Controlled Crystallization Enables Facile Fine-Tuning of Physical–Chemical Properties of Nicergoline Toward Easier Processability
Abstract
1. Introduction
2. Results and Discussion
2.1. Crystal Properties
2.2. Residual Acetone
2.3. Surface Properties
2.4. Powder Flow
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
API | active pharmaceutical ingredient |
PSD | particle size distribution |
SSA | specific surface area |
SE | surface energy |
IGC | inverse gas chromatography |
CC | cubic cooling |
LC | linear cooling |
EC | solvent evaporation (evaporation of acetone) |
SC | induction by sonication |
SLC | induction by seeding |
ff | flow factor |
GC | gas chromatography |
RMS | root mean square |
SEM | scanning electron microscope |
AFM | atomic force microscope |
γt | total surface energy |
Wcoh | work of cohesion |
Wadh | work of adhesion |
HPLC | high-performance liquid chromatography |
T | temperature |
t | time |
FID | flame ionization detector |
RS | residual solvents |
USP | United States pharmacopeia |
EM | electron beam |
HA_NC | brand name for AFM probe |
SEA | surface energy analyzer |
References
- Bakar, M.R.A.; Nagy, Z.K.; Rielly, C.D. Seeded Batch Cooling Crystallization with Temperature Cycling for the Control of Size Uniformity and Polymorphic Purity of Sulfathiazole Crystals. Org. Process Res. Dev. 2009, 13, 1343–1356. [Google Scholar] [CrossRef]
- Beckmann, W.; Otto, W.; Budde, U. Crystallisation of the Stable Polymorph of Hydroxytriendione: Seeding Process and Effects of Purity. Org. Process Res. Dev. 2001, 5, 387–392. [Google Scholar] [CrossRef]
- Guillory, J.K. Handbook of Pharmaceutical Salts: Properties, Selection, and Use Edited by P. Heinrich Stahl and Camile G. Wermuth. VHCA, Verlag Helvetica Chimica Acta, Zürich, Switzerland, and Wiley-VCH, Weinheim, Germany. 2002. vix + 374 pp. 17.5 × 24.5 cm. ISBN 3-906390-26-8. $130.00. J. Med. Chem. 2003, 46, 1277. [Google Scholar] [CrossRef]
- Orehek, J.; Teslić, D.; Likozar, B. Continuous Crystallization Processes in Pharmaceutical Manufacturing: A Review. Org. Process Res. Dev. 2021, 25, 16–42. [Google Scholar] [CrossRef]
- Wang, X.; Shen, N.; Yang, X.; Wang, B. Bismuthene: Epitaxially Grown on MoTe2 and Its Grain Boundary. J. Cryst. Growth 2020, 546, 125787. [Google Scholar] [CrossRef]
- Adhiyaman, R.; Basu, S.K. Crystal Modification of Dipyridamole Using Different Solvents and Crystallization Conditions. Int. J. Pharm. 2006, 321, 27–34. [Google Scholar] [CrossRef]
- Yu, W.; Muteki, K.; Zhang, L.; Kim, G. Prediction of Bulk Powder Flow Performance Using Comprehensive Particle Size and Particle Shape Distributions. JPharmSci 2011, 100, 284–293. [Google Scholar] [CrossRef]
- Vlachos, N.; Chang, I.T.H. Investigation of Flow Properties of Metal Powders from Narrow Particle Size Distribution to Polydisperse Mixtures through an Improved Hall-Flowmeter. Powder Technol. 2011, 205, 71–80. [Google Scholar] [CrossRef]
- Fu, X.; Huck, D.; Makein, L.; Armstrong, B.; Willen, U.; Freeman, T. Effect of Particle Shape and Size on Flow Properties of Lactose Powders. Particuology 2012, 10, 203–208. [Google Scholar] [CrossRef]
- Tung, H.-H.; Paul, E.L.; Midler, M.; McCauley, J.A. Crystallization of Organic Compounds: An Industrial Perspective; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; ISBN 978-0-470-44779-6. [Google Scholar]
- Crystallisation, 4th Edition By J. W. Mullin. 2001. Butterworth Heinemann: Oxford, UK. 600 pp. £75.00. ISBN 075-064-833-3. Org. Process Res. Dev. 2002, 6, 201–202. [CrossRef]
- Myerson, A.S.; Erdemir, D.; Lee, A.Y. (Eds.) Handbook of Industrial Crystallization, 3rd ed.; Cambridge University Press: Cambridge, UK, 2019; ISBN 978-0-521-19618-5. [Google Scholar]
- Lee, J.; Yasui, K.; Ashokkumar, M.; Kentish, S.E. Quantification of Cavitation Activity by Sonoluminescence To Study the Sonocrystallization Process under Different Ultrasound Parameters. Cryst. Growth Des. 2018, 18, 5108–5115. [Google Scholar] [CrossRef]
- Prasad, R.; Dalvi, S.V. Sonocrystallization: Monitoring and Controlling Crystallization Using Ultrasound. Chem. Eng. Sci. 2020, 226, 115911. [Google Scholar] [CrossRef]
- Zajdel, P.; Bednarski, M.; Sapa, J.; Nowak, G. Ergotamine and Nicergoline—Facts and Myths. Pharmacol. Rep. 2015, 67, 360–363. [Google Scholar] [CrossRef]
- Caraci, F.; Chisari, M.; Frasca, G.; Canonico, P.L.; Battaglia, A.; Calafiore, M.; Battaglia, G.; Bosco, P.; Nicoletti, F.; Copani, A.; et al. Nicergoline, a Drug Used for Age-Dependent Cognitive Impairment, Protects Cultured Neurons against β-Amyloid Toxicity. Brain Res. 2005, 1047, 30–37. [Google Scholar] [CrossRef]
- Lapčík, L.; Otyepka, M.; Otyepková, E.; Lapčíková, B.; Gabriel, R.; Gavenda, A.; Prudilová, B. Surface Heterogeneity: Information from Inverse Gas Chromatography and Application to Model Pharmaceutical Substances. Curr. Opin. Colloid Interface Sci. 2016, 24, 64–71. [Google Scholar] [CrossRef]
- Shah, U.V.; Karde, V.; Ghoroi, C.; Heng, J.Y.Y. Influence of Particle Properties on Powder Bulk Behaviour and Processability. Int. J. Pharm. 2017, 518, 138–154. [Google Scholar] [CrossRef]
- Mohammadi-Jam, S.; Waters, K.E. Inverse Gas Chromatography Applications: A Review. Adv. Colloid Interface Sci. 2014, 212, 21–44. [Google Scholar] [CrossRef]
- Gamble, J.F.; Leane, M.; Olusanmi, D.; Tobyn, M.; Šupuk, E.; Khoo, J.; Naderi, M. Surface Energy Analysis as a Tool to Probe the Surface Energy Characteristics of Micronized Materials—A Comparison with Inverse Gas Chromatography. Int. J. Pharm. 2012, 422, 238–244. [Google Scholar] [CrossRef]
- Grimsey, I.M.; Feeley, J.C.; York, P. Analysis of the Surface Energy of Pharmaceutical Powders by Inverse Gas Chromatography. J. Pharm. Sci. 2002, 91, 571–583. [Google Scholar] [CrossRef]
- Thielmann, F.; Burnett, D.J.; Heng, J.Y.Y. Determination of the Surface Energy Distributions of Different Processed Lactose. Drug Dev. Ind. Pharm. 2007, 33, 1240–1253. [Google Scholar] [CrossRef]
- Ticehurst, M.D.; York, P.; Rowe, R.C.; Dwivedi, S.K. Characterisation of the Surface Properties of α-Lactose Monohydrate with Inverse Gas Chromatography, Used to Detect Batch Variation. Int. J. Pharm. 1996, 141, 93–99. [Google Scholar] [CrossRef]
- Planinšek, O.; Buckton, G. Inverse Gas Chromatography: Considerations About Appropriate Use for Amorphous and Crystalline Powders. J. Pharm. Sci. 2003, 92, 1286–1294. [Google Scholar] [CrossRef] [PubMed]
- Gamble, J.F.; Chiu, W.-S.; Gray, V.; Toale, H.; Tobyn, M.; Wu, Y. Investigation into the Degree of Variability in the Solid-State Properties of Common Pharmaceutical Excipients—Anhydrous Lactose. AAPS PharmSciTech 2010, 11, 1552–1557. [Google Scholar] [CrossRef] [PubMed]
- Tay, T.; Das, S.; Stewart, P. Magnesium Stearate Increases Salbutamol Sulphate Dispersion: What Is the Mechanism? Int. J. Pharm. 2010, 383, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Traini, D.; Young, P.M.; Thielmann, F.; Acharya, M. The Influence of Lactose Pseudopolymorphic Form on Salbutamol Sulfate–Lactose Interactions in DPI Formulations. Drug Dev. Ind. Pharm. 2008, 34, 992–1001. [Google Scholar] [CrossRef]
- Das, S.; Larson, I.; Young, P.; Stewart, P. Understanding Lactose Behaviour during Storage by Monitoring Surface Energy Change Using Inverse Gas Chromatography. Dairy Sci. Technol. 2010, 90, 271–285. [Google Scholar] [CrossRef]
- Han, X.; Jallo, L.; To, D.; Ghoroi, C.; Davé, R. Passivation of High-Surface-Energy Sites of Milled Ibuprofen Crystals via Dry Coating for Reduced Cohesion and Improved Flowability. J. Pharm. Sci. 2013, 102, 2282–2296. [Google Scholar] [CrossRef]
- Buckton, G.; Gill, H. The Importance of Surface Energetics of Powders for Drug Delivery and the Establishment of Inverse Gas Chromatography. Adv. Drug Deliv. Rev. 2007, 59, 1474–1479. [Google Scholar] [CrossRef]
- Newell, H.E.; Buckton, G.; Butler, D.A.; Thielmann, F.; Williams, D.R. The Use of Inverse Phase Gas Chromatography to Measure the Surface Energy of Crystalline, Amorphous, and Recently Milled Lactose. Pharm. Res. 2001, 18, 662–666. [Google Scholar] [CrossRef]
- Chamarthy, S.P.; Pinal, R. The Nature of Crystal Disorder in Milled Pharmaceutical Materials. Colloids Surf. A Physicochem. Eng. Asp. 2008, 331, 68–75. [Google Scholar] [CrossRef]
- Balard, H.; Maafa, D.; Santini, A.; Donnet, J.B. Study by Inverse Gas Chromatography of the Surface Properties of Milled Graphites. J. Chromatogr. A 2008, 1198–1199, 173–180. [Google Scholar] [CrossRef]
- Heng, J.Y.Y.; Thielmann, F.; Williams, D.R. The Effects of Milling on the Surface Properties of Form I Paracetamol Crystals. Pharm. Res. 2006, 23, 1918–1927. [Google Scholar] [CrossRef] [PubMed]
- Ohta, M.; Buckton, G. Determination of the Changes in Surface Energetics of Cefditoren Pivoxil as a Consequence of Processing Induced Disorder and Equilibration to Different Relative Humidities. Int. J. Pharm. 2004, 269, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Otte, A.; Carvajal, M.T. Assessment of Milling-Induced Disorder of Two Pharmaceutical Compounds. J. Pharm. Sci. 2011, 100, 1793–1804. [Google Scholar] [CrossRef] [PubMed]
- Voelkel, A.; Strzemiecka, B.; Milczewska, K.; Adamska, K. Inverse Gas Chromatography Fruitful and Credible Tool for Materials Characterization. J. Chromatogr. Open 2024, 6, 100177. [Google Scholar] [CrossRef]
- Ruecroft, G.; Hipkiss, D.; Ly, T.; Maxted, N.; Cains, P.W. Sonocrystallization: The Use of Ultrasound for Improved Industrial Crystallization. Org. Process Res. Dev. 2005, 9, 923–932. [Google Scholar] [CrossRef]
- Kale, K.; Hapgood, K.; Stewart, P. Drug Agglomeration and Dissolution—What Is the Influence of Powder Mixing? Eur. J. Pharm. Biopharm. 2009, 72, 156–164. [Google Scholar] [CrossRef]
- Kaerger, J.S.; Price, R. Processing of Spherical Crystalline Particles via a Novel Solution Atomization and Crystallization by Sonication (SAXS) Technique. Pharm. Res. 2004, 21, 372–381. [Google Scholar] [CrossRef]
- Capece, M.; Ho, R.; Strong, J.; Gao, P. Prediction of Powder Flow Performance Using a Multi-Component Granular Bond Number. Powder Technol. 2015, 286, 561–571. [Google Scholar] [CrossRef]
- Nassab, P.R.; Tüske, Z.; Kása, P., Jr.; Bashiri-Shahroodi, A.; Szabó-Révész, P. Influence of Work of Adhesion on Dissolution Rate in Binary Solid Systems. J. Adhes. 2007, 83, 799–810. [Google Scholar] [CrossRef]
- Kendall, K.; Stainton, C. Adhesion and Aggregation of Fine Particles. Powder Technol. 2001, 121, 223–229. [Google Scholar] [CrossRef]
- Jenike, A.W. Storage and Flow of Solids; University of Utah: Salt Lake City, UT, USA, 1964. [Google Scholar]
- Dorris, G.M.; Gray, D.G. Adsorption of n-Alkanes at Zero Surface Coverage on Cellulose Paper and Wood Fibers. J. Colloid Interface Sci. 1980, 77, 353–362. [Google Scholar] [CrossRef]
- Vukov, A.J.; Gray, D.G. Properties of Carbon Fiber Surfaces. In Inverse Gas Chromatography; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1989; Volume 391, pp. 168–184. ISBN 978-0-8412-1610-5. [Google Scholar]
- Volpe, C.D.; Siboni, S. Some Reflections on Acid–Base Solid Surface Free Energy Theories. J. Colloid Interface Sci. 1997, 195, 121–136. [Google Scholar] [CrossRef]
Label | Type of Crystallization | Controlled | Uncontrolled | Sonification |
---|---|---|---|---|
CC | Cubic cooling | X | - | |
EC | Evaporation of acetone | X | - | |
LC | Linear cooling | X | - | |
SC_1 | Induced by sonification | X | 40% amplitude, 2 s. sonication, 2 s. pause | |
SC_2 | X | 40% amplitude, 2 s. sonication, 4 s. pause | ||
SC_3 | X | 40% amplitude, 4 s. sonication, 2 s. pause | ||
SLC | Induced by seeding | X | - |
Sample | GC [ppm] | PSD (10) [µm] | PSD (50) [µm] | PSD (90) [µm] | RMS [nm] | RMS [nm] Range | SSA [m2/g] | ff |
---|---|---|---|---|---|---|---|---|
CC | 699 | 43 | 107 | 218 | 4.5 ± 3.7 | 1.6 … 13.3 | 0.094 | 4.44 |
EC | 2440 | 8 | 80 | 720 | 1.8 ± 1.0 | 0.6 … 3.4 | 0.795 | 3.27 |
LC | 4038 | 5 | 28 | 87 | 1.2 ± 0.8 | 0.5 … 2.9 | 0.481 | 5.11 |
SC_1 | 705 | 12 | 31 | 60 | 0.6 ± 0.1 | 0.1 … 0.8 | 0.401 | 3.63 |
SC_2 | 820 | 9 | 33 | 81 | 1.3 ± 0.4 | 0.7 … 1.9 | 0.262 | 8.44 |
SC_3 | 590 | 5 | 16 | 39 | 1.0 ± 0.3 | 0.7 … 1.6 | 0.582 | 3.15 |
SLC | 1530 | 5 | 33 | 75 | 3.6 ± 1.8 | 0.9 … 6.5 | 0.666 | 2.54 |
Sample | γt [mJ/m2] | Δγt [mJ/m2] | Wcoht [mJ/m2] | Wadht [mJ/m2] | |
---|---|---|---|---|---|
CC | max | 108.5 | 35.6 | 178.6 | 140.2 |
min | 72.9 | 137.6 | 111.6 | ||
EC | max | 62.1 | 15.4 | 124.2 | 97.6 |
min | 46.7 | 93.5 | 87.0 | ||
LC | max | 53.2 | 5.8 | 106.3 | 91.7 |
min | 47.4 | 94.8 | 85.2 | ||
SC_1 | max | 55.0 | 5.9 | 105.3 | 91.7 |
min | 49.1 | 87.4 | 82.3 | ||
SC_2 | max | 55.3 | 7.4 | 110.7 | 95.7 |
min | 47.9 | 95.8 | 85.7 | ||
SC_3 | max | 59.4 | 14.6 | 118.8 | 99.7 |
min | 44.8 | 89.7 | 82.3 | ||
SLC | max | 60.7 | 13.2 | 121.5 | 98.3 |
min | 47.5 | 95.0 | 84.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prudilová, B.B.; Gabriel, R.; Otyepka, M.; Otyepková, E. Controlled Crystallization Enables Facile Fine-Tuning of Physical–Chemical Properties of Nicergoline Toward Easier Processability. Pharmaceuticals 2025, 18, 1465. https://doi.org/10.3390/ph18101465
Prudilová BB, Gabriel R, Otyepka M, Otyepková E. Controlled Crystallization Enables Facile Fine-Tuning of Physical–Chemical Properties of Nicergoline Toward Easier Processability. Pharmaceuticals. 2025; 18(10):1465. https://doi.org/10.3390/ph18101465
Chicago/Turabian StylePrudilová, Barbora Blahová, Roman Gabriel, Michal Otyepka, and Eva Otyepková. 2025. "Controlled Crystallization Enables Facile Fine-Tuning of Physical–Chemical Properties of Nicergoline Toward Easier Processability" Pharmaceuticals 18, no. 10: 1465. https://doi.org/10.3390/ph18101465
APA StylePrudilová, B. B., Gabriel, R., Otyepka, M., & Otyepková, E. (2025). Controlled Crystallization Enables Facile Fine-Tuning of Physical–Chemical Properties of Nicergoline Toward Easier Processability. Pharmaceuticals, 18(10), 1465. https://doi.org/10.3390/ph18101465