Comparison of Cholic Acid (MT921) and Deoxycholic Acid (DCA) in Fat Reduction Efficacy and Skin Adverse Reactions in Mini Pigs and Rodent Models
Abstract
1. Introduction
2. Results
2.1. Histopathological Events Following MT921 and DCA Subcutaneous Injections in Mini Pig
2.2. Effects of MT921 and DCA Subcutaneous Injections on Fat Layers and Skin of Mini Pigs
2.2.1. Effect of 1.5% MT921 and 1% DCA s.c. Injections on Outer Subcutaneous Layer
2.2.2. Effect of 1.5% MT921 and 1% DCA s.c. Injections on Middle Subcutaneous Layer
2.2.3. Skin Adverse Reactions Caused by 1.5% MT921 and 1% DCA s.c. Injections
2.3. Ulcerative Dermatitis in ICR/CD1 Mice Caused by MT921 and DCA Subcutaneous Injection
2.4. Local Edema in SD Rat Caused by MT921 and DCA Intraplantar Injection
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Test Articles
4.3. Experimental Design Summary
4.4. MT921 and DCA Subcutaneous Injections in Mini Pigs
4.4.1. Histopathological Examinations
4.4.2. Changes in Volume of Subcutaneous Fat Layers
4.4.3. Skin Adverse Reactions
4.5. Ulcerative Dermatitis in Mice
4.6. Edema in Rat Footpads
4.7. Statistical Analysis
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CA | cholic acid |
| DCA | deoxycholic acid |
| MRI | magnetic resonance imaging |
| MSQ | middle subcutaneous layer |
| OSQ | outer subcutaneous layer |
| UD | ulcerative dermatitis |
References
- Young, V.L. Lipostabil: The effect of phosphatidylcholine on subcutaneous fat. Aesthet. Surg. J. 2003, 23, 413–417. [Google Scholar] [CrossRef]
- Rotunda, A.M.; Suzuki, H.; Moy, R.L.; Kolodney, M.S. Detergent effects of sodium deoxycholate are a major feature of an injectable phosphatidylcholine formulation used for localized fat dissolution. Dermatol. Surg. 2004, 30, 1001–1008. [Google Scholar] [CrossRef]
- Mahmud, K.; Crutchfield, C.E. Lipodissolve for body sculpting: Safety, effectiveness, and patient satisfaction. J. Clin. Aesthet. Dermatol. 2012, 5, 16–19. [Google Scholar]
- Thomas, M.K.; D’Silva, J.A.; Borole, A.J. Injection Lipolysis: A Systematic Review of Literature and Our Experience with a Combination of Phosphatidylcholine and Deoxycholate over a Period of 14 Years in 1269 Patients of Indian and South East Asian Origin. J. Cutan. Aesthet. Surg. 2018, 11, 222–228. [Google Scholar] [CrossRef]
- KYBELLA (Deoxycholic Acid) Injection: Highlights of Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/206333s001lbl.pdf (accessed on 12 September 2025).
- Georgesen, C.; Lipner, S.R. The development, evidence, and current use of ATX-101 for the treatment of submental fat. J. Cosmet. Dermatol. 2017, 16, 174–179. [Google Scholar] [CrossRef]
- Gupta, A.; Lobocki, C.; Singh, S.; Robertson, M.; Akadiri, O.A.; Malhotra, G.; Jackson, I.T. Actions and comparative efficacy of phosphatidylcholine formulation and isolated sodium deoxycholate for different cell types. Aesthetic Plast. Surg. 2009, 33, 346–352. [Google Scholar] [CrossRef]
- Sachdev, D.; Mohammadi, T.; Fabi, S.G. Deoxycholic Acid-Induced Skin Necrosis: Prevention and Management. Dermatol. Surg. 2018, 44, 1037–1039. [Google Scholar] [CrossRef]
- Chi, D.; Pinni, S.; Maloy, S.; Llaneras, N.; Hunter, D.A.; Wood, M.D.; Tenenbaum, M.M.; Mackinnon, S.E. Peripheral Nerve Injury After Deoxycholic Acid (ATX-101) Injection in an Experimental Rat Model. Aesthet. Surg. J. 2025, 45, 186–193. [Google Scholar] [CrossRef]
- Dover, J.S.; Kenkel, J.M.; Carruthers, A.; Lizzul, P.F.; Gross, T.M.; Subramanian, M.; Beddingfield, F.C., 3rd. Management of Patient Experience With ATX-101 (Deoxycholic Acid Injection) for Reduction of Submental Fat. Dermatol. Surg. 2016, 42 (Suppl. S1), S288–S299. [Google Scholar] [CrossRef]
- Humphrey, S.; Sykes, J.; Kantor, J.; Bertucci, V.; Walker, P.; Lee, D.R.; Lizzul, P.F.; Gross, T.M.; Beddingfield, F.C., 3rd. ATX-101 for reduction of submental fat: A phase III randomized controlled trial. J. Am. Acad. Dermatol. 2016, 75, 788–797.e7. [Google Scholar] [CrossRef]
- Blandford, A.D.; Ansari, W.; Young, J.M.; Maley, B.; Plesec, T.P.; Hwang, C.J.; Perry, J.D. Deoxycholic Acid and the Marginal Mandibular Nerve: A Cadaver Study. Aesthetic Plast. Surg. 2018, 42, 1394–1398. [Google Scholar] [CrossRef]
- Chung, H.; Park, J.W.; Kim, D.H.; Seo, S.H.; Kim, K.A.; Lee, W.S.; Park, J.Y. Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Cholic Acid (MT921) after a Subcutaneous Injection in the Submental Area to Humans. Pharmaceuticals 2021, 14, 830. [Google Scholar] [CrossRef]
- Ryu, H.J.; Moon, H.K.; Lee, J.; Yang, G.H.; Yang, S.Y.; Yun, H.Y.; Chae, J.W.; Kang, W.H. Evaluation for Potential Drug-Drug Interaction of MT921 Using In Vitro Studies and Physiologically-Based Pharmacokinetic Models. Pharmaceuticals 2021, 14, 654. [Google Scholar] [CrossRef]
- Poša, M.; Kevrešan, S.; Mikov, M.; Ćirin-Novta, V.; Sârbu, C.; Kuhajda, K. Determination of critical micellar concentrations of cholic acid and its keto derivatives. Colloids Surf. B Biointerfaces 2007, 59, 179–183. [Google Scholar] [CrossRef]
- Reis, S.; Moutinho, C.G.; Matos, C.; de Castro, B.; Gameiro, P.; Lima, J.L. Noninvasive methods to determine the critical micelle concentration of some bile acid salts. Anal. Biochem. 2004, 334, 117–126. [Google Scholar] [CrossRef]
- Venkatesan, P.; Cheng, Y.; Kahne, D. Hydrogen Bonding in Micelle Formation. Journal of the American Chemical Society 1994, 116, 6955–6956. [Google Scholar] [CrossRef]
- McEvoy, F.J.; Strathe, A.B.; Madsen, M.T.; Svalastoga, E. Changes in the relative thickness of individual subcutaneous adipose tissue layers in growing pigs. Acta Vet. Scand. 2007, 49, 32. [Google Scholar] [CrossRef]
- Muskat, A.; Pirtle, M.; Kost, Y.; McLellan, B.N.; Shinoda, K. The Role of Fat Reducing Agents on Adipocyte Death and Adipose Tissue Inflammation. Front. Endocrinol. 2022, 13, 841889. [Google Scholar] [CrossRef]
- Humphrey, S.; Munavalli, G.S.; Yoelin, S.G.; Friedmann, D.P.; Kavali, C.M.; Sangha, S. Submental Area Treatment with ATX-101: Relationship of Mechanism of Action, Tissue Response, and Efficacy. Plast. Reconstr. Surg. Glob. Open 2022, 10, e4250. [Google Scholar] [CrossRef]
- St Clair-Jones, A.; Prignano, F.; Goncalves, J.; Paul, M.; Sewerin, P. Understanding and Minimising Injection-Site Pain Following Subcutaneous Administration of Biologics: A Narrative Review. Rheumatol. Ther. 2020, 7, 741–757. [Google Scholar] [CrossRef]
- Usach, I.; Martinez, R.; Festini, T.; Peris, J.E. Subcutaneous Injection of Drugs: Literature Review of Factors Influencing Pain Sensation at the Injection Site. Adv. Ther. 2019, 36, 2986–2996. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.H.; Yang, G.H.; Lee, J.H.; Cho, S.J. Methods and Compositions of Bile Acids and Salts for Reduction of Fat. U.S. Patent US10729700B2, 4 August 2020. [Google Scholar]
- Hodge, R.E.; Webster, J.D.; Moriarty, R.M. Formulations of Deoxycholic Acid and Salts Thereof. U.S. Patent US9737549B2, 22 August 2017. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Yagima Odo, M.E.; Cuce, L.C.; Odo, L.M.; Natrielli, A. Action of sodium deoxycholate on subcutaneous human tissue: Local and systemic effects. Dermatol. Surg. 2007, 33, 178–188, discussion 188–179. [Google Scholar] [CrossRef]
- Mitchell, A.D.; Scholz, A.M.; Wange, P.C.; Song, H. Body composition analysis of the pig by magnetic resonance imaging. J. Anim. Sci. 2001, 79, 1800–1813. [Google Scholar] [CrossRef]
- Rha, E.Y.; Kim, J.M.; Yoo, G. Volume Measurement of Various Tissues Using the Image J Software. J. Craniofac. Surg. 2015, 26, e505–e506. [Google Scholar] [CrossRef]
- Hampton, A.L.; Hish, G.A.; Aslam, M.N.; Rothman, E.D.; Bergin, I.L.; Patterson, K.A.; Naik, M.; Paruchuri, T.; Varani, J.; Rush, H.G. Progression of ulcerative dermatitis lesions in C57BL/6Crl mice and the development of a scoring system for dermatitis lesions. J. Am. Assoc. Lab. Anim. Sci. 2012, 51, 586–593. [Google Scholar]








| Time | Fat Volume (mm3) | Volume Increase (+) or Decrease (−) Since Day 0 (mm3) | ||||
|---|---|---|---|---|---|---|
| (Days) | Saline (n = 3) | 1.5% MT921 (n = 6) | 1% DCA (n = 6) | Saline (n = 3) | 1.5% MT921 (n = 6) | 1% DCA (n = 6) |
| 0 | 45,658 ± 1875 | 34,674 ± 8179 | 36,159 ± 7202 | n/a | n/a | n/a |
| 2 | 63,008 ± 8845 | 48,257 ± 11,777 | 47,946 ± 12,815 * | (+) 17,351 ± 8618 | (+) 13,583 ± 9613 | (+) 11,787 ± 6325 |
| 7 | 67,912 ± 14,876 | 44,165 ± 7861 | 46,213 ± 13,069 | (+) 22,255 ± 16,137 | (+) 9491 ± 6460 | (+) 10,054 ± 7401 |
| 14 | 65,004 ± 9573 | 42,102 ± 7347 | 42,762 ± 10,585 | (+) 19,346 ± 9870 | (+) 7427 ± 5342 | (+) 6603 ± 5356 |
| 28 | 57,327 ± 8084 | 35,363 ± 6027 | 32,181 ± 8607 | (−) 11,669 ± 7279 | (−) 688 ± 5857 | (−) 3978 ± 5825 |
| 56 | 65,453 ± 14,410 | 18,712 ± 4332 * | 19,611 ± 6747 ** | (+) 19,795 ± 14,751 | (−) 15,963 ± 8915 | (−) 16,548 ± 5219 |
| 84 | 67,541 ± 4743 * | 14,876 ± 3984 * | 11,995 ± 2738 ** | (+) 21,884 ± 4548 a | (−) 19,798 ± 9167 b | (−) 24,164 ± 6440 b |
| 112 | 74,846 ± 12,128 | 13,054 ± 3895 *** | 12,275 ± 6427 *** | (+) 29,188 ± 12,669 a | (−) 21,611 ± 4774 b | (−) 23,884 ± 4208 b |
| 140 | 75,724 ± 13,533 | 12,768 ± 2643 ** | 13,224 ± 3853 *** | (+) 30,066 ± 12,230 a | (−) 21,906 ± 7271 b | (−) 22,935 ± 5671 b |
| 168 | 68,909 ± 5027 | 11,537 ± 3655 ** | 13,229 ± 4575 *** | (+) 23,251 ± 6900 a | (−) 23,137 ± 6321 b | (−) 22,930 ± 4775 b |
| Time | Fat Volume (mm3) | Volume Increase (+) or Decrease (−) Since Day 0 (mm3) | ||||
|---|---|---|---|---|---|---|
| (Days) | Saline (n = 3) | 1.5% MT921 (n = 6) | 1% DCA (n = 6) | Saline (n = 3) | 1.5% MT921 (n = 6) | 1% DCA (n = 6) |
| 0 | 68,104 ± 20,839 | 62,019 ± 27,693 | 63,446 ± 21,560 | n/a | n/a | n/a |
| 2 | 59,510 ± 1602 | 79,461 ± 25,586 | 72,533 ± 27,083 | (−) 8594 ± 22,440 | (+) 17,442 ± 15,147 | (+) 9087 ± 18,399 |
| 7 | 74,604 ± 15,779 | 69,247 ± 20,122 | 84,506 ± 16,983 | (+) 6501 ± 22,544 | (+) 7229 ± 14,811 | (+) 21,060 ± 14,927 |
| 14 | 67,971 ± 32,740 | 63,413 ± 11,525 | 77,391 ± 25,529 | (−) 133 ± 29,357 | (+) 1394 ± 23,590 | (+) 13,945 ± 14,355 |
| 28 | 76,888 ± 15,458 | 68,417 ± 29,421 | 79,950 ± 23,994 | (+) 8783 ± 11,796 | (+) 6399 ± 16,658 | (+) 16,504 ± 19,175 |
| 56 | 71,516 ± 9529 | 80,395 ± 20,362 | 77,239 ± 23,358 | (+) 3412 ± 25,412 | (+) 18,376 ± 18,026 | (+) 13,793 ± 18,630 |
| 84 | 98,288 ± 36,324 | 97,289 ± 41,537 | 97,396 ± 43,013 | (+) 30,184 ± 52,311 | (+) 35,270 ± 21,922 | (+) 33,950 ± 38,760 |
| 112 | 97,430 ± 8497 | 108,089 ± 51,954 * | 111,236 ± 47,491 | (+) 29,326 ± 15,096 | (+) 46,070 ± 28,264 | (+) 47,790 ± 36,261 |
| 140 | 101,668 ± 5697 | 105,636 ± 41,212 | 111,344 ± 41,072 | (+) 33,564 ± 15,241 | (+) 43,617 ± 27,991 | (+) 47,898 ± 35,035 |
| 168 | 119,204 ± 10,666 * | 101,510 ± 46,670 | 100,160 ± 53,117 | (+) 51,100 ± 10,994 | (+) 39,492 ± 25,877 | (+) 36,714 ± 42,871 |
| Character of Lesion | Score | Length of Lesion | Score |
|---|---|---|---|
| No lesion | 0 | 0 cm | 0 |
| One, small punctuate crust | 1 | <0.2 cm | 1 |
| Multiple, small punctuate or coalescing crust | 2 | 0.2~0.5 cm | 2 |
| Erosion or ulceration | 3 | >0.5 cm | 3 |
| Model | No. of Animals | Treatment Groups | Dosing Regimen | Main Endpoints | Study Duration |
|---|---|---|---|---|---|
| Mini pig (MICROPIG) | 1 | 1.5% MT921, 1% DCA | Single s.c. injection at multiple dorsal sites | Sequential histopathology (necrosis, fibrosis, inflammation) | Day 1–56 |
| Mini pig (MICROPIG) | 3 | 1.5% MT921, 1% DCA | 36 s.c. injections (5 cm × 5 cm matrix at multiple dorsal sites) every 4 weeks × 6 times | MRI fat volume change, local ADRs | Up to day 168 |
| Mouse (ICR/CD1) | 5/group | MT921 (0.5%, 1%, 1.5%, and 2%), DCA (0.25%, 0.5%, 1%, and 1.5%) | Single s.c. injection at left and right dorsal sites on day 0 and 2 | Ulcerative dermatitis scoring | Day 5 |
| Rat (Sprague–Dawley) | 5/group | 1.5% MT921, 1.0% DCA | Single intraplantar injection on both hind paws | Footpad edema (thickness) | 4 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.; Cruz, D.J.M.; Shin, M.; Byun, J.; Lee, J.; Kwak, S. Comparison of Cholic Acid (MT921) and Deoxycholic Acid (DCA) in Fat Reduction Efficacy and Skin Adverse Reactions in Mini Pigs and Rodent Models. Pharmaceuticals 2025, 18, 1643. https://doi.org/10.3390/ph18111643
Cho S, Cruz DJM, Shin M, Byun J, Lee J, Kwak S. Comparison of Cholic Acid (MT921) and Deoxycholic Acid (DCA) in Fat Reduction Efficacy and Skin Adverse Reactions in Mini Pigs and Rodent Models. Pharmaceuticals. 2025; 18(11):1643. https://doi.org/10.3390/ph18111643
Chicago/Turabian StyleCho, Sujin, Deu John M. Cruz, Minhee Shin, Jaeyoon Byun, Junho Lee, and Seongsung Kwak. 2025. "Comparison of Cholic Acid (MT921) and Deoxycholic Acid (DCA) in Fat Reduction Efficacy and Skin Adverse Reactions in Mini Pigs and Rodent Models" Pharmaceuticals 18, no. 11: 1643. https://doi.org/10.3390/ph18111643
APA StyleCho, S., Cruz, D. J. M., Shin, M., Byun, J., Lee, J., & Kwak, S. (2025). Comparison of Cholic Acid (MT921) and Deoxycholic Acid (DCA) in Fat Reduction Efficacy and Skin Adverse Reactions in Mini Pigs and Rodent Models. Pharmaceuticals, 18(11), 1643. https://doi.org/10.3390/ph18111643

