---|---|---|---|---|
| Ischemic stroke | 1 patient | Chronic phase (5 ypi) | ↓ CSF orexin-A | [83] |
| 29 patients 13 controls | Acute phase (2–3 dpi) | ↓ CSF and serum orexin-A, infarct volume inversely correlated with CSF orexin-A but not with serum orexin-A | [84] | |
| 163 patients | Acute phase (2–9 dpi) | ↑ serum orexin-A predictive of short-term neurological improvement. Excess of orexin A associated with post-stroke insomnia | [85] | |
| 183 patients | Acute phase (1–30 dpi) | ↓ CSF orexin-A predictive for poor sleep quality after stroke | [86] | |
| ICH | 11 patients | Acute phase (0–13 dpi) | ↓ CSF orexin-A | [87] |
| SAH | 15 patients 5 controls | Acute phase (0–14 dpi) | CSF orexin-A levels correlated to consciousness | [88] |
| 15 patients | Acute phase (0–10 dpi) | ↓ CSF orexin-A, especially with vasospasm and delayed neurological deficit | [89] | |
| SAH and ICH | 9 patients 12 controls | Acute/subacute phase (2–36 dpi) | ↓ CSF orexin-A | [90] |
| TBI | 44 patients 20 controls | Acute phase (1–4 dpi) | ↓ CSF orexin-A | [91] |
| 65 patients | Chronic phase (6 mpi) | ↓ CSF orexin-A in patients with post-TBI excessive daytime sleepiness | [92] | |
| 4 patients 4 controls | Post-mortem (7–42 dpi) | ↓ orexin neurons; ↑ gliosis | [93] | |
| TBI and stroke | 20 patients | Acute phase (0–14 dpi) | ↓ CSF orexin-A predictive of poor outcome/death | [94] |
| Sepsis | 1 patient | Acute phase (0–20 dpi) | ↓ CSF orexin-A (restored when systemic inflammation ended), ↓ BBB integrity (orexin-A leakage) | [95] |
| Meningitis and encephalitis | 14 patients | Acute phase (1 dpi) | ↓ CSF orexin-A | [96] |
| Disease Context | Model/Condition | Intervention | Assessment Phase | Primary Outcomes | References |
|---|---|---|---|---|---|
| Ischemic stroke | CCAO MCAO | N/A | Acute phase (1–7 dpi) |
| [97,98] |
| BCAO MCAO 4-Vo | icv orexin-A once pre- or post-injury | Acute phase (1–9 dpi) | Orexin-A ameliorates stroke consequences:
| [99,100,101,102,103,104,105,106,107] | |
| MCAO CCAO | Sleep deprivation 6 h pre-injury | Acute phase (3–7 dpi) | Sleep deprivation ameliorates stroke consequences:
| [108] | |
| MCAO | Orexin overexpression plasmid 3 days before MCAO | Acute/Subacute phase (1–10 dpi) | Plasmid ameliorates stroke consequences:
| [109] | |
| MCAO | IV parecoxib (COX2 inhibitor) | Acute phase (3 dpi) | Parecoxib ameliorates stroke consequences, and ↑ orexin positive cells and orexin levels | [110] | |
| Hemorrhagic stroke | Injection of autologous blood into basal ganglion (ICH) | intranasal or icv orexin-A once post-injury | Acute/Subacute/ Chronic phase (1–28 dpi) | Orexin-A ameliorates ICH consequences:
| [111,112] |
| Cardiac arrest | ACA Major cardiac vessels compression (transient global ischemia) | N/A | Acute phase (0–7 dpi) |
| [113,114] |
| ACA | intranasal or icv orexin-A once post-injury | Acute (0–3 dpi) and Subacute phase (12 dpi) | Orexin-A meliorates ACA consequences:
| [115,116,117,118] | |
| ACA | ip suvorexant (OX1/OX2 antagonist) once or thrice (5 min, 10 h, 20 h) post-injury | Acute phase (0–3 dpi) | Suvorexant has detrimental effects:
| [119,120] | |
| ACA | Caloric restriction once overnight pre-injury | Acute phase (0–3 dpi) | Caloric restriction ameliorates ACA consequences:
| [121] | |
| Hypoxia–Ischemia | Transient focal ischemia in vivo | Orexin-A once pre-injury | Acute phase | Orexin-A ameliorates hypoxia–ischemia consequences:
| [122] |
| Cobalt chloride on primary cortical neuronal cell culture | Orexin-A/B incubation for 24–48 h | Acute phase (1–2 dpi) | Orexin-A/B ameliorate hypoxia–ischemia consequences:
| [123] | |
| Chemical hypoxia | Orexin-A/B incubation | Acute phase | Orexin-A/B ameliorate hypoxia–ischemia consequences:
| [124] | |
| TBI | CCI Fluid perfusion injury | N/A | Acute/Subacute phase (1–30 dpi) |
| [125,126,127,128,129,130] |
| Modified Feeney’s method | icv orexin-A once post-injury | Acute phase (0–3 dpi) | Orexin-A ameliorates TBI consequences:
| [131] | |
| CCI | DORA (dual orexinergic antagonist) once post-injury | Acute/Subacute/ Chronic (7 dpi–3 mpi) | Acute orexinergic inhibition contributed to TBI consequences:
| [132] | |
| CCI | oral gavage DORA-22 (dual orexin antagonist) daily for 30 days post-injury | Subacute/Chronic phase (7 dpi–3 mpi) | Chronic orexinergic inhibition ameliorates TBI consequences:
| [133] | |
| CCI | tPCS post-injury | Acute phase (1–7 dpi) | tPCS ameliorates TBI consequences:
| [72] | |
| Free fall drop/ Modified Feeney’s method | VNS post-injury MNS post-injury TNS post-injury | Acute phase (1 dpi) | VNS, MNS and TNS ameliorate TBI consequences:
| [73,134,135,136,137,138] | |
| Free fall drop | LH-DBS post-injury | Acute phase (12 hpi) | LH-DBS ameliorates TBI consequences:
| [139] | |
| Free fall drop | LIFUS daily for 3 days post-injury | Acute phase (3 dpi) | LIFUS ameliorates TBI consequences:
| [140] | |
| Fluid percussion injury | BCAA dietary supplementation from day 2 to 7 post-injury | Acute/Subacute/ Chronic (4–30 dpi) | BCAA ameliorates TBI consequences:
| [70,141] | |
| Repeated mild TBI | Chronic icv orexin-A daily from day 5 to 33 post-injury | Chronic phase (14–28 dpi) |
| [142,143] | |
| SCI | Complete spinal cord transection at T9 | intrathecal orexin-A daily for 3 days post-injury | Acute phase (1–7 dpi) | Orexin-A ameliorates SCI consequences:
| [144] |
| Systemic biological and toxic insults | ip LPS in wildtype and/or orexin-ablated (OX/AT3 transgenic) mice | N/A | Acute phase (1–3 dpi) |
| [96,145,146,147,148,149,150,151,152] |
| Acute pancreatitis (non-infectious) | N/A | Acute phase (1 dpi) |
| [153] | |
| Cecal ligation and puncture | intranasal or icv Orexin-A once or daily for 7 days post-injury | Acute phase (1–7 dpi) | Orexin-A ameliorates sepsis consequences:
| [154,155] | |
| Cecal ligation and puncture | ip xanomeline (mAChR agonist) thrice (0, 23, 47 h) post-injury | Acute phase (2 dpi) | Xanomeline ameliorates sepsis consequences:
| [156] | |
| LPS-induced endotoxemia | ict, ip or sc orexin-A once pre- during or post-injury | Acute phase (1–3 dpi) | Central, peripheral orexin-A (crosses BBB in endotoxemia):
| [157,158] | |
| Alcohol-induced coma | icv orexin-A/B once post-injury | Acute phase (7 dpi) | Orexin-A/B ameliorates intoxication consequences:
| [159] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otero-López, P.; Madrid-González, X.; Fernández-Dueñas, V.; Flores, Á. Awakening Recovery: Enhancing Orexinergic Tone After Acute CNS Damage. Pharmaceuticals 2025, 18, 1879. https://doi.org/10.3390/ph18121879
Otero-López P, Madrid-González X, Fernández-Dueñas V, Flores Á. Awakening Recovery: Enhancing Orexinergic Tone After Acute CNS Damage. Pharmaceuticals. 2025; 18(12):1879. https://doi.org/10.3390/ph18121879
Chicago/Turabian StyleOtero-López, Paloma, Xavier Madrid-González, Víctor Fernández-Dueñas, and África Flores. 2025. "Awakening Recovery: Enhancing Orexinergic Tone After Acute CNS Damage" Pharmaceuticals 18, no. 12: 1879. https://doi.org/10.3390/ph18121879
APA StyleOtero-López, P., Madrid-González, X., Fernández-Dueñas, V., & Flores, Á. (2025). Awakening Recovery: Enhancing Orexinergic Tone After Acute CNS Damage. Pharmaceuticals, 18(12), 1879. https://doi.org/10.3390/ph18121879

