Preliminary Study by Differential Scanning Calorimetric Analysis of Red Blood Cells in Peripheral Artery Disease Patients Treated with Cilostazol: Correlation with Improvements in Walking Distance
Abstract
:1. Introduction
2. Aim of the Study
3. Patients and Methods
3.1. Blood Sample Preparation (RBCs)
3.2. DSC Measurements
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Criqui, M.H.; Aboyans, V. Epidemiology of peripheral artery disease. Circ. Res. 2015, 116, 1509–1526. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.S.; Hochman, J.; Lobach, I.; Adelman, M.A.; Riles, T.S.; Rockman, C.B. Modifiable risk factor burden and the prevalence of peripheral artery disease in different vascular territories. J. Vasc. Surg. 2013, 58, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Shigematsu, H.; Hiatt, W.R. Cilostazol for the treatment of intermittent claudication: A meta-analysis. J. Vasc. Surg. 2001, 33, 280–286. [Google Scholar]
- Nordanstig, J.; Behrendt, C.-A.; Baumgartner, I.; Belch, J.; Bäck, M.; Fitridge, R.; Hinchliffe, R.; Lejay, A.; Mills, J.L.; Rother, U.; et al. European Society for Vascular Surgery (ESVS) 2024 Clinical Practice Guidelines on the Management of Asymptomatic Lower Limb Peripheral Arterial Disease and Intermittent Claudication. Eur. J. Vasc. Endovasc. Surg. 2024, 67, 9–96. [Google Scholar] [CrossRef]
- Kim, Y.W.; Kim, D.I.; Park, Y.J. The Role of Cilostazol, a Phosphodiesterase-3 Inhibitor, in the Development of Atherosclerosis and Vascular Biology: A Review with Meta-Analysis. Int. J. Mol. Sci. 2024, 25, 2593. [Google Scholar] [CrossRef]
- Hiatt, W.R. Pharmacologic therapy for peripheral arterial disease and claudication. J. Vasc. Surg. 2002, 36, 1283–1291. [Google Scholar] [CrossRef] [PubMed]
- Chapman, T.M.; Goa, K.L. Cilostazol: A review of its use in intermittent claudication. Am. J. Cardiovasc. Drugs 2003, 3, 117–138. [Google Scholar] [CrossRef] [PubMed]
- Reilly, M.P.; Mohler, E.R. Cilostazol: Treatment of intermittent claudication. Ann. Pharmacother. 2001, 35, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Gerhard-Herman, M.D.; Gornik, H.L.; Barrett, C.; Barshes, N.R.; Corriere, M.A.; Drachman, D.E.; Fleisher, L.A.; Fowkes, F.G.R.; Hamburg, N.M.; Kinlay, S.; et al. 2016 AHA/ACC Guideline on the Management of Patients with Lower Extremity Peripheral Artery Disease: Executive Summary. J. Am. Coll. Cardiol. 2017, 69, 1465–1508. [Google Scholar] [CrossRef] [PubMed]
- Pratt, C.M. Analysis of the cilostazol safety database. Am. J. Cardiol. 2001, 87, 28–33. [Google Scholar] [CrossRef]
- Lee, C.; Nelson, P.R. Effect of cilostazol prescribed in a pragmatic treatment program for intermittent claudication. Vasc. Endovasc. Surg. 2014, 48, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Castellsague, J.; Perez-Gutthann, S.; Calingaert, B.; Bui, C.; Varas-Lorenzo, C.; Arana, A.; Prados-Torres, A.; Poblador-Plou, B.; Gonzalez-Rubio, F.; Giner-Soriano, M.; et al. Characterization of new users of cilostazol in the UK, Spain, Sweden, and Germany. Pharmacoepidemiol. Drug Saf. 2017, 26, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Ito, H. Cilostazol: Several issues to be considered about the safety profile. Nefrologia 2023, 43, 650. [Google Scholar] [CrossRef] [PubMed]
- Michel, J.B.; Martin-Ventura, J.L. Red Blood Cells and Hemoglobin in Human Atherosclerosis and Related Arterial Diseases. Int. J. Mol. Sci. 2020, 21, 6756. [Google Scholar] [CrossRef]
- Todinova, S.; Krumova, S.; Bogdanova, D.; Danailova, A.; Zlatareva, E.; Kalaydzhiev, N.; Langari, A.; Milanov, I.; Taneva, S.G. Red Blood Cells’ Thermodynamic Behavior in Neurodegenerative Pathologies and Aging. Biomolecules 2021, 11, 1500. [Google Scholar] [CrossRef] [PubMed]
- Farkas, P.; Könczöl, F.; Lőrinczy, D. Cyclophosphamide-induced changes in plasma and red blood cells detected by differential scanning calorimetry (DSC) in guinea pigs. J. Therm. Anal. Calorim. 2017, 127, 1239–1243. [Google Scholar] [CrossRef]
- Dinarelli, S.; Longo, G.; Krumova, S.; Todinova, S.; Danailova, A.; Taneva, S.G.; Lenzi, E.; Mussi, V.; Girasole, M. Insight into the morphological pattern observed along the erythrocytes’ aging: Coupling quantitative AFM data to microcalorimetry and Raman spectroscopy. J. Mol. Recognit. 2018, 31, 2732. [Google Scholar] [CrossRef] [PubMed]
- Davio, S.R.; Low, P.S. Characterization of the calorimetric C transition of the human erythrocyte membrane. Biochemistry 1982, 21, 3585–3593. [Google Scholar] [CrossRef]
- Brandts, J.F.; Erickson, L.; Lysko, K.; Schwartz, A.T.; Taverna, R.D. Calorimetric studies of the structural transitions of the human erythrocyte membrane. The involvement of spectrin in the A transition. Biochemistry 1977, 16, 3450–3454. [Google Scholar] [CrossRef]
- Lysko, K.A.; Carlson, R.; Taverna, R.; Snow, J.; Brandts, J.F. Protein involvement in structural transitions of erythrocyte ghosts. Use of thermal gel analysis to detect protein aggregation. Biochemistry 1981, 20, 5570–5576. [Google Scholar] [CrossRef]
- Farkas, P.; Könczöl, F.; Lőrinczy, D. Monitoring the side effects with DSC caused by cyclophosphamide treatment. J. Therm. Anal. Calorim. 2020, 142, 765–770. [Google Scholar] [CrossRef]
- Scherhag, A.; Stork, S.; Gheorghiade, M.; Jánosi, R.A. Effects of cilostazol on hemorheology, platelet function, and endothelial cells: Implications for therapeutic use in peripheral artery disease and beyond. Vasc. Health Risk Manag. 2006, 2, 331–337. [Google Scholar]
- Kotovsky, T.; Kobzik, L. Interplay between erythrocytes and platelets in thrombosis: New insights into an underappreciated relationship. Thromb. Res. 2020, 187, 1–9. [Google Scholar]
Female (n = 5) | Thermodynamic Parameters | ||||
---|---|---|---|---|---|
Tmm/°C | Tmm1/2/°C | Thm/°C | Thm1/2/°C | ΔHtcal/Jg−1 | |
healthy | 69.3 ± 0.4 | 4.2 ± 0.3 | 82.4 ± 0.4 | 8.5 ± 0.3 | 4.3 ± 0.20 |
control | 70.3 ± 0.6 * | 3.9 ± 0.2 * | 78.0 ± 0.3 * | 5.4 ± 0.2 * | 3.8 ± 0.16 * |
2 weeks | 70.0 ± 0.8 * | 3.6 ± 0.2 * | 85.0 ± 0.2 *# | 5.8 ± 0.2 *# | 4.1 ± 0.18 # |
1 month | 70.5 ± 0.9 * | 4.1 ± 0.2 # | 85.0 ± 0.2 *# | 7.0 ± 0.3 *# | 4.3 ± 0.20 # |
2 months | 70.5 ± 0.9 * | 4.2 ± 0.3 # | 83.5 ± 0.3 *# | 8.5 ± 0.4 # | 4.9 ± 0.21 *# |
3 months | 70.6 ± 0.7 * | 4.2 ± 0.3 # | 84.5 ± 0.4 *# | 7.3 ± 0.3 *# | 4.3 ± 0.19 # |
Male (n = 5) | Thermodynamic Parameters | ||||
---|---|---|---|---|---|
Tmm/°C | Tmm1/2/°C | Tmh/°C | Tmh1/2/°C | ΔHtcal/Jg−1 | |
healthy | 69.2 ± 0.4 | 4.5 ± 0.1 | 75.9 ± 0.5 | 4.5 ± 0.2 | 3.92 ± 0.17 |
control | 69.5 ± 0.6 | 4.1 ± 0.2 * | 79.9 ± 0.6 * | 7.0 ± 0.3 * | 4.15 ± 0.19 * |
2 weeks | 69.4 ± 0.8 | 4.1 ± 0.3 * | 81.3 ± 0.7 *# | 8.2 ± 0.3 *# | 5.15 ± 0.21 *# |
1 month | 69.6 ± 0.9 | 4.2 ± 0.3 * | 80.0 ± 0.6 * | 6.1 ± 0.2 *# | 4.93 ± 0.20 *# |
2 months | 69.4 ± 0.9 | 4.7 ± 0.4 # | 79.8 ± 0.6 * | 7.0 ± 0.3 * | 4.97 ± 0.21 *# |
3 months | 69.6 ± 0.7 | 4.2 ± 0.6 | 79.9 ± 0.7 * | 8.2 ± 0.4 *# | 4.57 ± 0.18 *# |
Samples (n = 5) | Painless Walking Distance/m | |||
---|---|---|---|---|
Female | Male | |||
Average | s.d. | Average | s.d. | |
control | 160 | 80 | 212.5 | 70.1 |
2 weeks | 273.8 | 122.5 | 322.3 | 133.3 |
4 weeks | 289.4 | 135.7 | 319 | 96.9 |
8 weeks | 349.4 | 209.1 | 481.3 | 280.3 |
12 weeks | 518.8 | 320.6 | 514.5 | 382.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lőrinczy, D.; Szabó, D.; Benkő, L. Preliminary Study by Differential Scanning Calorimetric Analysis of Red Blood Cells in Peripheral Artery Disease Patients Treated with Cilostazol: Correlation with Improvements in Walking Distance. Pharmaceuticals 2025, 18, 60. https://doi.org/10.3390/ph18010060
Lőrinczy D, Szabó D, Benkő L. Preliminary Study by Differential Scanning Calorimetric Analysis of Red Blood Cells in Peripheral Artery Disease Patients Treated with Cilostazol: Correlation with Improvements in Walking Distance. Pharmaceuticals. 2025; 18(1):60. https://doi.org/10.3390/ph18010060
Chicago/Turabian StyleLőrinczy, Dénes, Dorottya Szabó, and László Benkő. 2025. "Preliminary Study by Differential Scanning Calorimetric Analysis of Red Blood Cells in Peripheral Artery Disease Patients Treated with Cilostazol: Correlation with Improvements in Walking Distance" Pharmaceuticals 18, no. 1: 60. https://doi.org/10.3390/ph18010060
APA StyleLőrinczy, D., Szabó, D., & Benkő, L. (2025). Preliminary Study by Differential Scanning Calorimetric Analysis of Red Blood Cells in Peripheral Artery Disease Patients Treated with Cilostazol: Correlation with Improvements in Walking Distance. Pharmaceuticals, 18(1), 60. https://doi.org/10.3390/ph18010060