An Overview of Wound Dressing Materials
Abstract
:1. Introduction
2. Wound Pathogenesis
2.1. Skin Structure and Its Functions
2.2. Wounds and Their Characterization
2.3. Healing Stages
3. Types of Covers
3.1. Traditional Dressings
3.2. Synthetic Dressings
3.2.1. Foams
3.2.2. Films
3.2.3. Hydrogels
3.2.4. Hydrocolloids
3.3. Biological Dressings and Skin Substitutes
3.3.1. Collagen
3.3.2. Gelatine
3.3.3. Cellulose
3.3.4. Bamboo
3.3.5. Hyaluronic Acid
3.3.6. Sodium Alginate
3.3.7. Extracellular Matrix Bands
3.3.8. Omentum Flaps
3.3.9. Autologous Platelet-Rich Plasma
3.4. Bioactive Wound Dressings
3.4.1. Curcumin
3.4.2. Chitosan
3.4.3. Xanthan Gum
3.4.4. Nanomaterials
3.4.5. Essential Oils
3.4.6. Honey
3.4.7. Propolis
4. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Firlar, I.; Altunbek, M.; McCarthy, C.; Ramalingam, M.; Camci-Unal, G. Functional Hydrogels for Treatment of Chronic Wounds. Gels 2022, 8, 127. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Liang, Y.; Zhang, H.; Guo, B. Antibacterial Biomaterials for Skin Wound Dressing. Asian J. Pharm. Sci. 2022, 17, 353–384. [Google Scholar] [CrossRef] [PubMed]
- Souci, L.; Denesvre, C. 3D Skin Models in Domestic Animals. Vet. Res. 2021, 52, 21. [Google Scholar] [CrossRef]
- Paixão, A.; Caldeira, J.; Leocádio, J.; Martins, L. The Importance of Skin Barrier Integrity for the Prevention of Veterinary Allergy. Rev. Port. Imunoalergologia 2022, 30, 9–20. [Google Scholar] [CrossRef]
- Swaim, S.F. Advances in Wound Healing in Small Animal Practice: Current Status and Lines of Development. Vet. Dermatol. 2008, 8, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Kožár, M.; Hamilton, H.; Koščová, J. Types of Wounds and the Prevalence of Bacterial Contamination of Wounds in the Clinical Practice of Small Animals. Folia Vet. 2018, 62, 39–47. [Google Scholar] [CrossRef]
- Yang, K.; Han, Q.; Chen, B.; Zheng, Y.; Zhang, K.; Li, Q.; Wang, J. Antimicrobial Hydrogels: Promising Materials for Medical Application. Int. J. Nanomed. 2018, 13, 2217–2263. [Google Scholar] [CrossRef]
- Zhang, X.; Qin, M.; Xu, M.; Miao, F.; Merzougui, C.; Zhang, X.; Wei, Y.; Chen, W.; Huang, D. The Fabrication of Antibacterial Hydrogels for Wound Healing. Eur. Polym. J. 2021, 146, 110268. [Google Scholar] [CrossRef]
- Campbell, B.G. Dressings, Bandages, and Splints for Wound Management in Dogs and Cats. Vet. Clin. N. Am.—Small Anim. Pract. 2006, 36, 759–791. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, X.K.; Xue, X.T.; Wu, D.Y. Hydrogel Sheets of Chitosan, Honey and Gelatin as Burn Wound Dressings. Carbohydr. Polym. 2012, 88, 75–83. [Google Scholar] [CrossRef]
- Percival, N. Classification of Wounds and their Management. Surgery 2002, 20, 114–117. [Google Scholar] [CrossRef]
- Ferreira Matias, D.; Carrilho Paixão, A.R.; Martins, L. Skin Barrier in Veterinary Allergy or the Animal [and Human] Skin Protective Hat. J. Dairy. Vet. Anim. Res. 2023, 12, 82–84. [Google Scholar] [CrossRef]
- Patrulea, V.; Ostafe, V.; Borchard, G.; Jordan, O. Chitosan as a Starting Material for Wound Healing Applications. Eur. J. Pharm. Biopharm. 2015, 97, 417–426. [Google Scholar] [CrossRef]
- Niculescu, A.G.; Grumezescu, A.M. An Up-to-Date Review of Biomaterials Application in Wound Management. Polymers 2022, 14, 421. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, X.; Yang, S.; Li, C.; Jin, W.; Hou, W. Effects of the Chinese Herb Medicine Formula “She-Xiang-Yu-Hong” Ointment on Wound Healing Promotion in Diabetic Mice. Evid.-Based Complement. Altern. Med. 2022, 2022, 1062261. [Google Scholar] [CrossRef]
- Zielins, E.R.; Brett, E.A.; Luan, A.; Hu, M.S.; Walmsley, G.G.; Paik, K.; Senarath-Yapa, K.; Atashroo, D.A.; Wearda, T.; Lorenz, H.P.; et al. Emerging Drugs for the Treatment of Wound Healing. Expert Opin. Emerg. Drugs 2015, 20, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Silvestro, I.; Lopreiato, M.; D’abusco, A.S.; Di Lisio, V.; Martinelli, A.; Piozzi, A.; Francolini, I. Hyaluronic Acid Reduces Bacterial Fouling and Promotes Fibroblasts’ Adhesion onto Chitosan 2D-Wound Dressings. Int. J. Mol. Sci. 2020, 21, 2070. [Google Scholar] [CrossRef]
- Rezvani Ghomi, E.; Khalili, S.; Nouri Khorasani, S.; Esmaeely Neisiany, R.; Ramakrishna, S. Wound Dressings: Current Advances and Future Directions. J. Appl. Polym. Sci. 2019, 136, 47738. [Google Scholar] [CrossRef]
- Vasile, B.S.; Birca, A.C.; Musat, M.C.; Holban, A.M. Wound Dressings Coated with Silver Nanoparticles and Essential Oils for the Management of Wound Infections. Materials 2020, 13, 1682. [Google Scholar] [CrossRef]
- Filho, N.P.R.; Mendes, D.S.; Souza, M.S.B.; Arias, M.V.B. Use of Wound Dressing for Treatment of Wounds in Dogs and Cats: Literature Review. Medvep Rev. Científica Med. Veterinária Pequenos Animais E Animais Estimação 2014, 12, 1–637. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://medvep.com.br/wp-content/uploads/2020/07/07-Uso-de-coberturas-no-tratamento-de-feridas-de-c%25C3%25A3es-e-gatos.pdf&ved=2ahUKEwjhyLy7mIqIAxVL9DgGHbUEMdoQFnoECBMQAQ&usg=AOvVaw02A1jTb3rf3TneYpzVSSUk (accessed on 7 July 2024).
- Boucard, N.; Viton, C.; Agay, D.; Mari, E.; Roger, T.; Chancerelle, Y.; Domard, A. The Use of Physical Hydrogels of Chitosan for Skin Regeneration Following Third-Degree Burns. Biomaterials 2007, 28, 3478–3488. [Google Scholar] [CrossRef] [PubMed]
- Kietzmann, M. Improvement and Retardation of Wound Healing: Effects of Pharmacological Agents in Laboratory Animal Studies. Vet. Dermatol. 2022, 10, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Sheikholeslam, M.; Wright, M.E.E.; Jeschke, M.G.; Amini-Nik, S. Biomaterials for Skin Substitutes. Adv. Healthc. Mater. 2018, 7, 1700897. [Google Scholar] [CrossRef]
- Ndlovu, S.P.; Ngece, K.; Alven, S.; Aderibigbe, B.A. Gelatin-Based Hybrid Scaffolds: Promising Wound Dressings. Polymers 2021, 13, 2959. [Google Scholar] [CrossRef]
- Portela, R.; Leal, C.R.; Almeida, P.L.; Sobral, R.G. Bacterial Cellulose: A Versatile Biopolymer for Wound Dressing Applications. Microb. Biotechnol. 2019, 12, 586–610. [Google Scholar] [CrossRef] [PubMed]
- Simões, D.; Miguel, S.P.; Ribeiro, M.P.; Coutinho, P.; Mendonça, A.G.; Correia, I.J. Recent Advances on Antimicrobial Wound Dressing: A Review. Eur. J. Pharm. Biopharm. 2018, 127, 130–141. [Google Scholar] [CrossRef]
- Laurano, R.; Boffito, M.; Ciardelli, G.; Chiono, V. Wound Dressing Products: A Translational Investigation from the Bench to the Market. Eng. Regen. 2022, 3, 182–200. [Google Scholar] [CrossRef]
- Mani, M.P.; Mohd Faudzi, A.A.; Ramakrishna, S.; Ismail, A.F.; Jaganathan, S.K.; Tucker, N.; Rathanasamy, R. Sustainable Electrospun Materials with Enhanced Blood Compatibility for Wound Healing Applications—A Mini Review. Curr. Opin. Biomed. Eng. 2023, 27, 100457. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Ngoc Le, T.T.; Nguyen, A.T.; Thien Le, H.N.; Pham, T.T. Biomedical Materials for Wound Dressing: Recent Advances and Applications. RSC Adv. 2023, 13, 5509–5528. [Google Scholar] [CrossRef]
- Borda, L.J.; Macquhae, F.E.; Kirsner, R.S. Wound Dressings: A Comprehensive Review. Curr. Dermatol. Rep. 2016, 5, 287–297. [Google Scholar] [CrossRef]
- Dhivya, S.; Padma, V.V.; Santhini, E. Wound Dressings—A Review. BioMedicine 2015, 5, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, S.; Raines, R.T. Review Collagen-Based Biomaterials for Wound Healing. Biopolymers 2014, 101, 821–833. [Google Scholar] [CrossRef]
- Łabowska, M.B.; Cierluk, K.; Jankowska, A.M.; Kulbacka, J.; Detyna, J.; Michalak, I. A Review on the Adaption of Alginate-Gelatin Hydrogels for 3D Cultures and Bioprinting. Materials 2021, 14, 858. [Google Scholar] [CrossRef] [PubMed]
- Serafin, A.; Culebras, M.; Collins, M.N. Synthesis and Evaluation of Alginate, Gelatin, and Hyaluronic Acid Hybrid Hydrogels for Tissue Engineering Applications. Int. J. Biol. Macromol. 2023, 233, 123438. [Google Scholar] [CrossRef] [PubMed]
- Balsa, I.M.; Culp, W.T.N. Wound Care. Vet. Clin. N. Am.—Small Anim. Pract. 2015, 45, 1049–1065. [Google Scholar] [CrossRef] [PubMed]
- Schallberger, S.P.; Stanley, B.J.; Hauptman, J.G.; Steficek, B.A. Effect of Porcine Small Intestinal Submucosa on Acute Full-Thickness Wounds in Dogs. Vet. Surg. 2008, 37, 515–524. [Google Scholar] [CrossRef]
- Liu, J.; Han, J.; Ji, G.; Zhang, T.; Xie, S.; Liu, Y.; Li, Y.; Ma, C.; Zheng, Z.; Hu, D. Laparoscopic Harvest and Free Transplantation of Great Omentum Flap for Extensive Tissue Defects in Complex Wounds. JPRAS Open 2024, 39, 1–10. [Google Scholar] [CrossRef]
- Di Nicola, V. Omentum a Powerful Biological Source in Regenerative Surgery. Regen. Ther. 2019, 11, 182–191. [Google Scholar] [CrossRef]
- Azari Torbat, N.; Akbarzadeh, I.; Rezaei, N.; Salehi Moghaddam, Z.; Bazzazan, S.; Mostafavi, E. Curcumin-Incorporated Biomaterials: In Silico and in Vitro Evaluation of Biological Potentials. Coord. Chem. Rev. 2023, 492, 215233. [Google Scholar] [CrossRef]
- Fu, S.Z.; Meng, X.H.; Fan, J.; Yang, L.L.; Wen, Q.L.; Ye, S.J.; Lin, S.; Wang, B.Q.; Chen, L.L.; Wu, J.B.; et al. Acceleration of Dermal Wound Healing by Using Electrospun Curcumin-Loaded Poly(ε-Caprolactone)-Poly(Ethylene Glycol)-Poly(ε-Caprolactone) Fibrous Mats. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102, 533–542. [Google Scholar] [CrossRef]
- Mutlu, G.; Calamak, S.; Ulubayram, K.; Guven, E. Curcumin-Loaded Electrospun PHBV Nanofibers as Potential Wound-Dressing Material. J. Drug Deliv. Sci. Technol. 2018, 43, 185–193. [Google Scholar] [CrossRef]
- Ternullo, S.; Werning, L.V.S.; Holsæter, A.M.; Škalko-Basnet, N. Curcumin-in-Deformable Liposomes-in-Chitosan-Hydrogel as a Novel Wound Dressing. Pharmaceutics 2020, 12, 8. [Google Scholar] [CrossRef]
- Kumari, A.; Raina, N.; Wahi, A.; Goh, K.W.; Sharma, P.; Nagpal, R.; Jain, A.; Ming, L.C.; Gupta, M. Wound-Healing Effects of Curcumin and Its Nanoformulations: A Comprehensive Review. Pharmaceutics 2022, 14, 2288. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, A.E.; Gilbert, R.J. Curcumin Release from Biomaterials for Enhanced Tissue Regeneration Following Injury or Disease. Bioengineering 2023, 10, 262. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.R.; Rabbani, S.; Bahrami, S.H.; Joghataei, M.T.; Moayer, F. Antibacterial Performance and in Vivo Diabetic Wound Healing of Curcumin Loaded Gum Tragacanth/Poly(ε-Caprolactone) Electrospun Nanofibers. Mater. Sci. Eng. C 2016, 69, 1183–1191. [Google Scholar] [CrossRef] [PubMed]
- Ushmarov, D.I.; Gumenyuk, S.E.; Gumenyuk, A.S.; Gayvoronskaya, T.V.; Karablina, S.Y.; Pomortsev, A.V.; Sotnichenko, A.S.; Melkonyan, K.I.; Grigoriev, T.E. Comparative Evaluation of Chitosan-Based Multifunctional Wound Dressings: A Multistage Randomised Controlled Experimental Trial. Kuban. Sci. Med. Bull. 2021, 28, 78–96. [Google Scholar] [CrossRef]
- Bano, I.; Arshad, M.; Yasin, T.; Ghauri, M.A.; Younus, M. Chitosan: A Potential Biopolymer for Wound Management. Int. J. Biol. Macromol. 2017, 102, 380–383. [Google Scholar] [CrossRef]
- Agnihotri, S.; Mukherji, S.; Mukherji, S. Antimicrobial Chitosan–PVA Hydrogel as a Nanoreactor and Immobilizing Matrix for Silver Nanoparticles. Appl. Nanosci. 2012, 2, 179–188. [Google Scholar] [CrossRef]
- Davachi, S.M.; Haramshahi, S.M.A.; Akhavirad, S.A.; Bahrami, N.; Hassanzadeh, S.; Ezzatpour, S.; Hassanzadeh, N.; Malekzadeh Kebria, M.; Khanmohammadi, M.; Bagher, Z. Development of Chitosan/Hyaluronic Acid Hydrogel Scaffolds via Enzymatic Reaction for Cartilage Tissue Engineering. Mater. Today Commun. 2022, 30, 103230. [Google Scholar] [CrossRef]
- dos Santos, E.P.; Nicácio, P.H.M.; Barbosa, F.C.; da Silva, H.N.; Andrade, A.L.S.; Fook, M.V.L.; de Lima Silva, S.M.; Leite, I.F. Chitosan/Essential Oils Formulations for Potential Use as Wound Dressing: Physical and Antimicrobial Properties. Materials 2019, 12, 2223. [Google Scholar] [CrossRef]
- Moratti, S.C.; Cabral, J.D. Antibacterial Properties of Chitosan. In Chitosan Based Biomaterials; Woodhead Publishing (Elsevier Store): Cambridge, MA, USA, 2017; Volume 1, pp. 31–44. [Google Scholar] [CrossRef]
- Nandhini, J.; Karthikeyan, E.; Rajeshkumar, S. Nanomaterials for Wound Healing: Current Status and Futuristic Frontier. Biomed. Technol. 2024, 6, 26–45. [Google Scholar] [CrossRef]
- Revete, A.; Aparicio, A.; Cisterna, B.A.; Revete, J.; Luis, L.; Ibarra, E.; Segura González, E.A.; Molino, J.; Reginensi, D. Advancements in the Use of Hydrogels for Regenerative Medicine: Properties and Biomedical Applications. Int. J. Biomater. 2022, 2022, 3606765. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.; Shen, S.; Fan, D. Molecular Design, Synthesis Strategies and Recent Advances of Hydrogels for Wound Dressing Applications. Chin. J. Chem. Eng. 2021, 30, 308–320. [Google Scholar] [CrossRef]
- Alves, A.; Miguel, S.P.; Araujo, A.R.T.S.; de Jesús Valle, M.J.; Navarro, A.S.; Correia, I.J.; Ribeiro, M.P.; Coutinho, P. Xanthan Gum-Konjac Glucomannan Blend Hydrogel for Wound Healing. Polymers 2020, 12, 99. [Google Scholar] [CrossRef]
- Veiga, A.S.; Schneider, J.P. Antimicrobial Hydrogels for the Treatment of Infection. Biopolymers 2013, 100, 637–644. [Google Scholar] [CrossRef]
- Nasra, S.; Patel, M.; Shukla, H.; Bhatt, M.; Kumar, A. Functional Hydrogel-Based Wound Dressings: A Review on Biocompatibility and Therapeutic Efficacy. Life Sci. 2023, 334, 122232. [Google Scholar] [CrossRef]
- Pott, F.S.; Meier, M.J.; Stocco, J.G.D.; Crozeta, K.; Ribas, J.D. A Efetividade Do Hidrocoloide versus Outras Coberturas Na Cicatrização de Úlceras Por Pressão Em Adultos e Idosos: Revisão Sistemática e Metanálise. Rev. Lat. Am. Enferm. 2014, 22, 511–520. [Google Scholar] [CrossRef] [PubMed]
- May, S.R. The Effects of Biological Wound Dressings Healing Process. Clin. Mater. 1991, 8, 243–249. [Google Scholar] [CrossRef]
- Tran, A.; Desai, S.; Mraz Robinson, D. From Ancient Egypt to the Dermatologic Office: An Overview of Skin Substitutes and Modern-Day Applications in Dermatologic Surgery. Health Sci. Rep. 2023, 6, e1067. [Google Scholar] [CrossRef]
- Coppola, D.; Oliviero, M.; Vitale, G.A.; Lauritano, C.; D’Ambra, I.; Iannace, S.; de Pascale, D. Marine Collagen from Alternative and Sustainable Sources: Extraction, Processing and Applications. Mar. Drugs 2020, 18, 214. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Alwani, M.S.; Islam, M.N.; Suhaily, S.S.; Dungani, R.; H’ng, Y.M.; Jawaid, M. The Use of Bamboo Fibres as Reinforcements in Composites. In Biofiber Reinforcements in Composite Materials; Woodhead Publishing (Elsevier Store): Cambridge, MA, USA, 2015; pp. 488–524. [Google Scholar] [CrossRef]
- Hasan, K.M.F.; Al Hasan, K.N.; Ahmed, T.; György, S.T.; Pervez, M.N.; Bejó, L.; Sándor, B.; Alpár, T. Sustainable Bamboo Fiber Reinforced Polymeric Composites for Structural Applications: A Mini Review of Recent Advances and Future Prospects. Case Stud. Chem. Environ. Eng. 2023, 8, 100362. [Google Scholar] [CrossRef]
- Syed Zameer Ahmed, S.; Balu, N.; Khader, S.Z.A.; Mahboob, M.R.; Lakshmanan, S.O.; Vetrivel, M. Fabrication and Evaluation of Bamboo Fabric Coated with Extracts of Curcuma Longa, Centella Asiatica and Azadirachta Indica as a Wound Dressing Material. Adv. Tradit. Med. 2020, 21, 83–95. [Google Scholar] [CrossRef]
- Silva, M.F.; Menis-Henrique, M.E.; Felisberto, M.H.; Goldbeck, R.; Clerici, M.T. Bamboo as an Eco-Friendly Material for Food and Biotechnology Industries. Curr. Opin. Food Sci. 2020, 33, 124–130. [Google Scholar] [CrossRef]
- Neuman, M.G.; Nanau, R.M.; Oruña-Sanchez, L.; Coto, G. Hyaluronic Acid and Wound Healing. J. Pharm. Pharm. Sci. 2015, 18, 53–60. [Google Scholar] [CrossRef]
- Diniz, F.R.; Maia, R.C.A.P.; Rannier, L.; Andrade, L.N.; Chaud, M.V.; da Silva, C.F.; Corrêa, C.B.; de Albuquerque Junior, R.L.C.; da Costa, L.P.; Shin, S.R.; et al. Silver Nanoparticles-Composing Alginate/Gelatine Hydrogel Improves Wound Healing in Vivo. Nanomaterials 2020, 10, 390. [Google Scholar] [CrossRef] [PubMed]
- Ambrogi, V.; Pietrella, D.; Donnadio, A.; Latterini, L.; Di Michele, A.; Luffarelli, I.; Ricci, M. Biocompatible Alginate Silica Supported Silver Nanoparticles Composite Films for Wound Dressing with Antibiofilm Activity. Mater. Sci. Eng. C 2020, 112, 110863. [Google Scholar] [CrossRef]
- Gupta, S.; Goil, P.; Thakurani, S. Autologous Platelet Rich Plasma As A Preparative for Resurfacing Burn Wounds with Split Thickness Skin Grafts. World J. Plast. Surg. 2020, 9, 29–32. [Google Scholar] [PubMed]
- Andrade del Olmo, J.; Pérez-Álvarez, L.; Sáez-Martínez, V.; Benito-Cid, S.; Ruiz-Rubio, L.; Pérez-González, R.; Vilas-Vilela, J.L.; Alonso, J.M. Wound Healing and Antibacterial Chitosan-Genipin Hydrogels with Controlled Drug Delivery for Synergistic Anti-Inflammatory Activity. Int. J. Biol. Macromol. 2022, 203, 679–694. [Google Scholar] [CrossRef] [PubMed]
- Saghazadeh, S.; Rinoldi, C.; Schot, M.; Kashaf, S.S.; Sharifi, F.; Jalilian, E.; Nuutila, K.; Giatsidis, G.; Mostafalu, P.; Derakhshandeh, H.; et al. Drug Delivery Systems and Materials for Wound Healing Applications. Adv. Drug Deliv. Rev. 2018, 127, 138–166. [Google Scholar] [CrossRef]
- Adepu, S.; Ramakrishna, S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 2021, 26, 5905. [Google Scholar] [CrossRef]
- Akbik, D.; Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Curcumin as a Wound Healing Agent. Life Sci. 2014, 116, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Şenel, S.; McClure, S.J. Potential Applications of Chitosan in Veterinary Medicine. Adv. Drug Deliv. Rev. 2004, 56, 1467–1480. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Sun, S.; Wu, S.; Chen, S.; Ma, J.; Zhou, F. Electrospun Chitosan Nanofibers for Wound Healing Application. Eng. Regen. 2021, 2, 82–90. [Google Scholar] [CrossRef]
- Alves, N.M.; Mano, J.F. Chitosan Derivatives Obtained by Chemical Modifications for Biomedical and Environmental Applications. Int. J. Biol. Macromol. 2008, 43, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.P.; Espiga, A.; Silva, D.; Baptista, P.; Henriques, J.; Ferreira, C.; Silva, J.C.; Borges, J.P.; Pires, E.; Chaves, P.; et al. Development of a New Chitosan Hydrogel for Wound Dressing. Wound Repair. Regen. 2009, 17, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Raafat, D.; Sahl, H.G. Chitosan and Its Antimicrobial Potential—A Critical Literature Survey. Microb. Biotechnol. 2009, 2, 186–201. [Google Scholar] [CrossRef]
- Fathy, Y.; Azab, W.; Ebid, W.M.A.; Abdeltwab, W.M.; Abdelaliem, Y.F.; Metry, W.A.; Eldeghedy, M. Antimicrobial Effect of Chitosan and Nano-Chitosan against Some Pathogens and Spoilage Microorganisms. Adv. Lab. Res. Biol. 2019, 10, 8–15. [Google Scholar]
- Ardean, C.; Davidescu, C.M.; Nemeş, N.S.; Negrea, A.; Ciopec, M.; Duteanu, N.; Negrea, P.; Duda-seiman, D.; Musta, V. Factors Influencing the Antibacterial Activity of Chitosan and Chitosan Modified by Functionalization. Int. J. Mol. Sci. 2021, 22, 7449. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial Properties of Chitosan and Mode of Action: A State of the Art Review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef]
- Matica, M.A.; Aachmann, F.L.; Tøndervik, A.; Sletta, H.; Ostafe, V. Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action. Int. J. Mol. Sci. 2019, 20, 5889. [Google Scholar] [CrossRef]
- Ilomuanya, M.O.; Seriki, Z.A.; Ubani-Ukoma, U.N.; Oseni, B.A.; Silva, B.O. Silver Sulphadiazine- Xanthan Gum- Hyaluronic Acid Composite Hydrogel for Wound Healing: Formulation Development and In Vivo Evaluation. Niger. J. Pharm. Res. 2020, 16, 21–29. [Google Scholar] [CrossRef]
- Yousefian, F.; Hesari, R.; Jensen, T.; Obagi, S.; Rgeai, A.; Damiani, G.; Bunick, C.G.; Grada, A. Antimicrobial Wound Dressings: A Concise Review for Clinicians. Antibiotics 2023, 12, 1434. [Google Scholar] [CrossRef]
- Mukha, I.P.; Eremenko, A.M.; Smirnova, N.P.; Mikhienkova, A.I.; Korchak, G.I.; Gorchev, V.F.; Chunikhin, A.Y. Antimicrobial Activity of Stable Silver Nanoparticles of a Certain Size. Appl. Biochem. Microbiol. 2013, 49, 199–206. [Google Scholar] [CrossRef]
- Low, W.L.; Kenward, K.; Britland, S.T.; Amin, M.C.I.M.; Martin, C. Essential Oils and Metal Ions as Alternative Antimicrobial Agents: A Focus on Tea Tree Oil and Silver. Int. Wound J. 2017, 14, 369–384. [Google Scholar] [CrossRef] [PubMed]
- Sandri, G.; Bonferoni, M.C.; D’Autilia, F.; Rossi, S.; Ferrari, F.; Grisoli, P.; Sorrenti, M.; Catenacci, L.; Del Fante, C.; Perotti, C.; et al. Wound Dressings Based on Silver Sulfadiazine Solid Lipid Nanoparticles for Tissue Repairing. Eur. J. Pharm. Biopharm. 2013, 84, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.G.; Gong, W.; Zhou, J.; Liu, Y.; Zhu, Y.; Lu, X. Engineered Shapes Using Electrohydrodynamic Atomization for an Improved Drug Delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2024, 16, e1964. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yu, N.; Ren, Q.; Niu, S.; Zhu, L.; Hong, L.; Cui, K.; Wang, X.; Jiang, W.; Wen, M.; et al. Janus Nanofiber Membranes with Photothermal-Enhanced Biofluid Drainage and Sterilization for Diabetic Wounds. Adv. Funct. Mater. 2024, 34, 2315020. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, H.; Yu, D.-G.; Bligh, S.-W.A. Alginate-Based Electrospun Nanofibers and the Enabled Drug Controlled Release Profiles: A Review. Biomolecules 2024, 14, 789. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Yiap, B.C.; Ping, H.C.; Lim, S.H.E. Essential Oils, A New Horizon in Combating Bacterial Antibiotic Resistance. Open Microbiol. J. 2014, 8, 6–14. [Google Scholar] [CrossRef]
- Abdi-Moghadam, Z.; Mazaheri, Y.; Rezagholizade-shirvan, A.; Mahmoudzadeh, M.; Sarafraz, M.; Mohtashami, M.; Shokri, S.; Ghasemi, A.; Nickfar, F.; Darroudi, M.; et al. The Significance of Essential Oils and Their Antifungal Properties in the Food Industry: A Systematic Review. Heliyon 2023, 9, e21386. [Google Scholar] [CrossRef]
- Wani, A.R.; Yadav, K.; Khursheed, A.; Rather, M.A. An Updated and Comprehensive Review of the Antiviral Potential of Essential Oils and Their Chemical Constituents with Special Focus on Their Mechanism of Action against Various Influenza and Coronaviruses. Microb. Pathog. 2021, 152, 104620. [Google Scholar] [CrossRef] [PubMed]
- Harmansa Yilmaz, B.; Yavuzcan Yildiz, H. Anthelmintic Effects of Peppermint (Mentha piperita), Lemon (Citrus limon), and Tea Tree (Melaleuca alternifolia) Essential Oils against Monogenean Parasite (Dactylogyrus sp.) on Carp (Cyprinus carpio). Helminthologia 2023, 60, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Ebani, V.V.; Mancianti, F. Use of Essential Oils in Veterinary Medicine to Combat Bacterial and Fungal Infections. Vet. Sci. 2020, 7, 193. [Google Scholar] [CrossRef]
- Stevanović, Z.D.; Bošnjak-Neumüller, J.; Pajić-Lijaković, I.; Raj, J.; Vasiljević, M. Essential Oils as Feed Additives—Future Perspectives. Molecules 2018, 23, 1717. [Google Scholar] [CrossRef]
- Article Bensignor, R.; Bensignor, E.; Vidémont, E. Use of a Topical Spray Made of Essential Oils and Essential Fatty Acids from Plant Extracts for the Treatment of Microbial Infections in Dogs: An Opened Multicentric Study of 47 Cases Use of a Topical Spray Made of Essential Oils and Essential Fatty Acids from Plant Extracts for the Treatment of Microbial Infections in Dogs: An Opened Multicentric Study of 47 Cases. Int. J. Vet. Health Sci. Res. 2017, 5, 161–164. [Google Scholar] [CrossRef]
- Bensignor, E.; Videmont, E. Weekly Topical Therapy Based on Plant Extracts Combined with Lokivetmab in Canine Atopic Dermatitis. Vet. Dermatol. 2022, 33, 68-e22. [Google Scholar] [CrossRef] [PubMed]
- Pierezan, F.; Olivry, T.; Paps, J.S.; Lawhon, S.D.; Wu, J.; Steiner, J.M.; Suchodolski, J.S.; Hoffmann, A.R. The Skin Microbiome in Allergen-Induced Canine Atopic Dermatitis. Vet. Dermatol. 2016, 27, 332-e82. [Google Scholar] [CrossRef]
- Bulman, S.E.L.; Goswami, P.; Tronci, G.; Russell, S.J.; Carr, C. Investigation into the Potential Use of Poly(Vinyl Alcohol)/Methylglyoxal Fibres as Antibacterial Wound Dressing Components. J. Biomater. Appl. 2015, 29, 1193–1200. [Google Scholar] [CrossRef]
- Mukai, K.; Koike, M.; Nakamura, S.; Kawaguchi, Y.; Katagiri, F.; Nojiri, S.; Yamada, Y.; Miyajima, E.; Matsumoto, M.; Komatsu, E.; et al. Evaluation of the Effects of a Combination of Japanese Honey and Hydrocolloid Dressing on Cutaneous Wound Healing in Male Mice. Evid.-Based Complement. Altern. Med. 2015, 2015, 910605. [Google Scholar] [CrossRef]
- Samarghandian, S.; Farkhondeh, T.; Samini, F. Honey and Health: A Review of Recent Clinical Research. Pharmacogn. Res. 2017, 9, 121–127. [Google Scholar]
- Al-Waili, N.S.; Salom, K.; Butler, G.; Al Ghamdi, A.A. Honey and Microbial Infections: A Review Supporting the Use of Honey for Microbial Control. J. Med. Food 2011, 14, 1079–1096. [Google Scholar] [CrossRef] [PubMed]
- Queiroga, M.C.; Laranjo, M.; Andrade, N.; Marques, M.; Costa, A.R.; Antunes, C.M. Antimicrobial, Antibiofilm and Toxicological Assessment of Propolis. Antibiotics 2023, 12, 347. [Google Scholar] [CrossRef]
- Martinotti, S.; Ranzato, E. Propolis: A New Frontier for Wound Healing? Burn. Trauma 2015, 3, 9. [Google Scholar] [CrossRef]
- da Rosa, C.; Bueno, I.L.; Quaresma, A.C.M.; Longato, G.B. Healing Potential of Propolis in Skin Wounds Evidenced by Clinical Studies. Pharmaceuticals 2022, 15, 1143. [Google Scholar] [CrossRef]
- Oryan, A.; Alemzadeh, E.; Moshiri, A. Potential Role of Propolis in Wound Healing: Biological Properties and Therapeutic Activities. Biomed. Pharmacother. 2018, 98, 469–483. [Google Scholar] [CrossRef]
- Yang, J.; Pi, A.; Yan, L.; Li, J.; Nan, S.; Zhang, J.; Hao, Y. Research Progress on Therapeutic Effect and Mechanism of Propolis on Wound Healing. Evid.-Based Complement. Altern. Med. 2022, 2022, 5798941. [Google Scholar] [CrossRef] [PubMed]
- El-Sakhawy, M.; Salama, A.; Tohamy, H.A.S. Applications of Propolis-Based Materials in Wound Healing. Arch. Dermatol. Res. 2024, 316, 61. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.I.M.; Thangavelu, M.; Khalifa, A. Honey-Propolis-Engineered Collagen Peptides as Promising Wound-Healing Matrix in Mouse Model. Molecules 2022, 27, 7090. [Google Scholar] [CrossRef]
Wound Dressing | Characteristics | Applications and Details | References |
---|---|---|---|
Traditional Bandages, gauze, and cotton composites | Poor permeability to gases, prevent bacterial contamination; absorb exudates and fluids; low cost, adherent, painful removal. | Used in early stage of healing, in clean and dry wounds or with mild exudate levels. | [24,28,29] |
Synthetic Dressings | |||
Foams | Soft, non-adherent, and flexible, with gas permeability and moisture retention. Absorb large amounts of fluids and ensure thermal insulation. | Suitable for cavity wounds and ulcers. | [14,30] |
Films | Flexible, semi-permeable, semi-occlusive, porous, and non-absorbable. | Indicated in final stage of healing, in dry or low exudative wounds. | [14,30] |
Hydrogels Synthetic or natural origin (dextran, agarose, hyaluronic acid, collagen, alginate, gelatine, cellulose, chitosan, and xanthan) | Facilitate autolytic debridement, anti-inflammatory activity, promote cellular and immunological activity; easy to remove. | Suitable for dry, low, or moderate exudative wounds; chronic wounds: necrotic, ulcers, and burn lesions. | [18] |
Hydrocolloids | Autolytic activity, favouring inflammation, angiogenesis, collagen synthesis, and epithelization; great adhesion property and occlusive; inhibit bacteria growth; reduce oxygen availability. | For wounds with low to moderate drainage, minor burns, and traumatic wounds; not indicated for ulcers or highly exudating wounds; limited use in final phase because they inhibit wound contraction. | [18] |
Biological Dressings and Skin Substitutes | |||
Animal origin: Collagen | High porosity, high water absorption capacity; promotes cellular recruitment, activates inflammation phase and formation of new granulation tissue. | For burn and pressure ulcers; exudative wounds. | [31,32] |
Gelatine | Haemostatic action; good plasticity and adhesion capacity; poor mechanical and antimicrobial properties. | For burn and pressure ulcers; exudative wounds. | [33,34] |
Herbal origin: Cellulose | High porosity, permeability to liquids and gases, autolytic debridement, relieves pain, and promotes granulation tissue. | For burn and pressure ulcers; exudative wounds. | [25] |
Extracellular matrix bands | Stimulate angiogenesis and have antimicrobial properties; require well-prepared bedding with good debridement. | Dry wounds (without exudates) or fenestrated band when exudation is relevant; drainage is important. | [35,36] |
Omentum flaps | Favours epithelization, contraction, and neovascularization. | Wounds with vascular problems and high rejection rate. | [37,38] |
Bioactive Dressings | |||
Curcumin, chitosan, essential oils, xanthan gum, honey, and propolis | Anti-inflammatory action, antioxidant, tissue-protective, chemoprotective, antiviral, immunomodulatory properties, antimicrobial and anti-biofilm. | Indicated for acute and chronic wounds like ulcers and infected lesions. | [10,18,39,40,41,42,43,44,45,46,47,48,49,50,51] |
Nanomaterials (silver, copper, gold, etc.) | Promotion of angiogenesis, antimicrobial properties, biofilm disruption, reduce inflammation, increase keratinocyte proliferation, epithelialization, and collagen synthesis. | Indicated for acute and chronic wounds like ulcers and infected lesions. | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lagoa, T.; Queiroga, M.C.; Martins, L. An Overview of Wound Dressing Materials. Pharmaceuticals 2024, 17, 1110. https://doi.org/10.3390/ph17091110
Lagoa T, Queiroga MC, Martins L. An Overview of Wound Dressing Materials. Pharmaceuticals. 2024; 17(9):1110. https://doi.org/10.3390/ph17091110
Chicago/Turabian StyleLagoa, Tânia, Maria Cristina Queiroga, and Luís Martins. 2024. "An Overview of Wound Dressing Materials" Pharmaceuticals 17, no. 9: 1110. https://doi.org/10.3390/ph17091110