Peptides from Animal Venoms: A Promising Frontier in Diabetes Therapy via Multi-Target Mechanisms
Abstract
1. Introduction
2. Methodology
3. Results
4. Discussion
4.1. Pharmacological Mechanisms in the Clinical Treatment of Diabetes
4.2. Peptides Acting Through Mechanisms Involving Insulin Receptor Agonism
4.3. Peptides Acting Through Mechanisms Involving Potassium Channel Inhibition
4.4. Peptides Acting Through Mechanisms Involving Alpha-Amylase Inhibition
4.5. Peptides Acting Through Diverse Mechanisms
4.6. Limitations, Key Considerations, and Future Perspectives on the Study of Such Substances
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Gupta, S.; Sharma, N.; Arora, S.; Verma, S. Diabetes: A review of its pathophysiology, and advanced methods of mitigation. Curr. Med. Res. Opin. 2024, 40, 773–780. [Google Scholar] [CrossRef]
- Reed, J.; Bain, S.; Kanamarlapudi, V. A Review of Current Trends with Type 2 Diabetes Epidemiology, Aetiology, Pathogenesis, Treatments and Future Perspectives. Diabetes Metab. Syndr. Obes. 2021, 14, 3567–3602. [Google Scholar] [CrossRef] [PubMed]
- Katsarou, A.; Gudbjörnsdottir, S.; Rawshani, A.; Dabelea, D.; Bonifacio, E.; Anderson, B.J.; Jacobsen, L.M.; Schatz, D.A.; Lernmark, Å. Type 1 Diabetes mellitus. Nat. Rev. Dis. Primers 2017, 3, 17016. [Google Scholar] [CrossRef]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: A pooled analysis of 1108 population-representative studies with 141 million participants. Lancet 2024, 404, 2077–2093. [Google Scholar] [CrossRef]
- Sheikh, A. Direct cardiovascular effects of glucagon like peptide-1. Diabetol. Metab. Syndr. 2013, 5, 47. [Google Scholar] [CrossRef]
- Di Magno, L.; Di Pastena, F.; Bordone, R.; Coni, S.; Canettieri, G. The Mechanism of Action of Biguanides: New Answers to a Complex Question. Cancers 2022, 14, 3220. [Google Scholar] [CrossRef]
- Fonseca-Correa, J.I.; Correa-Rotter, R. Sodium-Glucose Cotransporter 2 Inhibitors Mechanisms of Action: A Review. Front. Med. 2021, 8, 777861. [Google Scholar] [CrossRef]
- Ghazaee, S.P.; Tumanov, V.; Voloshyna, N.; Marchenko-Tolsta, K.; Hameed, M. A Review of the Novel Antidiabetic Medications: Efficacy, Safety and Innovation. New Emir. Med. J. 2023, 4, e300123213248. [Google Scholar] [CrossRef]
- Salmen, T.; Pietroșel, V.-A.; Mihai, B.-M.; Bica, I.C.; Teodorescu, C.; Păunescu, H.; Coman, O.A.; Mihai, D.-A.; Stoian, A.P. Non-Insulin Novel Antidiabetic Drugs Mechanisms in the Pathogenesis of COVID-19. Biomedicines 2022, 10, 2624. [Google Scholar] [CrossRef]
- Smallwood, T.B.; Clark, R.J. Advances in venom peptide drug discovery: Where are we at and where are we heading? Expert. Opin. Drug Discov. 2021, 16, 1163–1173. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Kumar, S.; Bhat, H.F. Bioactive peptides of animal origin: A review. J. Food Sci. Technol. 2015, 52, 5377–5392. [Google Scholar] [CrossRef] [PubMed]
- Lodato, M.; Plaisance, V.; Pawlowski, V.; Kwapich, M.; Barras, A.; Buissart, E.; Dalle, S.; Szunerits, S.; Vicogne, J.; Boukherroub, R.; et al. Polyphenols and Alkaloids: Are They the Next Antidiabetics That Will Preserve β-Cell Mass and Function in Type 2 Diabetes? Cells 2023, 12, 940. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, A.N.; Soares, A.M.; Da Silva, S.L. Peptides from Animal Venom and Poisons. Int. J. Pept. Res. Ther. 2023, 29, 83. [Google Scholar] [CrossRef]
- Ageitos, L.; Torres, M.D.T.; De La Fuente-Nunez, C. Biologically Active Peptides from Venoms: Applications in Antibiotic Resistance, Cancer, and Beyond. Int. J. Mol. Sci. 2022, 23, 15437. [Google Scholar] [CrossRef]
- Vidya, V.; Achar, R.R.; Himathi, M.U.; Akshita, N.; Kameshwar, V.H.; Byrappa, K.; Ramadas, D. Venom peptides—A comprehensive translational perspective in pain management. Curr. Res. Toxicol. 2021, 2, 329–340. [Google Scholar] [CrossRef]
- Parkes, D.G.; Mace, K.F.; Trautmann, M.E. Discovery and development of exenatide: The first antidiabetic agent to leverage the multiple benefits of the incretin hormone, GLP-1. Expert. Opin. Drug Discov. 2013, 8, 219–244. [Google Scholar] [CrossRef]
- Aguiar, A.J.F.C.; De Medeiros, W.F.; Da Silva-Maia, J.K.; Bezerra, I.W.L.; Piuvezam, G.; Morais, A.H.D.A. Peptides Evaluated In Silico, In Vitro, and In Vivo as Therapeutic Tools for Obesity: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 9646. [Google Scholar] [CrossRef]
- Joubert, M.; Opigez, V.; Pavlikova, B.; Paul, L.P.S.; Jeandidier, N.; Briant, A.R.; Parienti, J.; Reznik, Y. Efficacy and safety of exenatide as add-on therapy for patients with type 2 diabetes with an intensive insulin regimen: A randomized double-blind trial. Diabetes Obes. Metab. 2021, 23, 374–381. [Google Scholar] [CrossRef]
- Ekinci, E.I.; Pyrlis, F.; Hachem, M.; Maple-Brown, L.J.; Brown, A.; Maguire, G.; Churilov, L.; Cohen, N. Feasibility of once weekly exenatide-LAR and enhanced diabetes care in Indigenous Australians with type 2 diabetes (LONG-Acting-ONCE-WEEKLY-EXENATIDE Lar-SUGAR, ‘Lower SUGAR’ study). Intern. Med. J. 2021, 51, 1463–1472. [Google Scholar] [CrossRef]
- Tamborlane, W.V.; Bishai, R.; Geller, D.; Shehadeh, N.; Al-Abdulrazzaq, D.; Vazquez, E.M.; Karoly, E.; Troja, T.; Doehring, O.; Carter, D.; et al. Once-Weekly Exenatide in Youth With Type 2 Diabetes. Diabetes Care 2022, 45, 1833–1840. [Google Scholar] [CrossRef]
- Taylor, S.I.; Montasser, M.E.; Yuen, A.H.; Fan, H.; Yazdi, Z.S.; Whitlatch, H.B.; Mitchell, B.D.; Shuldiner, A.R.; Muniyappa, R.; Streeten, E.A.; et al. Acute pharmacodynamic responses to exenatide: Drug-induced increases in insulin secretion and glucose effectiveness. Diabetes Obes. Metab. 2023, 25, 2586–2594. [Google Scholar] [CrossRef]
- Bordon, K.D.C.F.; Cologna, C.T.; Fornari-Baldo, E.C.; Pinheiro-Júnior, E.L.; Cerni, F.A.; Amorim, F.G.; Anjolette, F.A.P.; Cordeiro, F.A.; Wiezel, G.A.; Cardoso, I.A.; et al. From Animal Poisons and Venoms to Medicines: Achievements, Challenges and Perspectives in Drug Discovery. Front. Pharmacol. 2020, 11, 1132. [Google Scholar] [CrossRef] [PubMed]
- Gunta, U.; Kandula, D.R.; Gorti, S.K.K.; Vadla, G.P.; Kodiyala, G.M.M. Investigating the Binding Efficacy of Snake Venom Proteins as GLP-1 Analogs for Diabetes mellitus Management: An In silico Study. Orient. J. Chem. 2023, 39, 581–591. [Google Scholar] [CrossRef]
- Ahorukomeye, P.; Disotuar, M.M.; Gajewiak, J.; Karanth, S.; Watkins, M.; Robinson, S.D.; Salcedo, P.F.; Smith, N.A.; Smith, B.J.; Schlegel, A.; et al. Fish-hunting cone snail venoms are a rich source of minimized ligands of the vertebrate insulin receptor. eLife 2019, 8, e41574. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Tang, T.; Lu, J.; Huang, M.; Zhang, J.; Ma, L.; Gao, B. Synthesis and Hypoglycemic Effect of Insulin from the Venom of Sea Anemone Exaiptasia diaphana. Mar. Drugs 2024, 22, 111. [Google Scholar] [CrossRef]
- Coulter-Parkhill, A.; Gault, V.A.; McClean, S.; Irwin, N. Peptides originally derived from Chilobrachys jingzhao tarantula venom possess beneficial effects on pancreatic beta cell health and function. Eur. J. Pharmacol. 2023, 954, 175855. [Google Scholar] [CrossRef]
- Coulter-Parkhill, A.; Dobbin, S.; Tanday, N.; Gault, V.; McClean, S.; Irwin, N. A novel peptide isolated from Aphonopelma chalcodes tarantula venom with benefits on pancreatic islet function and appetite control. Biochem. Pharmacol. 2023, 212, 115544. [Google Scholar] [CrossRef]
- Coulter-Parkhill, A.; Tanday, N.; Cobice, D.; McLaughlin, C.M.; McClean, S.; Gault, V.A.; Irwin, N. Sustained metabolic benefits of ΔTRTX-Ac1, a tarantula venom-derived peptide, when administered together with exenatide in high-fat fed mice. Diabetes Obes. Metab. 2024, 26, 329–338. [Google Scholar] [CrossRef]
- Ramu, Y.; Yamakaze, J.; Zhou, Y.; Hoshi, T.; Lu, Z. Blocking Kir6.2 channels with SpTx1 potentiates glucose-stimulated insulin secretion from murine pancreatic β cells and lowers blood glucose in diabetic mice. eLife 2022, 11, e77026. [Google Scholar] [CrossRef]
- Tang, D.; Xu, J.; Li, Y.; Zhao, P.; Kong, X.; Hu, H.; Liang, S.; Tang, C.; Liu, Z. Molecular mechanisms of centipede toxin SsTx-4 inhibition of inwardly rectifying potassium channels. J. Biol. Chem. 2021, 297, 101076. [Google Scholar] [CrossRef]
- Sintsova, O.; Gladkikh, I.; Kalinovskii, A.; Zelepuga, E.; Monastyrnaya, M.; Kim, N.; Shevchenko, L.; Peigneur, S.; Tytgat, J.; Kozlovskaya, E.; et al. Magnificamide, a β-Defensin-Like Peptide from the Mucus of the Sea Anemone Heteractis magnifica, Is a Strong Inhibitor of Mammalian α-Amylases. Mar. Drugs 2019, 17, 542. [Google Scholar] [CrossRef]
- Sintsova, O.; Popkova, D.; Kalinovskii, A.; Rasin, A.; Borozdina, N.; Shaykhutdinova, E.; Klimovich, A.; Menshov, A.; Kim, N.; Anastyuk, S.; et al. Control of postprandial hyperglycemia by oral administration of the sea anemone mucus-derived α-amylase inhibitor (magnificamide). Biomed. Pharmacother. 2023, 168, 115743. [Google Scholar] [CrossRef] [PubMed]
- Setayesh-Mehr, Z.; Ghasemi, L.V.; Poorsargol, M.; Momeni, R. Upregulation of GLUT4 Expression and Glucose Homeostasis by Synthetic Peptides HL-7 and HL-10 in in-vitro and in-vivo Diabetic Models. Int. J. Pept. Res. Ther. 2023, 29, 35. [Google Scholar] [CrossRef]
- Lugo-Fabres, P.H.; Otero-Sastre, L.M.; Bernáldez-Sarabia, J.; Camacho-Villegas, T.A.; Sánchez-Campos, N.; Serrano-Bello, J.; Medina, L.A.; Muñiz-Hernández, S.; De La Cruz, L.; Arenas, I.; et al. Potential Therapeutic Applications of Synthetic Conotoxin s-cal14.2b, Derived from Californiconus californicus, for Treating Type 2 Diabetes. Biomedicines 2021, 9, 936. [Google Scholar] [CrossRef] [PubMed]
- Conlon, J.M.; Attoub, S.; Musale, V.; Leprince, J.; Casewell, N.R.; Sanz, L.; Calvete, J.J. Isolation and characterization of cytotoxic and insulin-releasing components from the venom of the black-necked spitting cobra Naja nigricollis (Elapidae). Toxicon X 2020, 6, 100030. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Noble, W.S.; Keich, U. A BLAST from the past: Revisiting blastp’s E-value. Bioinformatics 2024, 40, btae729. [Google Scholar] [CrossRef]
- Samal, K.C.; Sahoo, J.P.; Behera, L.; Dash, T. Understanding the BLAST (Basic Local Alignment Search Tool) Program and a Step-by-step Guide for its use in Life Science Research. Bhartiya Krishi Anusandhan Patrika 2021, 36, 55–61. [Google Scholar] [CrossRef]
- McGinnis, S.; Madden, T.L. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004, 32, W20–W25. [Google Scholar] [CrossRef]
- Lu, H.; Xie, T.; Wu, Q.; Hu, Z.; Luo, Y.; Luo, F. Alpha-Glucosidase Inhibitory Peptides: Sources, Preparations, Identifications, and Action Mechanisms. Nutrients 2023, 15, 4267. [Google Scholar] [CrossRef]
- Campbell, J.E.; Newgard, C.B. Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat. Rev. Mol. Cell Biol. 2021, 22, 142–158. [Google Scholar] [CrossRef]
- Fu, Z.; Gilbert, E.R.; Liu, D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr. Diabetes Rev. 2013, 9, 25–53. [Google Scholar] [CrossRef]
- Khin, P.P.; Lee, J.H.; Jun, H.-S. Pancreatic Beta-cell Dysfunction in Type 2 Diabetes. Eur. J. Inflamm. 2023, 21, 1721727X231154152. [Google Scholar] [CrossRef]
- Mukherjee, N.; Lin, L.; Contreras, C.J.; Templin, A.T. β-Cell Death in Diabetes: Past Discoveries, Present Understanding, and Potential Future Advances. Metabolites 2021, 11, 796. [Google Scholar] [CrossRef] [PubMed]
- Halban, P.A.; Polonsky, K.S.; Bowden, D.W.; Hawkins, M.A.; Ling, C.; Mather, K.J.; Powers, A.C.; Rhodes, C.J.; Sussel, L.; Weir, G.C. β-Cell Failure in Type 2 Diabetes: Postulated Mechanisms and Prospects for Prevention and Treatment. Diabetes Care 2014, 37, 1751–1758. [Google Scholar] [CrossRef] [PubMed]
- Sola, D.; Rossi, L.; Schianca, G.P.C.; Maffioli, P.; Bigliocca, M.; Mella, R.; Corlianò, F.; Fra, G.P.; Bartoli, E.; Derosa, G. State of the art paper Sulfonylureas and their use in clinical practice. Arch. Med. Sci. 2015, 4, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Ashcroft, F. Mechanisms of the Glycaemic Effects of Sulfonylureas. Horm. Metab. Res. 1996, 28, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Thornberry, N.A.; Gallwitz, B. Mechanism of action of inhibitors of dipeptidyl-peptidase-4 (DPP-4). Best. Pract. Res. Clin. Endocrinol. Metab. 2009, 23, 479–486. [Google Scholar] [CrossRef]
- Le, T.K.C.; Dao, X.D.; Nguyen, D.V.; Luu, D.H.; Bui, T.M.H.; Le, T.H.; Nguyen, H.T.; Le, T.N.; Hosaka, T.; Nguyen, T.T.T. Insulin signaling and its application. Front. Endocrinol. 2023, 14, 1226655. [Google Scholar] [CrossRef]
- Arneth, B.; Arneth, R.; Shams, M. Metabolomics of Type 1 and Type 2 Diabetes. Int. J. Mol. Sci. 2019, 20, 2467. [Google Scholar] [CrossRef]
- Thompson, C.B.; Bielska, A.A. Growth factors stimulate anabolic metabolism by directing nutrient uptake. J. Biol. Chem. 2019, 294, 17883–17888. [Google Scholar] [CrossRef]
- Richter, E.A.; Hargreaves, M. Exercise, GLUT4, and Skeletal Muscle Glucose Uptake. Physiol. Rev. 2013, 93, 993–1017. [Google Scholar] [CrossRef] [PubMed]
- Pastromas, S.; Koulouris, S. Thiazolidinediones: Antidiabetic drugs with cardiovascular effects. Hell. J. Cardiol. 2006, 47, 352–360. [Google Scholar]
- Hargreaves, M.; Spriet, L.L. Skeletal muscle energy metabolism during exercise. Nat. Metab. 2020, 2, 817–828. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, S.; Chen, J.; Su, Z. Unraveling the Regulation of Hepatic Gluconeogenesis. Front. Endocrinol. 2019, 9, 802. [Google Scholar] [CrossRef]
- Jensen, J.; Rustad, P.I.; Kolnes, A.J.; Lai, Y.-C. The Role of Skeletal Muscle Glycogen Breakdown for Regulation of Insulin Sensitivity by Exercise. Front. Physiol. 2011, 2, 112. [Google Scholar] [CrossRef]
- Ebrahimi, H.; Megally, S.; Plotkin, E.; Shivakumar, L.; Salgia, N.J.; Zengin, Z.B.; Meza, L.; Chawla, N.; Castro, D.V.; Dizman, N.; et al. Barriers to Clinical Trial Implementation Among Community Care Centers. JAMA Netw. Open 2024, 7, e248739. [Google Scholar] [CrossRef]
- Djurisic, S.; Rath, A.; Gaber, S.; Garattini, S.; Bertele, V.; Ngwabyt, S.-N.; Hivert, V.; Neugebauer, E.A.M.; Laville, M.; Hiesmayr, M.; et al. Barriers to the conduct of randomised clinical trials within all disease areas. Trials 2017, 18, 360. [Google Scholar] [CrossRef]
- Maxwell, S.R. Rational prescribing: The principles of drug selection. Clin. Med. 2016, 16, 459–464. [Google Scholar] [CrossRef]
- Lam, W.Y.; Fresco, P. Medication Adherence Measures: An Overview. BioMed Res. Int. 2015, 2015, 217047. [Google Scholar] [CrossRef]
- Deganutti, G.; Liang, Y.-L.; Zhang, X.; Khoshouei, M.; Clydesdale, L.; Belousoff, M.J.; Venugopal, H.; Truong, T.T.; Glukhova, A.; Keller, A.N.; et al. Dynamics of GLP-1R peptide agonist engagement are correlated with kinetics of G protein activation. Nat. Commun. 2022, 13, 92. [Google Scholar] [CrossRef]
- Maikawa, C.L.; Smith, A.A.A.; Zou, L.; Meis, C.M.; Mann, J.L.; Webber, M.J.; Appel, E.A. Stable Monomeric Insulin Formulations Enabled by Supramolecular PEGylation of Insulin Analogues. Adv. Ther. 2020, 3, 1900094. [Google Scholar] [CrossRef]
- Brange, J.; Owens, D.R.; Kang, S.; Vølund, A. Monomeric Insulins and Their Experimental and Clinical Implications. Diabetes Care 1990, 13, 923–954. [Google Scholar] [CrossRef]
- Doupnik, C.A. Venom-derived peptides inhibiting Kir channels: Past, present, and future. Neuropharmacology 2017, 127, 161–172. [Google Scholar] [CrossRef]
- Reveret, L.; Leclerc, M.; Morin, F.; Émond, V.; Calon, F. Pharmacokinetics, biodistribution and toxicology of novel cell-penetrating peptides. Sci. Rep. 2023, 13, 11081. [Google Scholar] [CrossRef] [PubMed]
- Diao, L.; Meibohm, B. Pharmacokinetics and Pharmacokinetic–Pharmacodynamic Correlations of Therapeutic Peptides. Clin. Pharmacokinet. 2013, 52, 855–868. [Google Scholar] [CrossRef] [PubMed]
- Fagundes, F.H.R.; Aparicio, R.; Santos, M.L.D.; Filho, E.B.S.D.; Oliveira, S.C.B.; Toyama, D.O.; Toyama, M.H. A Catalytically Inactive Lys49 PLA2 Isoform from Bothrops jararacussu venom that Stimulates Insulin Secretion in Pancreatic Beta Cells. Protein Pept. Lett. 2011, 18, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Salavert, F.; Hidago, M.R.; Amadoz, A.; Çubuk, C.; Medina, I.; Crespo, D.; Carbonell-Caballero, J.; Dopazo, J. Actionable pathways: Interactive discovery of therapeutic targets using signaling pathway models. Nucleic Acids Res. 2016, 44, W212–W216. [Google Scholar] [CrossRef]
- Kiel, C.; Serrano, L. Challenges ahead in signal transduction: MAPK as an example. Curr. Opin. Biotechnol. 2012, 23, 305–314. [Google Scholar] [CrossRef]
- Kakkar, A.; Traverso, G.; Farokhzad, O.C.; Weissleder, R.; Langer, R. Evolution of macromolecular complexity in drug delivery systems. Nat. Rev. Chem. 2017, 1, 63. [Google Scholar] [CrossRef]
- Tyagi, P.; Santos, J.L. Macromolecule nanotherapeutics: Approaches and challenges. Drug Discov. Today 2018, 23, 1053–1061. [Google Scholar] [CrossRef]
- Mueller, L.K.; Baumruck, A.C.; Zhdanova, H.; Tietze, A.A. Challenges and Perspectives in Chemical Synthesis of Highly Hydrophobic Peptides. Front. Bioeng. Biotechnol. 2020, 8, 162. [Google Scholar] [CrossRef] [PubMed]
- Isidro-Llobet, A.; Kenworthy, M.N.; Mukherjee, S.; Kopach, M.E.; Wegner, K.; Gallou, F.; Smith, A.G.; Roschangar, F. Sustainability Challenges in Peptide Synthesis and Purification: From R&D to Production. J. Org. Chem. 2019, 84, 4615–4628. [Google Scholar] [CrossRef] [PubMed]
- Martín-Carro, B.; Donate-Correa, J.; Fernández-Villabrille, S.; Martín-Vírgala, J.; Panizo, S.; Carrillo-López, N.; Martínez-Arias, L.; Navarro-González, J.F.; Naves-Díaz, M.; Fernández-Martín, J.L.; et al. Experimental Models to Study Diabetes Mellitus and Its Complications: Limitations and New Opportunities. Int. J. Mol. Sci. 2023, 24, 10309. [Google Scholar] [CrossRef] [PubMed]
- Goeddel, D.V.; Kleid, D.G.; Bolivar, F.; Heyneker, H.L.; Yansura, D.G.; Crea, R.; Hirose, T.; Kraszewski, A.; Itakura, K.; Riggs, A.D. Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc. Natl. Acad. Sci. USA 1979, 76, 106–110. [Google Scholar] [CrossRef]
- Tripathi, N.K.; Shrivastava, A. Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Front. Bioeng. Biotechnol. 2019, 7, 420. [Google Scholar] [CrossRef]
- Baldi, L.; Hacker, D.L.; Adam, M.; Wurm, F.M. Recombinant protein production by large-scale transient gene expression in mammalian cells: State of the art and future perspectives. Biotechnol. Lett. 2007, 29, 677–684. [Google Scholar] [CrossRef]
- Yadav, J.; El Hassani, M.; Sodhi, J.; Lauschke, V.M.; Hartman, J.H.; Russell, L.E. Recent developments in in vitro and in vivo models for improved translation of preclinical pharmacokinetics and pharmacodynamics data. Drug Metab. Rev. 2021, 53, 207–233. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J.; Li, D.; Zhou, W.; Yan, F.; Wang, W. Humanized mouse models: A valuable platform for preclinical evaluation of human cancer. Biotech. Bioeng. 2024, 121, 835–852. [Google Scholar] [CrossRef]
- Efferth, T.; Banerjee, M.; Abu-Darwish, M.S.; Abdelfatah, S.; Böckers, M.; Bhakta-Guha, D.; Bolzani, V.; Daak, S.; Demirezer, Ö.L.; Dawood, M.; et al. Biopiracy versus One-World Medicine–From colonial relicts to global collaborative concepts. Phytomedicine 2019, 53, 319–331. [Google Scholar] [CrossRef]
- Merson, J. Bio-Prospecting or Bio-Piracy: Intellectual Property Rights and Biodiversity in a Colonial and Postcolonial Context. Osiris 2000, 15, 282–296. [Google Scholar] [CrossRef]
Elements of the Question | Descriptor | Acronym |
---|---|---|
Peptides derived from animal venoms and their associated mechanisms of action | Problem | P |
Diabetic condition | Exposure | E |
Clinical, in silico, in vitro, and in vivo studies | Context | Co |
Search Strategies | Databases |
---|---|
(“venom”) AND (“antidiabetic” OR “diabetes mellitus” OR “diabetes”) AND (“peptide”) | Scopus |
(“venom”) AND (“antidiabetic” OR “diabetes mellitus” OR “diabetes”) NOT (Review [Publication Type]) | PubMed |
(“venom”) AND (“antidiabetic” OR “diabetes mellitus” OR “diabetes”) AND (“peptide”) | Web of Science |
Article | Sugested Mechanism | OBSERVED EFFECT | Dose | Methodology | Peptide and Animal Source |
---|---|---|---|---|---|
Joubert et al., 2021 [18]. | GLP-1 receptor agonism. | - Reduction in HbA1c, body mass index, weight and post- prandial glycemia; - No difference in hypoglycemic risk or quality of life. | 5 μg twice a day for one month and 10 μg twice a day for five months subcutaneously. | Randomised, double-blind, clinical trial. | Exenatide. Gila monster (Heloderma suspectum). |
Tamborlane et al. 2022 [20]. | GLP-1 receptor agonism. | Reduction in HbA1c and insulin dose on treated individuals. | 2 mg once a week for 24 weeks (injections without explicit route of administration) | Randomised, parallel-group, phase III study. | Exenatide. Gila monster (Heloderma suspectum). |
Ekinci et al., 2021 [19]. | GLP-1 receptor agonism. | Improved HbA1c management. | 2 mg once a week for 20 weeks (injections without explicit route of administration) | Cluster Randomised interventional study. | Exenatide. Gila monster (Heloderma suspectum). |
Taylor et al., 2023 [21]. | GLP-1 receptor agonism. | Increased insulin secretion; | Single subcutaneous administration of 5 μg. | Crossover randomized study with non-diabetic individuals. | Exenatide. Gila monster (Heloderma suspectum). |
Gunta et al., 2023 [23]. | Possible interaction with GLP-1R. | Less favorable interaction between the peptides and the receptor than for the control molecules. | N.A. | Molecular Docking and dynamics in silico with GLP-1R. | Cytotoxin 2a; Cytotoxin 7; Cytotoxin 10. Snakes. |
Ahorukomeye et al., 2019 [24]. | Direct binding to insulin receptors. | - Reduction in blood glucose in zebrafish; - Less potent interaction between peptides and hIR-B than insulin; - Suggestion of structural characteristics that allow the receptor to be activated after binding with peptides; - A dose 10 times higher than that of insulin reverses hyperglycemia in diabetic mice. | - Single administration of 65 ng/g in zebrafish; - Single administration of 1x, 10x, or 20x the dose of human insulin in mice (1 IU/kg) (no explicit route of administration). | - Zebrafish diabetes model; - In vitro hIR interaction test; - Immunoassay of insulin signaling pathways in NIH 3t3t mouse fibroblasts; - Mice diabetes model (CBA/CaJ and C57BL/6J). | Con-Ins G1; Con-Ins G3; Con-Ins T1A; Con-Ins T1B; Con-Ins T2; Con-Ins K1; Con-Ins K2. Sea snail (Conus geographus; C. tulipa; C. Kinoshitai). |
Guo et al., 2024 [25]. | Insulin receptor agonism. | - Significant reduction in blood glucose; - Good interaction with hIR. | Single i.p. administration of 65 ng/g. | - Zebrafish diabetes model; - Molecular docking in silico. | ILP-Ap04. Sea anemone (Exaiptasia diaphana). |
Coulter-Parkhill et al., 2023a [26]. | Inhibition of Kv2.1 channels in a glucose-independent manner. | - No impact on cell viability; - Significant increase in insulin secretion in vitro; - Intracellular calcium inflow; - Proliferation, growth and inhibition of apoptosis of β-PCs; - Improved insulin secretion and glucose control in vivo with no effect on appetite. | Single i.p. administration of 25 nmol/kg or 75 nmol/kg in vivo. | - Cytotoxicity and membrane potential assay, assessment of intracellular calcium and evaluation of proliferation and protection against apoptosis in β-PCs (BRIN BD11); - Evaluation of blood glucose concentrations, insulin secretion and appetite suppression in C57BL/6 mice. | Jingzhaotoxin IX; Jingzhaotoxin XI. Chinese tarantula (Chilobrachys jingzhao). |
Coulter-Parkhill et al., 2023b [27]. | Insulinotropic action mediated by KATP channels. | - Plasma stability up to 12h; - No cytotoxicity with proliferative and anti-apoptotic effects in BRIN- BD11; - In vivo increase in insulin secretion with better glucose tolerance. | Single i.p. administration 25, 75 or 250 nmol/kg | - Peptide plasma stability test; - Cytotoxicity effects | Δ-theraphotoxin-Ac1 (Δ- TRTX-Ac1). Tarantula (Aphonopelma chalcodes). |
Coulter-Parkhill et al., 2024 [28]. | Insulinotropic action mediated by KATP channels. | - No changes in blood glucose, insulin or glucagon levels; - No changes in insulin sensitivity; - Reduction in body weight and energy demand; - Improved glucose tolerance; - Increased levels of pancreatic insulin and reduced levels of glucagon; - Increase in the size of pancreatic islets and β- PCs. | i.p. administration of 25 nmol/kg twice a day for 28 days. | Glucose tolerance test, insulin sensitivity, insulin and glucagon blood stream levels, and histology and immunohistochemistry in a diabetes model in C57BL/6J mice. | Δ-theraphotoxin-Ac1-OH (Δ-TRTX-Ac1- OH); Δ- theraphotoxin-Ac1- NH 2 (Δ-TRTX-Ac1-NH2) Tarantula (Aphonopelma chalcodes). |
Ramu et al., 2022 [29]. | Inhibition of KATP channels by ion-conducting pore blocking. | - No effect on blood glucose, insulin secretion or membrane depolarization in pancreatic cells of wild- type mice; - Suppression of potassium currents through the hKATP channel; - Insulin secretion and membrane depolarization of β-PCs from mice with the V108E mutation; - Reduced glycemia and increased insulin secretion in a mice diabetes model with the V108E mutation. | Single intravenous injection of 1 mg/kg | - Glucose homeostasis in wild mice; - Insulin secretion and electrophysiological assay of β-PCs from wild-type mice; -Electrophysi ological assay of β-PCs from mice expressing human Kir6.2 channel; - Electrophysiological assay and insulin secretion assay in β -PCs from mice with the V108E mutation; -Diabetes model in mice with the mutation V108E. | SpTx1 Centipede (Scolopendra polymorpha). |
Tang et al., 2021 [30]. | Inhibition of Kir channels. | Inhibition of Kir6.2/SUR1 channels, Kir1.1 and Kir4.1 in a dose-dependent manner. | N.A. | Electrophysiological tests on HEK293T cells transfected with plasmids for different types of Kir channels. | SsTx-4; SsTx-4-K14A; SsTx-4-P15A; SsTx-4-Y16A. Centipede (Scolopendra subspinipes mutilans). |
Sintsova et al. 2019 [31]. | Direct inhibition of mammalian alpha-amylases. | Very low inhibition constants for the enzymes evaluated. | N.A. | Inhibition analysis of mammalian alpha-amylases (human salivary alpha-amylase (HSA) and porcine pancreatic alpha-amylase (PPA)) | Magnificamide. Sea anemone (Heteractis magnifica) |
Sintsova et al., 2023 [32]. | Direct inhibition of mammalian alpha-amylases. | - Potent inhibition of HPA; - Formation of stable complexes between the peptide and the enzymes; - Effective blockade of starch degradation and absence of postprandial hyperglycemia in vivo. | Single oral administration of 0.1, 0.01, 0.005, 0.0025, or 0.001 mg/kg. | - Human pancreatic alpha-amylase (HPA) inhibition assay; - Oral starch tolerance in a mouse model of diabetes (CD-1); - Isothermal calorimetric titration of magnificamide with HSA and HPA. | Magnificamide Sea anemone (Heteractis magnifica) |
Setayesh-Mehr et al., 2023 [33]. | Increase in GLUT4 expression by inhibition of NF-κB. | - Glucose uptake by HSkMC; - Significant insulin secretion in INS-1; - Increase in GLUT4, AMPK and Akt expression; - Reduced blood glucose, increased insulin secretion. - In silico interactions with NF-κB. | Daily i.p. injections of 3 or 6 mg/kg for a week | - Insulin secretion test in INS-1 cells; - Glucose uptake in HSkMC - Expression of genes for GLUT4, Akt, and AMPK; - Analysis in a mice model of diabetes; - Molecular docking with nuclear factor κB (NF-κB). | HL-7; HL-10. Scorpion (Hemiscorpius lepturus). |
Lugo-Fabres et al., 2021 [34]. | Possible metabotropic effect | - Reduced cell viability; - Insulin release in NIT-1 cells; - Significant increase in current amplitudes through the Cav1.2/1.3 channels; - Dose-dependent relationship with glucose tolerance - Peripancreatic distribution of administered peptides | Single i.p. injection of 65, 75, 85 or 100 μg per 20 g. | - Cytotoxicityand insulin secretion in NIT-1 cells; - Electrophysiological assay in rat β-PCs; - Glucose homeostasis in BALB/cAnNHsd mice; - Biodistribution in rats. | s-cal14.2b. Sea snail (Californiconus californicus) |
Conlon et al., 2020 [35]. | Phospholipa se effects on membrane phospholipids. | PLA2-1N and PLA2-2N stimulate the release of insulin. | N.A. | - Cytotoxicity and insulin release studies in BRIN BD11 cells. | PLA2-1N; PLA2-2N. Spitting cobra (Naja nigricollis) |
Article | Possible Homologous Sequence to Other Peptides with Similar Suggested Mechanisms? (BLAST Method) | Peptide Sequence and Molecular Weight | Suggested Mechanism | Peptide and Animal Source |
---|---|---|---|---|
Joubert et al., 2021 [18]; Tamborlane et al. 2022 [20]; Ekinci et al., 2021 [19]; Taylor et al., 2023 [21]. | No | MKIILWLCVFGLFLA TLFPISWQMPVESGL SSEDSASSESFASKIK RHGEGTFTSDLSKQ MEEEAVRLFIEWLK NGGPSSGAPPPSG (9478 Da) | GLP-1 receptor agonism. | Exenatide. Gila monster (Heloderma suspectum). |
Gunta et al., 2023 [23]. | No | LQCNKLVPIASKTCPPGKNLCYKMFMVSDLTIPVKRGCIDVCPKNSLLVKYECCNTDRCN (6711 Da); - LKCNKLIPLAYKTCPAGKDLCYKMYMVSNKTVPVKRGCIDVCPKNSLLVKYECCNTDRCN (6792 Da); - LKCNKLVPLFYKTCPAGKDLCYKMYMVATPKVPVKRGCIDVCPKSSLLVKYVCCNTDRCN (6764 Da). | Possible interaction with GLP-1R. | Cytotoxin 2a; Cytotoxin 7; Cytotoxin 10. Snakes. |
Ahorukomeye et al., 2019 [24]. | Yes (E-value greater than 1e-6 when compared to human insulin) | - MTTSSYFLLMALGLLLYVCQSSFGNQHTRTFDTPKHRCGSEITNSYMDLCYRKRNDAGEKRGRASPLWQRRGSLSKLKARAKRNGAFHLPRDGRGVVEHCCHRPCSNAEFKKYCG (13,134 Da); - MTTSFYFLLVALGLLLYVCQSSFGNQHTRNSDTPKHRCGSELADQYVQLCHGKRNDAGKKRGRASPLWQRQGFLSMLKAKRNEAFFLQRDGRGIVEVCCDNPCTVATLRTFCH (12,816 Da); - MTTSFYFLLMALGLLLYVCQSSFGNQHTRNSDTPKYRCGSEIPNSYIDLCFRKRNDAGKKRGRASPLWQRGGSLSMLKARAKRNEAFHLQRAHRGVVEHCCHRPCSNAEFKKFCG (13,161 Da); - MTTSFYFLLMALGLLLYVCQSSFGNQHTRNSDTPKYRCGSDIPNSYMDLCFRKRNDAGKKRGQASPLWQRGGSLSMLKARAKRNEAFHLQRAHRGVVEHCCYRPCSNAEFKKFCG (13,163 Da); - MTTSSYFLLVALGLLLYVCQSSFGSPHTSDSGTTLVRRRLCGSELVTYLGELCLGNRKRRGFPSMLKARAKRNEAFLLQRDGRGIVEDCCYNDCTDEKLKEYCHTLQG (12,135 Da); - MTTSSYFLLVALGLLLYVCQSSFGNPHTRDSGTTPDRDHSCGGELVDRLVKLCPSNRKRRGFPSMLKARAKRNEAFLLQRDGRVIVGDCCDNYCTDERLKGYCASLLGL (1212 Da). | Direct binding to insulin receptors. | Con-Ins G1; Con-Ins G3; Con-Ins T1A; Con-Ins T1B; Con-Ins T2; Con-Ins K1; Con-Ins K2. Sea snail (Conus geographus; C. tulipa; C. Kinoshitai). |
Guo et al., 2024 [25]. | Yes (E-value greater than 1e-6 when compared to human insulin and to Con-Ins G1) | MPRTFLVVLIYILAGFLCSTSALRKVNEASGIKTDGSGYTIVEECCTESCKLEEVNEYCHLFRGRFFCGEQILDIYNTVCNPRSIRRKRSLTVDKREAKKFIRQRR (12,291 Da) | Insulin receptor agonism. | ILP-Ap04. Sea anemone (Exaiptasia diaphana). |
Coulter-Parkhill et al., 2023a [26]. | No | ECTKLLGGCTKDSECCPHLGCRKKWPYHCGWDGTF (3960 Da); - ECRKMFGGCSVDSDCCAHLGCKPTLKYCAWDGTF (3733 Da). | Inhibition of Kv2.1 channels in a glucose-independent manner. | Jingzhaotoxin IX; Jingzhaotoxin XI. Chinese tarantula (Chilobrachys jingzhao). |
Coulter-Parkhill et al., 2023b [27]; Coulter-Parkhill et al., 2024 [28]. | No | RCLPAGKPCAGVTQKIPCCGKCSRNKCT (2923 Da) | Insulinotropic action mediated by KATP channels. | Δ-theraphotoxin-Ac1 (Δ- TRTX-Ac1). Tarantula (Aphonopelma chalcodes). |
Ramu et al., 2022 [29]. | Yes (E-value of 2 × 10−16 with an identity of 45% with the aminoacids of SsTx-4) | ADLIKKKLPFRTRSKFPRKSECVQDCAKAFTNGNKDKIKDVKSEFFSCYCWYEA (6370 Da) | Inhibition of KATP channels by ion-conducting pore blocking. | SpTx1 Centipede (Scolopendra polymorpha). |
Tang et al., 2021 [30]. | Yes (E-value of 2× 10−16 with an identity of 45% with the aminoacids of SpTx1) | EVIKRDIPFKKRKFPYKSECLKACATSFTGGDESRIQEGKPGFFKCTCTFTTG (5983 Da) | Inhibition of Kir channels. | SsTx-4. Centipede (Scolopendra subspinipes mutilans). |
Sintsova et al. 2019 [31]; Sintsova et al., 2023 [32]. | N.A. | SEGTSCYIYHGVYGICKAKCAEDMKAMAGMGVCEGDLCCYKTPW (4774 Da) | Direct inhibition of mammalian alpha-amylases. | Magnificamide. Sea anemone (Heteractis magnifica) |
Setayesh-Mehr et al., 2023 [33]. | N.A. | - YLYELAR (927 Da); - AFPYYGHHLG (1161 Da). | Increase in GLUT4 expression by inhibition of NF-κB. | HL-7; HL-10. Scorpion (Hemiscorpius lepturus). |
Lugo-Fabres et al., 2021 [34]. | N.A. | MNVTVMFLVLLLLTMPLTDGFNIRATNGGELFGPVQRDAGNVLDHGFQRRRECPPRCPTSHCNAGTC (7360 Da) | Possible metabotropic effect | s-cal14.2b. Sea snail (Californiconus californicus) |
Conlon et al., 2020 [35]. | N.A. | FADYGCYCGRGGKGTPVDDLDRMGCWPYLTLYKYINANYNINFK (5077 Da); - GGTGTPVDDLDRMGCWPYLTLYKYKCAAAVCNCDLVAANCFAGARYINANAYNINFKKR (6486 Da). | Phospholipa ses effects on membrane phospholipids. | PLA2-1N; PLA2-2N. Spitting cobra (Naja nigricollis) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Almeida, J.O.C.S.; Comerma-Steffensen, S.G.; de Souza de Almeida Leite, J.R.; Simonsen, U.; Arcanjo, D.D.R. Peptides from Animal Venoms: A Promising Frontier in Diabetes Therapy via Multi-Target Mechanisms. Pharmaceuticals 2025, 18, 1438. https://doi.org/10.3390/ph18101438
de Almeida JOCS, Comerma-Steffensen SG, de Souza de Almeida Leite JR, Simonsen U, Arcanjo DDR. Peptides from Animal Venoms: A Promising Frontier in Diabetes Therapy via Multi-Target Mechanisms. Pharmaceuticals. 2025; 18(10):1438. https://doi.org/10.3390/ph18101438
Chicago/Turabian Stylede Almeida, José Otávio Carvalho Sena, Simón Gabriel Comerma-Steffensen, José Roberto de Souza de Almeida Leite, Ulf Simonsen, and Daniel Dias Rufino Arcanjo. 2025. "Peptides from Animal Venoms: A Promising Frontier in Diabetes Therapy via Multi-Target Mechanisms" Pharmaceuticals 18, no. 10: 1438. https://doi.org/10.3390/ph18101438
APA Stylede Almeida, J. O. C. S., Comerma-Steffensen, S. G., de Souza de Almeida Leite, J. R., Simonsen, U., & Arcanjo, D. D. R. (2025). Peptides from Animal Venoms: A Promising Frontier in Diabetes Therapy via Multi-Target Mechanisms. Pharmaceuticals, 18(10), 1438. https://doi.org/10.3390/ph18101438