Pharmacological Evaluation of Ticagrelor and Aspirin Versus Clopidogrel and Aspirin Pretreatment on Infarct Artery Flow in Patients with Acute STEMI
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
- Patients who received aspirin and clopidogrel therapy in pretreatment;
- Patients who received aspirin and ticagrelor therapy in pretreatment.
- TIMI 0—no perfusion: no antegrade flow beyond the site of occlusion.
- TIMI 1—penetration without perfusion: contrast passes beyond the occlusion but fails to opacify the distal coronary bed.
- TIMI 2—partial perfusion: contrast opacifies the distal vessel but flow is slower than normal.
- TIMI 3—complete perfusion: normal flow, comparable to non-infarcted coronary arteries.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ojha, N.; Dhamoon, A.S. Myocardial Infarction. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK537076/ (accessed on 28 July 2025).
- Salari, N.; Morddarvanjoghi, F.; Abdolmaleki, A.; Rasoulpoor, S.; Khaleghi, A.A.; Hezarkhani, L.A.; Shohaimi, S.; Mohammadi, M. The global prevalence of myocardial infarction: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2023, 23, 206. [Google Scholar] [CrossRef]
- Bjarnadóttir, S.; Aspelund, T.; Gudmundsson, E.F.; Gudnason, V.; Andersen, K. Why have temporal trends in STEMI and NSTEMI incidence and short-term mortality changed in recent years? A nationwide 35-year cohort study in Iceland. BMJ Open 2025, 15, e087815. [Google Scholar] [CrossRef]
- Collet, J.P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; ESC Scientific Document Group; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef]
- Zuccarelli, V.; Andreaggi, S.; Walsh, J.L.; Kotronias, R.A.; Chu, M.; Vibhishanan, J.; Banning, A.P.; De Maria, G.L. Treatment and Care of Patients with ST-Segment Elevation Myocardial Infarction—What Challenges Remain after Three Decades of Primary Percutaneous Coronary Intervention? J. Clin. Med. 2024, 13, 2923. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, Y.; Hara, H.; Onuma, Y.; Katagiri, Y.; Amano, T.; Kobayashi, Y.; Muramatsu, T.; Ishii, H.; Kozuma, K.; Tanaka, N.; et al. Task Force on Primary Percutaneous Coronary Intervention (PCI) of the Japanese Cardiovascular Interventional Therapeutics (CVIT). CVIT expert consensus document on primary percutaneous coronary intervention (PCI) for acute myocardial infarction (AMI) update 2022. Cardiovasc. Interv. Ther. 2022, 37, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Bainey, K.R.; Marquis-Gravel, G.; Belley-Côté, E.; Turgeon, R.D.; Ackman, M.L.; Babadagli, H.E.; Bewick, D.; Boivin-Proulx, L.A.; Cantor, W.J.; Fremes, S.E.; et al. Canadian Cardiovascular Society/Canadian Association of Interventional Cardiology 2023 Focused Update of the Guidelines for the Use of Antiplatelet Therapy. Can. J. Cardiol. 2024, 40, 160–181. [Google Scholar] [CrossRef]
- Dong, L.; Lu, C.; Wensen, C.; Fuzhong, C.; Khalid, M.; Xiaoyu, D.; Guangjuan, L.; Yanxia, Q.; Yufeng, Z.; Xinjian, L.; et al. Performance of PRECISE-DAPT and Age-Bleeding-Organ Dysfunction Score for Predicting Bleeding Complication During Dual Antiplatelet Therapy in Chinese Elderly Patients. Front. Cardiovasc. Med. 2022, 9, 910805. [Google Scholar] [CrossRef]
- Furtado, R.H.M.; Nicolau, J.C.; Magnani, G.; Im, K.; Bhatt, D.L.; Storey, R.F.; Steg, P.G.; Spinar, J.; Budaj, A.; Kontny, F.; et al. Long-term ticagrelor for secondary prevention in patients with prior myocardial infarction and no history of coronary stenting: Insights from PEGASUS-TIMI 54. Eur. Heart J. 2020, 41, 1625–1632. [Google Scholar] [CrossRef]
- Firman, D.; Taslim, I.; Wangi, S.B.; Yonas, E.; Pranata, R.; Alkatiri, A.A. The effect of early dual antiplatelet timing on the microvascular resistance and ventricular function in primary percutaneous coronary intervention. Medicine 2020, 99, e21177. [Google Scholar] [CrossRef] [PubMed]
- Tersalvi, G.; Biasco, L.; Cioffi, G.M.; Pedrazzini, G. Acute Coronary Syndrome, Antiplatelet Therapy, and Bleeding: A Clinical Perspective. J. Clin. Med. 2020, 9, 2064. [Google Scholar] [CrossRef]
- Chen, Z.M.; Jiang, L.X.; Chen, Y.P.; Xie, J.X.; Pan, H.C.; Peto, R.; Collins, R.; Liu, L.S.; COMMIT (ClOpidogrel and Metoprolol in Myocardial Infarction Trial) Collaborative Group. Addition of clopidogrel to aspirin in 45,852 patients with acute myocardial infarction: Randomised placebo-controlled trial. Lancet 2005, 366, 1607–1621. [Google Scholar] [CrossRef] [PubMed]
- Sabatine, M.S.; Cannon, C.P.; Gibson, C.M.; López-Sendón, J.L.; Montalescot, G.; Theroux, P.; Claeys, M.J.; Cools, F.; Hill, K.A.; Skene, A.M.; et al. CLARITY-TIMI 28 Investigators. Addition of clopidogrel to aspirin and fibrinolytic therapy for myocardial infarction with ST-segment elevation. N. Engl. J. Med. 2005, 352, 1179–1189. [Google Scholar] [CrossRef]
- Tomaniak, M.; Chichareon, P.; Onuma, Y.; Deliargyris, E.N.; Takahashi, K.; Kogame, N.; Modolo, R.; Chang, C.C.; Rademaker-Havinga, T.; Storey, R.F.; et al. GLOBAL LEADERS Trial Investigators. Benefit and Risks of Aspirin in Addition to Ticagrelor in Acute Coronary Syndromes: A Post Hoc Analysis of the Randomized GLOBAL LEADERS Trial. JAMA Cardiol. 2019, 4, 1092–1101. [Google Scholar] [CrossRef]
- Montalescot, G.; Hof, A.W.v.; Lapostolle, F.; Silvain, J.; Lassen, J.F.; Bolognese, L.; Cantor, W.J.; Cequier, Á.; Chettibi, M.; ATLANTIC Investigators; et al. Prehospital ticagrelor in ST-segment elevation myocardial infarction. N. Engl. J. Med. 2014, 371, 1016–1027. [Google Scholar] [CrossRef]
- Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; et al. ESC Scientific Document Group. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef] [PubMed]
- Capodanno, D.; Angiolillo, D.J. Pretreatment with antiplatelet drugs in invasively managed patients with coronary artery disease in the contemporary era: Review of the evidence and practice guidelines. Circ. Cardiovasc. Interv. 2015, 8, e002301. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Gitto, M.; Shah, S.; Saito, Y.; Tirziu, D.; Chieffo, A.; Stefanini, G.G.; Lansky, A.J. Antiplatelet Strategies Following PCI: A Review of Trials Informing Current and Future Therapies. J. Soc. Cardiovasc. Angiogr. Interv. 2023, 2, 100607. [Google Scholar] [CrossRef]
- Małek, L.A.; Witkowski, A. Use of antiplatelet therapies during primary percutaneous coronary intervention for acute myocardial infarction. Interv. Cardiol. 2010, 2, 705–718. [Google Scholar] [CrossRef]
- Alexopoulos, D.; Xanthopoulou, I.; Gkizas, V.; Kassimis, G.; Theodoropoulos, K.C.; Makris, G.; Koutsogiannis, N.; Damelou, A.; Tsigkas, G.; Davlouros, P.; et al. Randomized assessment of ticagrelor versus prasugrel antiplatelet effects in patients with ST-segment-elevation myocardial infarction. Circ. Cardiovasc. Interv. 2012, 5, 797–804. [Google Scholar] [CrossRef]
- Djordjevic, N. Genotyping genetic variants of CYP2C19 for precision antiplatelet dosing: State of the art and future perspectives. Expert Opin. Drug Metab. Toxicol. 2022, 18, 817–830. [Google Scholar] [CrossRef]
- Maqbool, S.; Ali, M.S.; Rehman, A.; Ur Rehman, M.E.; Iqbal, J.; Razzaq, A.; Kamal, A.; Shivamadhu, S.S.; Afzal, M.; Fazal, F.; et al. Efficacy and Safety Profile of Ticagrelor Versus Clopidogrel in Percutaneous Coronary Intervention (PCI) for Acute Coronary Syndrome (ACS): A Systematic Review and Meta-Analysis. Cureus 2023, 15, e46455. [Google Scholar] [CrossRef]
- Theidel, U.; Asseburg, C.; Giannitsis, E.; Katus, H. Cost-effectiveness of ticagrelor versus clopidogrel for the prevention of atherothrombotic events in adult patients with acute coronary syndrome in Germany. Clin. Res. Cardiol. 2013, 102, 447–458. [Google Scholar] [CrossRef]
- Hashemi-Meshkini, A.; Tajik, A.; Ayati, N.; Nikfar, S.; Koochak, R.; Yaghoubifard, S.; Abbasi, A.; Varmaghani, M. Cost-effectiveness comparison between ticagrelor and clopidogrel in acute coronary syndrome in Iran. J. Tehran Heart Cent. 2023, 18, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.T.; Do, D.V.; Mellstrom, C.; Nguyen, T.Q.; Pham, H.M.; Hoang, S.V.; Luu, T.C.; Phuong, T.L. Cost-effectiveness of ticagrelor compared with clopidogrel in patients with acute coronary syndrome from Vietnamese healthcare payers’ perspective. Adv. Ther. 2021, 38, 4026–4039. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Ye, Z.; Li, L.; Su, Q. Effect of preoperative loading dose ticagrelor and clopidogrel on no-reflow phenomenon during intervention in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: A systematic review and meta-analysis. Drug Des. Devel. Ther. 2018, 12, 2039–2049. [Google Scholar]
- Zhu, K.; Fu, Q.; Zhang, N.; Huang, Y.J.; Zhang, Q. Pre-PCI medication using clopidogrel and ticagrelor in the treatment of patients with acute myocardial infarction. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 4636–4641. [Google Scholar] [PubMed]
- Winter, J.L.; Lindefjeld, D.S.; Veas, N.; Guarda, E.; Valdebenito, M.; Méndez, M.; Pérez, O.; Zuanic, K.; Mestas, M.; Martínez, A. Angiographic and electrocardiographic parameters of myocardial reperfusion in angioplasty of patients with ST elevation acute myocardial infarction loaded with ticagrelor or clopidogrel (MICAMI-TICLO trial). Cardiovasc. Revasc. Med. 2014, 15, 284–288. [Google Scholar] [CrossRef]
- Elahifar, A.; Rafati, A.; Alemzadeh-Ansari, M.J.; Pasebani, Y.; Naghshtabrizi, B.; Mohammadi, Y.; Hosseini, S.K. The Comparison of the Initial TIMI Flow Grade in Acute ST-Elevation Myocardial Infarction Patients Receiving Ticagrelor vs. Clopidogrel before Undergoing Primary Percutaneous Coronary Intervention: A Prospective Cohort Study. Cardiol. Res. Pract. 2024, 2024, 6632656. [Google Scholar] [CrossRef]
- Schaaf, M.J.; Mewton, N.; Rioufol, G.; Angoulvant, D.; Cayla, G.; Delarche, N.; Jouve, B.; Guerin, P.; Vanzetto, G.; Coste, P.; et al. Pre-PCI angiographic TIMI flow in the culprit coronary artery influences infarct size and microvascular obstruction in STEMI patients. J. Cardiol. 2016, 67, 248–253. [Google Scholar] [CrossRef]
- Elbrasi, E.; Glover, C.; So, D.; Froeschl, M.; Dick, A.; Marquis, J.; Labinaz, M.; Blondeau, M.; Le May, M. The influence of initial thrombolysis in myocardial infarction flow grades on outcomes of patients with ST-elevation myocardial infarction. Can. J. Cardiol. 2013, 29, S238. [Google Scholar] [CrossRef]
- de Waha, S.; Desch, S.; Eitel, I.; Fuernau, G.; Lurz, P.; Leuschner, A.; Grothoff, M.; Gutberlet, M.; Schuler, G.; Thiele, H. Relationship and prognostic value of microvascular obstruction and infarct size in ST-elevation myocardial infarction as visualized by magnetic resonance imaging. Clin. Res. Cardiol. 2012, 101, 487–495. [Google Scholar] [CrossRef]
- Stone, G.W.; Selker, H.P.; Thiele, H.; Patel, M.R.; Udelson, J.E.; Ohman, E.M.; Maehara, A.; Eitel, I.; Granger, C.B.; Jenkins, P.L.; et al. Relationship between infarct size and outcomes following primary PCI: Patient-level analysis from 10 randomized trials. J. Am. Coll. Cardiol. 2016, 67, 1674–1683. [Google Scholar] [CrossRef]
- Bonello, L.; Laine, M.; Kipson, N.; Mancini, J.; Helal, O.; Fromonot, J.; Gariboldi, V.; Condo, J.; Thuny, F.; Frere, C.; et al. Ticagrelor increases adenosine plasma concentration in patients with an acute coronary syndrome. J. Am. Coll. Cardiol. 2014, 63, 872–877. [Google Scholar] [CrossRef]
- Fröbert, O.; Lagerqvist, B.; Olivecrona, G.K.; Omerovic, E.; Gudnason, T.; Maeng, M.; Aasa, M.; Angerås, O.; Calais, F.; Danielewicz, M.; et al. TASTE Trial. Thrombus aspiration during ST-segment elevation myocardial infarction. N. Engl. J. Med. 2013, 369, 1587–1597. [Google Scholar] [CrossRef]
- Ubaid, S.; Ford, T.J.; Berry, C.; Murray, H.M.; Wrigley, B.; Khan, N.; Thomas, M.R.; Armesilla, A.L.; Townend, J.N.; Khogali, S.S.; et al. Cangrelor versus ticagrelor in patients treated with primary percutaneous coronary intervention: Impact on platelet activity, myocardial microvascular function and infarct size: A randomized controlled trial. Thromb. Haemost. 2019, 119, 1171–1181. [Google Scholar] [CrossRef] [PubMed]
- Karathanos, A.; Lin, Y.; Dannenberg, L.; Parco, C.; Schulze, V.; Brockmeyer, M.; Jung, C.; Heinen, Y.; Perings, S.; Zeymer, U.; et al. Routine Glycoprotein IIb/IIIa Inhibitor Therapy in ST-Segment Elevation Myocardial Infarction: A Meta-analysis. Can. J. Cardiol. 2019, 35, 1576–1588. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, H.; Dong, P.; Li, Z.; Wang, Y.; Duan, N.; Zhao, Y.; Wang, S. Long-term outcomes of drug-eluting versus bare-metal stent for ST-elevation myocardial infarction. Arq. Bras. Cardiol. 2014, 102, 529–538. [Google Scholar] [CrossRef]
- Marinsek, M.; Šuran, D.; Sinkovic, A. Factors of hospital mortality in men and women with ST-elevation myocardial infarction—An observational, retrospective, single centre study. Int. J. Gen. Med. 2023, 16, 5955–5968. [Google Scholar] [CrossRef]
- Spadafora, L.; Betti, M.; D’Ascenzo, F.; De Ferrari, G.; De Filippo, O.; Gaudio, C.; Collet, C.; Sabouret, P.; Agostoni, P.; Zivelonghi, C.; et al. Impact of in-hospital bleeding on postdischarge therapies and prognosis in acute coronary syndromes. J. Cardiovasc. Pharmacol. 2025, 85, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Bangalore, S.; Toklu, B.; Patel, N.; Feit, F.; Stone, G.W. Newer-generation ultrathin strut drug-eluting stents versus older second-generation thicker strut drug-eluting stents for coronary artery disease. Circulation 2018, 138, 2216–2226. [Google Scholar] [CrossRef]
- Pedersen, F.; Butrymovich, V.; Kelbæk, H.; Wachtell, K.; Helqvist, S.; Kastrup, J.; Holmvang, L.; Clemmensen, P.; Engstrøm, T.; Grande, P.; et al. Short- and long-term cause of death in patients treated with primary PCI for STEMI. J. Am. Coll. Cardiol. 2014, 64, 2101–2108. [Google Scholar] [CrossRef] [PubMed]
- James, S.; Budaj, A.; Aylward, P.; Buck, K.K.; Cannon, C.P.; Cornel, J.H.; Harrington, R.A.; Horrow, J.; Katus, H.; Keltai, M.; et al. Ticagrelor versus clopidogrel in acute coronary syndromes in relation to renal function: Results from the Platelet Inhibition and Patient Outcomes (PLATO) trial. Circulation 2010, 122, 1056–1067. [Google Scholar] [CrossRef] [PubMed]
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.-A.; Dweck, M.R.; ESC Scientific Document Group; et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Grigg, W.S.; Lee, J.J. TIMI Grade Flow. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
| Variable | All Patients (n = 299) | Aspirin + Clopidogrel (n = 125) | Aspirin + Ticagrelor (n = 174) | p-Value |
|---|---|---|---|---|
| Age (years) | 64.1 ± 12.4 | 66.1 ± 12.4 | 62.6 ± 12.2 | 0.015 1* |
| Gender | ||||
| Male | 207 (69.2%) | 85 (68.0%) | 122 (70.1%) | 0.792 3 |
| Female | 92 (30.8%) | 40 (32.0%) | 52 (29.9%) | |
| Diabetes | 88 (29.4%) | 40 (32.0%) | 48 (27.6%) | 0.611 3 |
| Hypercholesterolemia | 202 (67.6%) | 86 (68.8%) | 116 (66.7%) | 0.881 3 |
| Hypertension | 241 (80.6%) | 101 (80.8%) | 140 (80.5%) | 0.758 3 |
| Active smoker | 166 (55.5%) | 62 (49.6%) | 104 (59.8%) | 0.097 3 |
| Multivessel disease | 171 (57.2%) | 73 (58.4%) | 98 (56.3%) | 1.000 3 |
| Number of PCI-treated target vessels | ||||
| One target vessel | 245 (81.9%) | 102 (81.6%) | 143 (82.2%) | 0.913 4 |
| Two target vessels | 34 (11.4%) | 13 (10.4%) | 21 (12.1%) | |
| Three target vessels | 1 (0.3%) | 0 (0.0%) | 1 (0.6%) | |
| PCI-treated target vessel | ||||
| RCA | 114 (38.1%) | 51 (40.8%) | 63 (36.2%) | 0.363 3 |
| LAD | 107 (35.8%) | 30 (24.0%) | 77 (44.2%) | 0.001 3* |
| RCX | 42 (14.0%) | 25 (20.0%) | 17 (9.7%) | 0.014 3* |
| OM | 23 (7.7%) | 14 (11.2%) | 9 (5.2%) | 0.073 3 |
| LMCA | 5 (1.7%) | 1 (0.8%) | 4 (2.3%) | 0.652 4 |
| Venous graft | 5 (1.7%) | 1 (0.8%) | 4 (2.3%) | 0.652 4 |
| Minor vessels (PDA, PLV, D) | 16 (5.4%) | 6 (4.8%) | 10 (5.8%) | 0.970 3 |
| Stent implantation | 257 (86.0%) | 105 (84.0%) | 152 (87.4%) | 0.512 3 |
| Number of stents | 1 (1–2) | 1 (1–2) | 1 (1–2) | 0.467 2 |
| 0 | 42 (14.0%) | 20 (16.0%) | 22 (12.6%) | 0.611 4 |
| 1 | 161 (53.8%) | 66 (52.8%) | 95 (54.6%) | |
| 2 | 76 (25.4%) | 33 (26.4%) | 43 (24.7%) | |
| 3 | 16 (5.4%) | 4 (3.2%) | 12 (6.9%) | |
| 4 | 4 (1.3%) | 2 (1.6%) | 2 (1.1%) | |
| Type of stent | ||||
| Bare-metal stent | 86 (28.8%) | 52 (41.6%) | 34 (19.5%) | <0.001 3* |
| Drug-eluting stent | 173 (57.9%) | 52 (41.6%) | 121 (69.5%) | <0.001 3* |
| Absorb bioresorbable scaffold | 4 (1.3%) | 2 (1.6%) | 2 (1.1%) | 1.000 4 |
| Access | ||||
| Radial | 146 (48.8%) | 72 (57.6%) | 60 (34.5%) | <0.001 4* |
| Femoral | 132 (44.1%) | 48 (38.4%) | 98 (56.3%) | |
| Radial-femoral | 18 (6.0%) | 4 (3.2%) | 14 (8.0%) | |
| Ulnar | 3 (1.0%) | 1 (0.8%) | 2 (1.1%) | |
| Concomitant anticoagulant | 293 (98.0%) | 122 (97.6%) | 171 (98.3%) | 0.697 3 |
| Heparin | 288 (96.3%) | 120 (96.0%) | 168 (96.6%) | 1.000 3 |
| Enoxaparin | 5 (1.7%) | 2 (1.6%) | 3 (1.7%) | 1.000 4 |
| Concomitant glycoprotein IIb/IIIa inhibitor | 60 (20.1%) | 30 (24.0%) | 30 (17.2%) | 0.035 3* |
| Variable | Including Patients Who Received Concomitant Glycoprotein IIb/IIIa Inhibitor | Excluding Patients Who Received Concomitant Glycoprotein IIb/IIIa Inhibitor | ||||||
|---|---|---|---|---|---|---|---|---|
| All Patients (n = 299) | Aspirin + Clopidogrel (n = 125) | Aspirin + Ticagrelor (n = 174) | p-Value | All Patients (n = 239) | Aspirin + Clopidogrel (n = 95) | Aspirin + Ticagrelor (n = 144) | p-Value | |
| TIMI flow grade before PCI | ||||||||
| Grade 0 or 1 | 194 (64.9%) | 97 (77.6%) | 97 (55.7%) | p < 0.001 1* | 141 (59.0%) | 70 (73.7%) | 71 (49.3%) | p < 0.001 1* |
| Grade 2 | 65 (21.7%) | 14 (11.2%) | 51 (29.3%) | 63 (26.4%) | 13 (13.7%) | 50 (34.7%) | ||
| Grade 3 | 40 (13.4%) | 14 (11.2%) | 26 (14.9%) | 35 (14.6%) | 12 (12.6%) | 23 (16.0%) | ||
| TIMI flow grade after PCI | ||||||||
| Grade 0 or 1 | 11 (3.7%) | 5 (4.0%) | 6 (3.4%) | p = 0.056 1 | 5 (2.1%) | 3 (3.2%) | 2 (1.4%) | p = 0.007 2* |
| Grade 2 | 23 (7.7%) | 15 (12.0%) | 8 (4.6%) | 13 (5.4%) | 10 (10.5%) | 3 (2.1%) | ||
| Grade 3 | 265 (88.6%) | 105 (84.0%) | 160 (92.0%) | 221 (92.5%) | 82 (86.3%) | 139 (96.5%) | ||
| Death during hospitalization | 29 (9.7%) | 17 (13.6%) | 12 (6.9%) | p = 0.083 1 | 23 (9.6%) | 14 (14.7%) | 9 (6.2%) | p = 0.051 1 |
| Variable | Survived (n = 270) | Died (n = 29) | Crude OR with 95% CI, p-Value | Adjusted # OR with 95% CI, p-Value | VIF |
|---|---|---|---|---|---|
| Age (years) | 63.4 ± 12.1 | 69.8 ± 13.4 | 1.045 (1.011; 1.081), 0.010 * | – | – |
| Male gender | 193 (71.5%) | 14 (48.3%) | 0.372 (0.172; 0.808); 0.012 * | 0.325 (0.119; 0.891), 0.029 * | 1.006 |
| Diabetes | 78 (28.9%) | 10 (34.5%) | 1.365 (0.598; 3.115). 0.460 | – | – |
| Hypercholesterolemia | 181 (67.0%) | 21 (72.4%) | 1.450 (0.563; 3.736). 0.441 | – | – |
| Hypertension | 217 (80.4%) | 24 (82.8%) | 1.585 (0.457; 5.500), 0.468 | – | – |
| Active smoker | 155 (57.4%) | 11 (37.9%) | 0.457 (0.204; 1.024), 0.057 | – | – |
| Multivessel disease | 154 (57.0%) | 17 (58.6%) | 2.015 (0.655; 6.201), 0.222 | – | – |
| Two or three PCI-treated target vessels | 34 (12.6%) | 1 (3.4%) | 0.248 (0.033; 1.886), 0.178 | – | – |
| LAD as culprit (PCI-treated target) vessel | 30 (24.0%) | 77 (44.2%) | 1.124 (0.501; 2.524), 0.776 | – | – |
| RCX as culprit (PCI-treated target) vessel | 25 (20.0%) | 17 (9.7%) | 1.327 (0.473; 3.723), 0.591 | – | – |
| Stent implantation | 236 (87.4%) | 21 (72.4%) | 0.378 (0.155; 0.921), 0.032 * | – | – |
| Number of stents | 1 (1–2) | 1 (0–1.5) | 0.805 (0.491; 1.322), 0.392 | – | – |
| Bare-metal stent | 74 (27.4%) | 12 (41.4%) | 1.870 (0.852; 4.103), 0.119 | – | – |
| Drug-eluting stent | 165 (61.1%) | 8 (27.6%) | 0.242 (0.104; 0.567), 0.001 * | 0.192 (0.061; 0.606), 0.005 * | 1.352 |
| Absorb bioresorbable scaffold | 3 (1.1%) | 1 (3.4%) | 3.179 (0.320; 31.950), 0.324 | – | – |
| Radial access | 141 (52.2%) | 5 (17.2%) | 0.191 (0.071; 0.514), 0.001 * | 0.333 (0.099; 1.122), 0.076 | 1.510 |
| Femoral access | 48 (38.4%) | 98 (56.3%) | 3.760 (1.608; 8.794), 0.002 * | – | – |
| Aspirin and clopidogrel | 108 (40.0%) | 17 (58.6%) | 2.125 (0.976; 4.627), 0.058 | – | – |
| Concomitant anticoagulant | 264 (97.8%) | 29 (100.0%) | – | – | – |
| Concomitant glycoprotein IIb/IIIa inhibitor | 54 (20.0%) | 6 (20.7%) | 1.092 (0.410; 2.908), 0.861 | 0.225 (0.062; 0.817), 0.023 * | 1.246 |
| TIMI Grade 0 or 1 before PCI | 173 (64.1%) | 21 (72.4%) | 1.472 (0.628; 3.448), 0.374 | – | – |
| TIMI Grade 3 after PCI | 242 (89.6%) | 23 (79.3%) | 0.444 (0.166; 1.182), 0.104 | – | – |
| Variable | Poor TIMI Flow (Grade 0 or 1) Before PCI (n = 194) | Good TIMI Flow (Grade 2 or 3) Before PCI (n = 105) | Crude OR with 95% CI, p-Value | Adjusted # OR with 95% CI, p-Value | VIF |
|---|---|---|---|---|---|
| Age (years) | 64.6 ± 12.6 | 63.0 ± 11.9 | 1.011 (0.991; 1.030), 0.278 | – | – |
| Male gender | 133 (68.6%) | 74 (70.5%) | 0.913 (0.544; 1.532); 0.731 | – | – |
| Diabetes | 55 (28.3%) | 33 (31.4%) | 0.872 (0.517; 1.469). 0.606 | – | – |
| Hypercholesterolemia | 120 (61.9%) | 82 (78.1%) | 0.448 (0.250; 0.806). 0.007 * | 0.310 (0.146; 0.657), 0.002 * | 1.118 |
| Hypertension | 159 (82.0%) | 82 (78.1%) | 1.364 (0.716; 2.600), 0.345 | 3.147 (1.381; 7.170), 0.006 * | 1.110 |
| Active smoker | 104 (53.6%) | 62 (59.1%) | 0.849 (0.518; 1.391), 0.517 | – | – |
| Multivessel disease | 110 (56.7%) | 61 (58.1%) | 0.633 (0.348; 1.150), 0.133 | 0.534 (0.271; 1.052), 0.070 | 1.028 |
| LAD as culprit (PCI-treated target) vessel | 66 (34.0%) | 41 (39.0%) | 0.833 (0.505; 1.375), 0.475 | – | – |
| RCX as culprit (PCI-treated target) vessel | 29 (14.9%) | 13 (12.4%) | 1.285 (0.635; 2.602), 0.486 | – | – |
| Aspirin and clopidogrel | 97 (50.0%) | 28 (26.7%) | 2.750 (1.641; 4.607), <0.001 * | 2.785 (1.486; 5.219), 0.001 * | 1.001 |
| Concomitant anticoagulant | 188 (96.9%) | 105 (100.0%) | – | – | – |
| Variable | Non-Normal Perfusion (TIMI Flow Grade 0–2) After PCI (n = 34) | Normal Perfusion (TIMI Flow Grade 3) After PCI (n = 265) | Crude OR with 95% CI, p-Value | Adjusted # OR with 95% CI, p-Value | VIF |
|---|---|---|---|---|---|
| Age (years) | 68.2 ± 13.6 | 63.5 ± 12.2 | 0.969 (0.940; 0.999), 0.042 * | – | – |
| Male gender | 20 (58.8%) | 187 (70.6%) | 1.678 (0.807; 3.490); 0.166 | – | – |
| Diabetes | 10 (29.4%) | 78 (29.4%) | 0.876 (0.392; 1.959). 0.748 | – | – |
| Hypercholesterolemia | 24 (70.6%) | 178 (67.2%) | 0.593 (0.233; 1.510). 0.274 | – | – |
| Hypertension | 27 (79.4%) | 214 (80.7%) | 0.967 (0.352; 2.657), 0.947 | – | – |
| Active smoker | 14 (41.2%) | 152 (57.4%) | 1.687 (0.789; 3.605), 0.177 | – | – |
| Multivessel disease | 17 (50.0%) | 154 (58.1%) | 1.104 (0.438; 2.782), 0.834 | – | – |
| Two or three PCI-treated target vessels | 2 (5.9%) | 33 (12.4%) | 1.959 (0.444; 8.640), 0.375 | – | – |
| LAD as culprit (PCI-treated target) vessel | 7 (20.6%) | 100 (37.7%) | 1.974 (0.809; 4.815), 0.135 | – | – |
| RCX as culprit (PCI-treated target) vessel | 5 (14.7%) | 37 (14.0%) | 0.792 (0.283; 2.213), 0.656 | – | – |
| Stent implantation | 20 (58.8%) | 237 (89.4%) | 5.925 (2.696; 13.020), <0.001 * | 6.825 (2.166; 21.508), 0.001 * | 1.017 |
| Number of stents | 1 (0–1) | 1 (1–2) | 2.329 (1.360; 3.989), 0.002 * | – | – |
| Bare-metal stent | 8 (23.5%) | 78 (29.4%) | 1.356 (0.588; 3.125), 0.475 | – | – |
| Drug-eluting stent | 12 (35.3%) | 161 (60.8%) | 2.838 (1.347; 5.980), 0.006 * | – | – |
| Absorb bioresorbable scaffold | 0 (0.0%) | 4 (1.5%) | – | – | – |
| Radial access | 12 (35.3%) | 134 (50.6%) | 1.875 (0.892; 3.944), 0.097 | – | – |
| Femoral access | 19 (55.9%) | 113 (42.6%) | 0.587 (0.286; 1.205), 0.147 | – | – |
| Aspirin and ticagrelor | 14 (41.2%) | 160 (60.4%) | 2.177 (1.053; 4.499), 0.036 * | – | – |
| Concomitant anticoagulant | 33 (97.1%) | 260 (98.1%) | 1.576 (0.179; 13.903), 0.682 | – | – |
| Concomitant glycoprotein IIb/IIIa inhibitor | 16 (47.1%) | 44 (16.6%) | 0.209 (0.094; 0.467), <0.001 * | 0.218 (0.084; 0.563), 0.002 * | 1.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opancina, M.; Opancina, V.; Milosavljević, M.N.; Pejčić, A.V.; Stepovic, M.; Jovic, Z. Pharmacological Evaluation of Ticagrelor and Aspirin Versus Clopidogrel and Aspirin Pretreatment on Infarct Artery Flow in Patients with Acute STEMI. Pharmaceuticals 2025, 18, 1856. https://doi.org/10.3390/ph18121856
Opancina M, Opancina V, Milosavljević MN, Pejčić AV, Stepovic M, Jovic Z. Pharmacological Evaluation of Ticagrelor and Aspirin Versus Clopidogrel and Aspirin Pretreatment on Infarct Artery Flow in Patients with Acute STEMI. Pharmaceuticals. 2025; 18(12):1856. https://doi.org/10.3390/ph18121856
Chicago/Turabian StyleOpancina, Miljan, Valentina Opancina, Miloš N. Milosavljević, Ana V. Pejčić, Milos Stepovic, and Zoran Jovic. 2025. "Pharmacological Evaluation of Ticagrelor and Aspirin Versus Clopidogrel and Aspirin Pretreatment on Infarct Artery Flow in Patients with Acute STEMI" Pharmaceuticals 18, no. 12: 1856. https://doi.org/10.3390/ph18121856
APA StyleOpancina, M., Opancina, V., Milosavljević, M. N., Pejčić, A. V., Stepovic, M., & Jovic, Z. (2025). Pharmacological Evaluation of Ticagrelor and Aspirin Versus Clopidogrel and Aspirin Pretreatment on Infarct Artery Flow in Patients with Acute STEMI. Pharmaceuticals, 18(12), 1856. https://doi.org/10.3390/ph18121856

