Activity of Peptides Modulating the Action of p2x Receptors: Focus on the p2x7 Receptor
Abstract
1. Introduction
2. Peptides
3. Structure of P2X7
4. P2X7 Receptor Function
5. Peptides with Modulatory Activity Against the P2X7 Receptor
5.1. Beta-Amyloid Peptide
5.2. LL-37/hCap18 Peptide
5.3. Peptide Pep19-2.5
5.4. rCRAMP Peptide
5.5. ADESG Peptide
5.6. Polymyxin B Peptide
6. Peptides Modulate the Activity of Other P2X Receptors
7. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teixeira, G.P.; Rocha, L.; Faria, R.X. Patch Clamping in Combination with Fluorescence Is a Reliable Technique for Studying Pore-Forming Ion Channels. In Patch Clamp Technique—Current Methods and Future Prospects; Faria, R.X., Ed.; IntechOpen: Rijeka, Croatia, 2024; pp. 1–38. [Google Scholar]
- Burnstock, G.; Verkhratsky, A. Receptors for Purines and Pyrimidines BT—Purinergic Signaling and the Nervous System. In Purinergic Signaling and the Nervous System; Burnstock, G., Verkhratsky, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 119–244. [Google Scholar]
- Han, S.; Suzuki-Kerr, H.; Vlajkovic, S.M.; Thorne, P.R. The Developmental Journey of Therapies Targeting Purine Receptors: From Basic Science to Clinical Trials. Purinergic Signal. 2022, 18, 435–450. [Google Scholar] [CrossRef]
- Yoshikawa, M. Bioactive Peptides Derived from Natural Proteins with Respect to Diversity of Their Receptors and Physiological Effects. Peptides 2015, 72, 208–225. [Google Scholar] [CrossRef]
- Kubota, R.; Hamachi, I. Protein Recognition Using Synthetic Small-Molecular Binders toward Optical Protein Sensing in Vitro and in Live Cells. Chem. Soc. Rev. 2015, 44, 4454–4471. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic Peptides: Current Applications and Future Directions. Signal Transduct. Target. Ther. 2022, 7, 48. [Google Scholar] [CrossRef]
- Mehta, N.; Kaur, M.; Singh, M.; Chand, S.; Vyas, B.; Silakari, P.; Bahia, M.S.; Silakari, O. Purinergic Receptor P2X7: A Novel Target for Anti-Inflammatory Therapy. Bioorg. Med. Chem. 2014, 22, 54–88. [Google Scholar] [CrossRef]
- Liu, W.; Chen, X.; Li, H.; Zhang, J.; An, J.; Liu, X. Anti-Inflammatory Function of Plant-Derived Bioactive Peptides: A Review. Foods 2022, 11, 2361. [Google Scholar] [CrossRef]
- Consolaro, A.; Consolaro, M.F.M.-O. A Reabsorção Radicular Ortodôntica é Inflamatória, os Fenômenos Geneticamente Gerenciados, Mas Não é Hereditariamente Transmitida: Sobre an Identificação dos Receptores P2X7 e CP-23. Rev. Dent. Press Ortod. Ortop. Facial 2009, 14, 25–32. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, L.; Yu, J.; Shao, S. Advances in the Application and Mechanism of Bioactive Peptides in the Treatment of Inflammation. Front. Immunol. 2024, 15, 1413179. [Google Scholar] [CrossRef] [PubMed]
- Ciulla, M.G.; Civera, M.; Sattin, S.; Kumar, K. Nature-Inspired and Medicinally Relevant Short Peptides. Explor. Drug Sci. 2023, 1, 140–171. [Google Scholar] [CrossRef]
- Nagaoka, I.; Tamura, H.; Hirata, M. An Antimicrobial Cathelicidin Peptide, Human CAP18/LL-37, Suppresses Neutrophil Apoptosis via the Activation of Formyl-Peptide Receptor-Like 1 and P2X7. J. Immunol. 2006, 176, 3044–3052. [Google Scholar] [CrossRef] [PubMed]
- Wulff, H.; Christophersen, P.; Colussi, P.; Chandy, K.G.; Yarov-Yarovoy, V. Antibodies and Venom Peptides: New Modalities for Ion Channels. Nat. Rev. Drug Discov. 2019, 18, 339–357. [Google Scholar] [CrossRef]
- Martínez-Frailes, C.; Di Lauro, C.; Bianchi, C.; de Diego-García, L.; Sebastián-Serrano, Á.; Boscá, L.; Díaz-Hernández, M. Amyloid Peptide Induced Neuroinflammation Increases the P2X7 Receptor Expression in Microglia, Impacting on Its Functionality. Front. Cell. Neurosci. 2019, 13, 143. [Google Scholar] [CrossRef]
- Allsopp, R.C.; Dayl, S.; Schmid, R.; Evans, R.J. Unique residues in the ATP gated human P2X7 receptor define a novel allosteric binding pocket for the selective antagonist AZ10606120. Sci. Rep. 2017, 7, 725. [Google Scholar] [CrossRef] [PubMed]
- North, R.A. Molecular Physiology of P2X Receptors. Physiol. Rev. 2002, 82, 1013–1067. [Google Scholar] [CrossRef]
- Burnstock, G. Purine and Purinergic Receptors. Brain Neurosci. Adv. 2018, 2, 1–10. [Google Scholar] [CrossRef]
- Lister, M.F.; Sharkey, J.; Sawatzky, D.A.; Hodgkiss, J.P.; Davidson, D.J.; Rossi, A.G.; Finlayson, K. The role of the purinergic P2X7 receptor in inflammation. J. Inflamm. 2007, 4, 5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pippel, A.; Stolz, M.; Woltersdorf, R.; Kless, A.; Schmalzing, G.; Markwardt, F. Localization of the Gate and Selectivity Filter of the Full-Length P2X7 Receptor. Proc. Natl. Acad. Sci. USA 2017, 114, E2156–E2165. [Google Scholar] [CrossRef]
- Bello, M.L.; Mendes, G.E.M.M.; Silva, A.C.R.; Faria, R.X.; Robson, X.; Faria, C. Virtual screening indicates potential inhibitors of the P2X7 receptor. Comput. Biol. Med. 2023, 164, 107299. [Google Scholar] [CrossRef] [PubMed]
- Savio, L.E.B.; de Andrade Mello, P.; da Silva, C.G.; Coutinho-Silva, R. The P2X7 Receptor in Inflammatory Diseases: Angel or Demon? Front. Pharmacol. 2018, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- North, R.A.; Jarvis, M.F. P2X Receptors as Drug Targets. Mol. Pharmacol. 2013, 83, 759–769. [Google Scholar] [CrossRef]
- Fountain, S.J.; Burnstock, G. An Evolutionary History of P2X Receptors. Purinergic Signal. 2009, 5, 269–272. [Google Scholar] [CrossRef]
- Allsopp, R.C.; Evans, R.J. The Intracellular Amino Terminus Plays a Dominant Role in Desensitization of ATP-Gated P2X Receptor Ion Channels. J. Biol. Chem. 2011, 286, 44691–44701. [Google Scholar] [CrossRef]
- Costa-Junior, H.M.; Marques-da-Silva, C.; Vieira, F.S.; Monção-Ribeiro, L.C.; Coutinho-Silva, R. Lipid Metabolism Modulation by the P2X7 Receptor in the Immune System and during the Course of Infection: New Insights into the Old View. Purinergic Signal. 2011, 7, 381–392. [Google Scholar] [CrossRef]
- Niu, Q.; Li, J.; Zhang, M.; Zhou, P. Natural phytochemicals as P2X7 receptor inhibitors for the treatment of inflammation-related diseases. Ital. J. Foods Sci. 2023, 35, 17–53. [Google Scholar] [CrossRef]
- Sierra-Marquez, J.; Schaller, L.; Sassenbach, L.; Ramírez-Fernández, A.; Alt, P.; Rissiek, B.; Zimmer, B.; Schredelseker, J.; Hector, J.; Stähler, T.; et al. Different Localization of P2X4 and P2X7 Receptors in Native Mouse Lung—Lack of Evidence for a Direct P2X4-P2X7 Receptor Interaction. Front. Immunol. 2024, 15, 1425938. [Google Scholar] [CrossRef]
- Skaper, S.D.; Facci, L.; Culbert, A.A.; Evans, N.A.; Chessell, I.; Davis, J.B.; Richardson, J.C. P2X7 Receptors on Microglia Mediate Injury to Cortical Neurons in Vitro. Glia 2006, 54, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Bavan, S.; Straub, V.A.; Webb, T.E.; Ennion, S.J. Cloning and Characterization of a P2X Receptor Expressed in the Central Nervous System of Lymnaea Stagnalis. PLoS ONE 2012, 7, e50487. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Toalá, J.E.; Hernández-Mendoza, A.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Liceaga, A.M. Potential Role of Natural Bioactive Peptides for Development of Cosmeceutical Skin Products. Peptides 2019, 122, 170170. [Google Scholar] [CrossRef]
- Castellani, R.J.; Rolston, R.K.; Smith, M.A. Alzheimer Disease. Disease-a-Month 2010, 56, 484–546. [Google Scholar] [CrossRef] [PubMed]
- Dadar, M.; Shahali, Y.; Chakraborty, S.; Prasad, M.; Tahoori, F.; Tiwari, R.; Dhama, K. Antiinflammatory peptides: Current knowledge and promising prospects. Inflamm Res. 2019, 68, 125–145. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, D.; Pizzirani, C.; Adinolfi, E.; Forchap, S.; Sitta, B.; Turchet, L.; Falzoni, S.; Minelli, M.; Baricordi, R.; Di Virgilio, F. The Antibiotic Polymyxin B Modulates P2X7 Receptor Function1. J. Immunol. 2004, 173, 4652–4660. [Google Scholar] [CrossRef]
- Miras-Portugal, M.T.; Diaz-Hernandez, J.I.; Gomez-Villafuertes, R.; Diaz-Hernandez, M.; Artalejo, A.R.; Gualix, J. Role of P2X7 and P2Y2 Receptors on α-Secretase-Dependent APP Processing: Control of Amyloid Plaques Formation “in Vivo” by P2X7 Receptor. Comput. Struct. Biotechnol. J. 2015, 13, 176–181. [Google Scholar] [CrossRef]
- Tomasinsig, L.; Pizzirani, C.; Skerlavaj, B.; Pellegatti, P.; Gulinelli, S.; Tossi, A.; Di Virgilio, F.; Zanetti, M. The Human Cathelicidin LL-37 Modulates the Activities of the P2X7 Receptor in a Structure-dependent Manner. J. Biol. Chem. 2008, 283, 30471–30481. [Google Scholar] [CrossRef]
- Engelhardt, J.; Klawonn, A.; Dobbelstein, A.-K.; Abdelrahman, A.; Oldenburg, J.; Brandenburg, K.; Müller, C.E.; Weindl, G. Lipopolysaccharide-Neutralizing Peptide Modulates P2X7 Receptor-Mediated Interleukin-1β Release. ACS Pharmacol. Transl. Sci. 2025, 8, 136–145. [Google Scholar] [CrossRef]
- Faria, R.; Ferreira, L.; Bezerra, R.; Frutuoso, V.; Alves, L. Action of Natural Products on P2 Receptors: A Reinvented Era for Drug Discovery. Molecules 2012, 17, 13009–13025. [Google Scholar] [CrossRef]
- Brandenburg, L.-O.; Jansen, S.; Wruck, C.J.; Lucius, R.; Pufe, T. Antimicrobial Peptide RCRAMP Induced Glial Cell Activation through P2Y Receptor Signaling Pathways. Mol. Immunol. 2010, 47, 1905–1913. [Google Scholar] [CrossRef]
- de Souza, C.A.M.; Teixeira, P.C.N.; Faria, R.X.; Krylova, O.; Pohl, P.; Alves, L.A. A Consensus Segment in the M2 Domain of the HP2X7 Receptor Shows Ion Channel Activity in Planar Lipid Bilayers and in Biological Membranes. Biochim. Biophys. Acta-Biomembr. 2012, 1818, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, D.; Pizzirani, C.; Gulinelli, S.; Callegari, G.; Chiozzi, P.; Idzko, M.; Panther, E.; Di Virgilio, F. Modulation of P2X7 Receptor Functions by Polymyxin B: Crucial Role of the Hydrophobic Tail of the Antibiotic Molecule. Br. J. Pharmacol. 2007, 150, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Honcharenko, D.; Juneja, A.; Roshan, F.; Maity, J.; Galán-Acosta, L.; Biverstål, H.; Hjorth, E.; Johansson, J.; Fisahn, A.; Nilsson, L.; et al. Amyloid-β Peptide Targeting Peptidomimetics for Prevention of Neurotoxicity. ACS Chem. Neurosci. 2019, 10, 1462–1477. [Google Scholar] [CrossRef]
- Rukmangadachar, L.A.; Bollu, P.C. Amyloid Beta Peptide. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/sites/books/NBK459119/ (accessed on 15 May 2025).
- Lee, J.K.; Wang, K.; Park, M.H.; Kim, N.; Lee, J.Y.; Jin, H.K.; Kim, I.-S.; Lee, B.-H.; Bae, J. Probing Amyloid Beta-Induced Cell Death Using a Fluorescence-Peptide Conjugate in Alzheimer’s Disease Mouse Model. Brain Res. 2016, 1646, 514–521. [Google Scholar] [CrossRef]
- Delarasse, C.; Auger, R.; Gonnord, P.; Fontaine, B.; Kanellopoulos, J.M. The Purinergic Receptor P2X7 Triggers α-Secretase-Dependent Processing of the Amyloid Precursor Protein. J. Biol. Chem. 2011, 286, 2596–2606. [Google Scholar] [CrossRef] [PubMed]
- Monif, M.; Burnstock, G.; Williams, D.A. Microglia: Proliferation and activation driven by the P2X7 receptor. Int. J. Biochem. Cell Biol. 2010, 42, 1753–1756. [Google Scholar] [CrossRef]
- Sanz, J.; Chiozzi, P.; Ferrari, D.; Colaianna, M.; Idzko, M.; Falzoni, S.; Fellin, R.; Trabace, L.; Di Virgilio, F. Activation of Microglia by Amyloid β Requires P2X7 Receptor Expression. J. Immunol. 2009, 182, 4378–4385. [Google Scholar] [CrossRef]
- Sancho-Vaello, E.; Gil-Carton, D.; François, P.; Bonetti, E.-J.; Kreir, M.; Pothula, K.R.; Kleinekathöfer, U.; Zeth, K. The Structure of the Antimicrobial Human Cathelicidin LL-37 Shows Oligomerization and Channel Formation in the Presence of Membrane Mimics. Sci. Rep. 2020, 10, 17356. [Google Scholar] [CrossRef]
- Tang, X.; Basavarajappa, D.; Haeggström, J.Z.; Wan, M. P2X7 Receptor Regulates Internalization of Antimicrobial Peptide LL-37 by Human Macrophages That Promotes Intracellular Pathogen Clearance. J. Immunol. 2015, 195, 1191–1201. [Google Scholar] [CrossRef]
- Chen, K.; Xiang, Y.; Huang, J.; Gong, W.; Yoshimura, T.; Jiang, Q.; Tessarollo, L.; Le, Y.; Wang, J.M. The Formylpeptide Receptor 2 (Fpr2) and Its Endogenous Ligand Cathelin-Related Antimicrobial Peptide (CRAMP) Promote Dendritic Cell Maturation. J. Biol. Chem. 2014, 289, 17553–17563. [Google Scholar] [CrossRef]
- Coddou, C.; Villalobos, C.; González, J.; Acuña-Castillo, C.; Loeb, B.; Huidobro-Toro, J.P. Formation of Carnosine-Cu(II) Complexes Prevents and Reverts the Inhibitory Action of Copper in P2X4 and P2X7 Receptors. J. Neurochem. 2002, 80, 626–633. [Google Scholar] [CrossRef]
- Lorca, R.A.; Chacón, M.; Barría, M.I.; Inestrosa, N.C.; Huidobro-Toro, J.P. The Human Prion Octarepeat Fragment Prevents and Reverses the Inhibitory Action of Copper in the P2X4 Receptor without Modifying the Zinc Action. J. Neurochem. 2003, 85, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Bibic, L.; Herzig, V.; King, G.F.; Stokes, L. Development of High-Throughput Fluorescent-Based Screens to Accelerate Discovery of P2X Inhibitors from Animal Venoms. J. Nat. Prod. 2019, 82, 2559–2567. [Google Scholar] [CrossRef]
- Yu, X.; Jia, S.; Yu, S.; Chen, Y.; Zhang, C.; Chen, H.; Dai, Y. Recent Advances in Melittin-Based Nanoparticles for Antitumor Treatment: From Mechanisms to Targeted Delivery Strategies. J. Nanobiotechnol. 2023, 21, 454. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.-M.; Xie, F.; Fu, H.; Liu, M.-G.; Cao, F.-L.; Hao, J.; Chen, J. Roles of Peripheral P2X and P2Y Receptors in the Development of Melittin-Induced Nociception and Hypersensitivity. Neurochem. Res. 2008, 33, 2085–2091. [Google Scholar] [CrossRef] [PubMed]
- Lewis, C.; Neidhart, S.; Holy, C.; North, R.A.; Buell, G.; Surprenant, A. Coexpression of P2X2 and P2X3 Receptor Subunits Can Account for ATP-Gated Currents in Sensory Neurons. Nature 1995, 377, 432–435. [Google Scholar] [CrossRef]
- Zhang, C.; Medzihradszky, K.F.; Sánchez, E.E.; Basbaum, A.I.; Julius, D. Lys49 Myotoxin from the Brazilian Lancehead Pit Viper Elicits Pain through Regulated ATP Release. Proc. Natl. Acad. Sci. USA 2017, 114, E2524–E2532. [Google Scholar] [CrossRef]
- Lalo, U.V.; Pankratov, Y.V.; Arndts, D.; Krishtal, O.A. Ω-Conotoxin GVIA Potently Inhibits the Currents Mediated by P2X Receptors in Rat DRG Neurons. Brain Res. Bull. 2001, 54, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Savchenko, H.A.; Vasylevs’kyi, A.A.; Pluzhnykov, K.A.; IuV, K.; Mamenko, M.; Volkova, T.; Maximyuk, O.; Ia, A.; IeV, H.; Kryshtal, O. Peptide Components of Geolycosa Spider Venom Modulate P2X Receptor Activity of Rat Sensory Neurons. Fiziol. Zh. 2009, 55, 11–16. [Google Scholar]
- Grishin, E.V.; Savchenko, G.A.; Vassilevski, A.A.; Korolkova, Y.V.; Boychuk, Y.A.; Viatchenko-Karpinski, V.Y.; Nadezhdin, K.D.; Arseniev, A.S.; Pluzhnikov, K.A.; Kulyk, V.B.; et al. Novel Peptide from Spider Venom Inhibits P2X3 Receptors and Inflammatory Pain. Ann. Neurol. 2010, 67, 680–683. [Google Scholar] [CrossRef] [PubMed]
- Kabanova, N.V.; Vassilevski, A.A.; Rogachevskaja, O.A.; Bystrova, M.F.; Korolkova, Y.V.; Pluzhnikov, K.A.; Romanov, R.A.; Grishin, E.V.; Kolesnikov, S.S. Modulation of P2X3 Receptors by Spider Toxins. Biochim. Biophys. Acta 2012, 1818, 2868–2875. [Google Scholar] [CrossRef]
- Honda, M.; Okutsu, H.; Matsuura, T.; Miyagi, T.; Yamamoto, Y.; Hazato, T.; Ono, H. Spinorphin, an Endogenous Inhibitor of Enkephalin-Degrading Enzymes, Potentiates Leu-Enkephalin-Induced Anti-Allodynic and Antinociceptive Effects in Mice. Jpn. J. Pharmacol. 2001, 87, 261–267. [Google Scholar] [CrossRef]
- Jung, K.-Y.; Moon, H.D.; Lee, G.E.; Lim, H.-H.; Park, C.-S.; Kim, Y.-C. Structure−Activity Relationship Studies of Spinorphin as a Potent and Selective Human P2X3 Receptor Antagonist. J. Med. Chem. 2007, 50, 4543–4547. [Google Scholar] [CrossRef] [PubMed]
- de Denus, S.; Pharand, C.; Williamson, D.R. Brain Natriuretic Peptide in the Management of Heart Failure: The Versatile Neurohormone. Chest 2004, 125, 652–668. [Google Scholar] [CrossRef]
- Marchenkova, A.; Vilotti, S.; Fabbretti, E.; Nistri, A. Brain Natriuretic Peptide Constitutively Downregulates P2X3 Receptors by Controlling Their Phosphorylation State and Membrane Localization. Mol. Pain 2015, 11, 71. [Google Scholar] [CrossRef]
- Cané, L.; Saffioti, N.A.; Genetet, S.; Daza Millone, M.A.; Ostuni, M.A.; Schwarzbaum, P.J.; Mouro-Chanteloup, I.; Herlax, V. Alpha Hemolysin of E. Coli Induces Hemolysis of Human Erythrocytes Independently of Toxin Interaction with Membrane Proteins. Biochimie 2024, 216, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Skals, M.; Jorgensen, N.R.; Leipziger, J.; Praetorius, H.A. α-Hemolysin from Escherichia Coli Uses Endogenous Amplification through P2X Receptor Activation to Induce Hemolysis. Proc. Natl. Acad. Sci. USA 2009, 106, 4030–4035. [Google Scholar] [CrossRef] [PubMed]
- Heinbockel, L.; Weindl, G.; Martinez-de-Tejada, G.; Correa, W.; Sanchez-Gomez, S.; Bárcena-Varela, S.; Goldmann, T.; Garidel, P.; Gutsmann, T.; Brandenburg, K. Inhibition of Lipopolysaccharide- and Lipoprotein-Induced Inflammation by Antitoxin Peptide Pep19-2.5. Front. Immunol. 2018, 9, 1704. [Google Scholar] [CrossRef]
- Ueda, H.; Matsunaga, S.; Inoue, M.; Yamamoto, Y.; Hazato, T. Complete Inhibition of Purinoceptor Agonist-Induced Nociception by Spinorphin, but Not by Morphine. Peptides 2000, 21, 1215–1221. [Google Scholar] [CrossRef]
- Pfalzgraff, A.; Bárcena-Varela, S.; Heinbockel, L.; Gutsmann, T.; Brandenburg, K.; Martinez-de-Tejada, G.; Weindl, G. Antimicrobial Endotoxin-Neutralizing Peptides Promote Keratinocyte Migration via P2X7 Receptor Activation and Accelerate Wound Healing in Vivo. Br. J. Pharmacol. 2018, 175, 3581–3593. [Google Scholar] [CrossRef] [PubMed]
Peptide | Target Receptor | Source Organism | Biological Effect | References |
---|---|---|---|---|
Beta-amyloid peptide | P2X7R | Amyloid precursor protein (APP)-Human | It causes an increase in intracellular Ca2+, ATP release, IL-1 release, and plasma membrane permeabilization in normal microglia. | [33,34] |
LL-37/hCap18 peptide | P2X7R | The only cathelicidin present in humans | LL-37 stimulated cell proliferation, resulting in Ca2+ influx and promoting the activation of molecules capable of opening ion channels, such as benzoyl ATP, to optimize the functions of P2X7 receptor pores and channels. | [35] |
Peptide Pep19-2.5 | P2X7R | Synthetic antimicrobial peptide | Intracellular Ca2+ increase in 1321N1 astrocytoma cells stably expressing human receptor shows: IC50 of 0.346 μM for P2X7 | [36] |
rCRAMP peptide | P2X7R | Mouse cholin-related antimicrobial peptide | The rCRAMP peptide induced IL-6 expression and ERK1/2 phosphorylation in glial cells and in mice, inhibiting all responses coupled to the P2X7 receptor in macrophages. | [37,38] |
ADESG peptide | P2X7R | Human protein, associated with the M2 domain of hP2X7R | HEK 293 cells were used in patch-clamp experiments in the cell- connected configuration. | [39] |
Polymyxin B peptide | P2X7R | Mouse and human macrophages. | Human macrophages, HEK293 and K562 cells | [33,40] |
Peptide | Target Receptor | Source Organism | Biological Effect | References |
---|---|---|---|---|
BomoTx- myotoxins Lys49 | P2X2/P2X3 | Bothrops moojeni | Indirect activation via ATP release by pannexin and connexin hemichannels in HEK-293 cells. Administration of 50 µM/20 µL of BomoTx promoted mechanical allodynia, and this effect was reversed with P2X2 and P2X3 knockout animals | [55] |
BNP | P2X3 | Mice | Downregulation of P2X3 in the mouse trigeminal ganglion by serine phosphorylation and distribution of the receptor to nonraft membrane compartments | [63] |
Carnosine | P2X4 | Human | Selectively form Cu (II) complexes with EC50 of 44.4 ± 5.9 µM in Xenopus laevis oocytes, increasing the current evoked by ATP | [50] |
Human octarepeat prion PrP60-67 | P2X4 | Human | PrP-Cu (II) coordination complexes with EC50 of 4.6 ± 1 µM in Xenopus laevis oocytes, increasing the current evoked by ATP | [50] |
Human octarepeat prion PrP59-9 | P2X4 | Human | PrP-Cu (II) coordination complexes with EC50 of 1.3 ± 0.4 µM in Xenopus laevis oocytes, increasing the current evoked by ATP | [50] |
HlyA | P2X1 | Escherichia coli | P2X1 antagonism blocks HlyA-induced erythrocyte lysis. MRS2159 generated IC50s of 150 and 250 μM for horse and mouse erythrocytes, respectively, whereas human erythrocytes showed a statistically significant reduction at a concentration above 250 μM | [65] |
Melittin | P2X3/heterooligomeric P2X2/3 | Bee venom | Subcutaneous injection of 0.05 mg/50 μL of melittin had nociceptive effects reversed with the use of 0.5 mg/20 μL of the antagonist A-317491 | [53] |
Ω-conotoxin GVIA | P2X3/heterooligomeric P2X2/3 | Conus snail | Potently inhibited currents in rat DRG neurons with IC50 of 21.2 ± 1.7 nM and 3.84 ± 0.43 μM, respectively | [56] |
Pep19-2.5 | P2X1/P2X3/P2X4 | Synthetic antimicrobial peptide | Intracellular Ca2+ increase in 1321N1 astrocytoma cells stably expressing human receptor shows: IC50 of 4.23 μM for P2X1 IC50 of 10.1 μM for P2X3 IC50 of 0.146 μM for P2X4 | [36] |
Purotoxin-1 | P2X3 | Geolycosa spider venom | IC50 of 12 nM in DRG neurons. Intraplantar administration of 0.5 nmol significantly reduced nociceptive behaviors | [58] |
Purotoxin-2 | P2X3 | Geolycosa spider venom | CHO cells treated with 50 nM led to a 3- to 4-fold decrease in the IC50 dose of ambient ATP | [59] |
Spinorphin | P2X3 | Bovine spinal cord | IC50 of 8.3 pM in Xenopus oocytes expressing P2X3. Administration of 3 and 10 nM spinorphin strongly inhibited 2-MeS ATP activity in male ddY mice | [68,69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Souza Oliveira Carneiro, J.A.; Teixeira, G.P.; Rocha, L.; Faria, R.X. Activity of Peptides Modulating the Action of p2x Receptors: Focus on the p2x7 Receptor. Pharmaceuticals 2025, 18, 1452. https://doi.org/10.3390/ph18101452
De Souza Oliveira Carneiro JA, Teixeira GP, Rocha L, Faria RX. Activity of Peptides Modulating the Action of p2x Receptors: Focus on the p2x7 Receptor. Pharmaceuticals. 2025; 18(10):1452. https://doi.org/10.3390/ph18101452
Chicago/Turabian StyleDe Souza Oliveira Carneiro, Jonathas Albertino, Guilherme Pegas Teixeira, Leandro Rocha, and Robson Xavier Faria. 2025. "Activity of Peptides Modulating the Action of p2x Receptors: Focus on the p2x7 Receptor" Pharmaceuticals 18, no. 10: 1452. https://doi.org/10.3390/ph18101452
APA StyleDe Souza Oliveira Carneiro, J. A., Teixeira, G. P., Rocha, L., & Faria, R. X. (2025). Activity of Peptides Modulating the Action of p2x Receptors: Focus on the p2x7 Receptor. Pharmaceuticals, 18(10), 1452. https://doi.org/10.3390/ph18101452