Therapeutic Efficacy of Helianthemum lippii Extract and Silver Nanoparticles Synthesized from the Extract against Cadmium-Induced Renal Nephrotoxicity in Wistar Rats
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Screening
2.2. HPLC-Based Quantitative Analysis
2.3. Characteristics of the Ag NPs Fabricated Using the H. lippii Extract
2.4. Sub-Acute Toxicity Study
2.5. H. lippii and Ag NP Effect on Cadmium-Induced Nephrotoxicity
Body Weight and Relative Kidney Weight
2.6. Biochemical Parameters
2.7. Biochemical Biomarkers of Renal Function
2.8. Oxidative Stress Markers
2.9. Histological Alterations in Kidney
3. Material and Methods
3.1. Chemicals and Reagents
3.2. Preparation the H. lippii Aqueous Extract
3.3. Phytochemical Screening
3.4. High-Performance Liquid Chromatography (HPLC) Analysis
3.5. Ag NPs Synthesis and Characterization
3.6. Animal Procurement and Housing
3.7. Cadmium Toxicity Experiment Design
- Group 1: control group (normal water throughout the study period).
- Group 2: exposure to 50 mg/kg body weight/day CdCl2 dissolved in drinking water for 5 weeks.
- Group 3: 100 mg/kg body weight/day H. lippii aqueous extract by oral gavage for 5 weeks.
- Group 4: exposure to CdCl2 for 5 weeks, followed by treatment with 100 mg/kg body weight/day H. lippii (by oral gavage) for the last 15 days.
- Group 5: 0.1 mg/kg body weight/day Ag NPs by intraperitoneal injection for 5 weeks.
- Group 6: CdCl2 exposure for 5 weeks, followed by treatment with 0.1 mg/kg body weight/day of Ag NPs (intraperitoneal injection) for the last 15 days.
- Group 7: CdCl2 exposure for 5 weeks and then treatment with 100 mg/kg body weight/day H. lippii (oral gavage) and 0.1 mg/kg body weight/day Ag NPs (intraperitoneal injection) for the last 15 days.
3.8. Sub-Acute Toxicity Study
- Group 1 (control group): normal water.
- Groups 2 to 4: administration by oral gavage of one dose of H. lippii aqueous extract (100, 1000, 4000 mg/kg)
- Groups 5 and 6: one intraperitoneal injection of Ag NPs (2, 10 mg/kg).
3.9. Body Weight
3.10. Relative Kidney Weight
3.11. Renal Function Biomarkers
3.12. Oxidative Stress Markers
3.13. Histopathological Analysis of Kidney Tissues
4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ye, X.; Qian, H.; Xu, P.; Zhu, L.; Longnecker, M.P.; Fu, H. Nephrotoxicity, neurotoxicity, and mercury exposure among children with and without dental amalgam fillings. Int. J. Hyg. Environ. Health 2009, 212, 378–386. [Google Scholar] [CrossRef]
- Satarug, S.; Gobe, G.C.; Vesey, D.A. Multiple targets of toxicity in environmental exposure to low-dose cadmium. Toxics 2022, 10, 472. [Google Scholar] [CrossRef]
- Satarug, S.; Vesey, D.A.; Gobe, G.C.; Đorđević, A.B. The validity of benchmark dose limit analysis for estimating permissible accumulation of cadmium. Int. J. Environ. Res. Public Health 2022, 19, 15697. [Google Scholar] [CrossRef]
- Monsefi, M.; Fereydouni, B. The effects of cadmium pollution on female rat reproductive system. J. Infertil. Reprod. Biol. 2013, 1, 1–6. [Google Scholar] [CrossRef]
- Rana, M.N.; Tangpong, J.; Rahman, M.M. Toxicodynamics of lead, cadmium, mercury and arsenic-induced kidney toxicity and treatment strategy: A mini review. Toxicol. Rep. 2018, 5, 704–713. [Google Scholar] [CrossRef]
- Chen, M.; Li, X.; Fan, R.; Yang, J.; Jin, X.; Hamid, S.; Xu, S. Cadmium induces BNIP3-dependent autophagy in chicken spleen by modulating miR-33-AMPK axis. Chemosphere 2018, 194, 396–402. [Google Scholar] [CrossRef]
- So, K.-Y.; Lee, B.-H.; Oh, S.-H. The critical role of autophagy in cadmium-induced immunosuppression regulated by endoplasmic reticulum stress-mediated calpain activation in RAW264. 7 mouse monocytes. Toxicology 2018, 393, 15–25. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, R.; Wang, X.; Shen, X.; Wang, P.; Sun, N.; Li, X.; Li, X.; Hai, C. Effects of sub-chronic, low-dose cadmium exposure on kidney damage and potential mechanisms. Ann. Transl. Med. 2019, 7. [Google Scholar] [CrossRef]
- Seif, M.M.; Madboli, A.-N.; Marrez, D.A.; Aboulthana, W.M. Hepato-renal protective effects of Egyptian purslane extract against experimental cadmium toxicity in rats with special emphasis on the functional and histopathological changes. Toxicol. Rep. 2019, 6, 625–631. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Almaeen, A.H.; Abd El Moneim, M.; Tammam, H.G.; Khalifa, A.M.; Nasibe, M.N. Cadmium-Induced Hematological, Renal, and Hepatic Toxicity: The Amelioration by: Spirulina platensis. Saudi J. Forensic Med. Sci. 2018, 1, 5–13. [Google Scholar] [CrossRef]
- Ijaz, M.U.; Shahzadi, S.; Hamza, A.; Azmat, R.; Anwar, H.; Afsar, T.; Shafique, H.; Bhat, M.A.; Naglah, A.M.; Al-Omar, M.A. Alleviative effects of pinostrobin against cadmium-induced renal toxicity in rats by reducing oxidative stress, apoptosis, inflammation, and mitochondrial dysfunction. Front. Nutr. 2013, 10, 1175008. [Google Scholar] [CrossRef]
- Smereczański, N.M.; Brzóska, M.M. Current levels of environmental exposure to cadmium in industrialized countries as a risk factor for kidney damage in the general population: A comprehensive review of available data. Int. J. Mol. Sci. 2023, 24, 8413. [Google Scholar] [CrossRef]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ.-Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Hashim, M.; Arif, H.; Tabassum, B. An overview of the ameliorative efficacy of Catharanthus roseus extract against Cd2+ toxicity: Implications for human health and remediation strategies. Front. Public Health 2024, 12, 1327611. [Google Scholar] [CrossRef]
- Çavuşoğlu, D.; Macar, O.; Kalefetoğlu Macar, T.; Çavuşoğlu, K.; Yalçın, E. Mitigative effect of green tea extract against mercury (II) chloride toxicity in Allium cepa L. model. Environ. Sci. Pollut. Res. 2022, 29, 27862–27874. [Google Scholar] [CrossRef]
- Aghababaei, F.; Hadidi, M. Recent advances in potential health benefits of quercetin. Pharmaceuticals 2023, 16, 1020. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Yang, T.; Korma, S.A.; Sitohy, M.; Abd El-Mageed, T.A.; Selim, S.; Al Jaouni, S.K.; Salem, H.M.; Mahmmod, Y.; Soliman, S.M. Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review. Front. Nutr. 2023, 9, 1040259. [Google Scholar] [CrossRef]
- Kumari, A.; Kumar, D. Evaluation of antioxidant and cytotoxic activity of herbal teas from Western Himalayan region: A comparison with green tea (Camellia sinensis) and black tea. Chem. Biol. Technol. Agric. 2022, 9, 33. [Google Scholar] [CrossRef]
- Burdușel, A.-C.; Gherasim, O.; Grumezescu, A.M.; Mogoantă, L.; Ficai, A.; Andronescu, E. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials 2018, 8, 681. [Google Scholar] [CrossRef]
- Zidane, Y.; Laouini, S.E.; Bouafia, A.; Meneceur, S.; Tedjani, M.L.; Alshareef, S.A.; Almukhlifi, H.A.; Al-Essa, K.; Al-Essa, E.M.; Rahman, M.M. Green synthesis of multifunctional MgO@ AgO/Ag2O nanocomposite for photocatalytic degradation of methylene blue and toluidine blue. Front. Chem. 2022, 10, 1083596. [Google Scholar] [CrossRef]
- Laib, I.; Ali, B.D.; Boudebia, O. Green synthesis of silver nanoparticles using Helianthemum lippii extracts (Hl-NPs): Characterization, antioxidant and antibacterial activities, and study of interaction with DNA. J. Organomet. Chem. 2023, 986, 122619. [Google Scholar] [CrossRef]
- Laib, I.; Ali, B.D.; Alsalme, A.; Croun, D.; Bechelany, M.; Barhoum, A. Therapeutic potential of silver nanoparticles from Helianthemum lippii extract for mitigating cadmium-induced hepatotoxicity: Liver function parameters, oxidative stress, and histopathology in wistar rats. Front. Bioeng. Biotechnol. 2024, 12, 1400542. [Google Scholar] [CrossRef]
- Plescia, F.; Venturella, F.; D’Anneo, A.; Catania, V.; Gargano, M.L.; Polito, G.; Schillaci, D.; Palumbo Piccionello, A.; Lauricella, M.; Venturella, G. Phytochemical-rich extracts of Helianthemum lippii possess antimicrobial, anticancer, and anti-biofilm activities. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2022, 156, 1314–1324. [Google Scholar] [CrossRef]
- Ibtissam, L.; Djahra, A.B. Phytochemical investigation of Helianthemum lippii l. aerial Dum. Cours part and evaluation for its antioxidant activities. Int. J. Second. Metab. 2022, 9, 229–237. [Google Scholar] [CrossRef]
- Mahmoud, S.Y.; Alshammari, S.O. Bioactive compounds of methanolic extract of Helianthemum lippii grows in Hafr Al-Batin region, northeastern Saudi Arabia. Acta Fytotech. Et Zootech. 2022, 25, 60–66. [Google Scholar] [CrossRef]
- Mouffouk, S.; Mouffouk, C.; Mouffouk, S.; Haba, H. Medicinal, Pharmacological and Biochemical Progress on the Study of Genus Helianthemum: A Review. Curr. Chem. Biol. 2023, 17, 147–159. [Google Scholar] [CrossRef]
- Boutlelis, D.A.; Mounia, B.; Salah, B.; Hakim, B.; Rebiai, A.; Laib, I.; Chaima, B.; Djemaa, F.; Islam, R. Bio-Synthesis of Zinc Nanoparticle Using Helianthemum Lippii L. Extract and Improving in Rats Their Hepatoprotective Effects against Carbon Tetrachloride Induced Liver Damage. Ann. Rom. Soc. Cell Biol. 2022, 26, 1949–1963. [Google Scholar]
- Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci. 2016, 9, 1–7. [Google Scholar] [CrossRef]
- Mittal, A.K.; Kaler, A.; Banerjee, U.C. Free Radical Scavenging and Antioxidant Activity of Silver Nanoparticles Synthesized from Flower Extract of Rhododendron dauricum. Nano Biomed. Eng. 2012, 4, 118–124. [Google Scholar] [CrossRef]
- Kılınçarslan Aksoy, Ö.; Seçme, M.; Mammadov, R. Antioxidant, cytotoxicity, apoptotic properties of extracts of andricus sternlichti galls and their phenolic characterisation by HPLC. Chem. Biodivers. 2023, 20, e202200742. [Google Scholar] [CrossRef]
- Zielińska, D.; Zieliński, H.; Laparra-Llopis, J.M.; Szawara-Nowak, D.; Honke, J.; Giménez-Bastida, J.A. Caffeic acid modulates processes associated with intestinal inflammation. Nutrients 2021, 13, 554. [Google Scholar] [CrossRef]
- Carrillo-Martinez, E.J.; Flores-Hernández, F.Y.; Salazar-Montes, A.M.; Nario-Chaidez, H.F.; Hernández-Ortega, L.D. Quercetin, a flavonoid with great pharmacological capacity. Molecules 2024, 29, 1000. [Google Scholar] [CrossRef]
- Barhoum, A.; Van Assche, G.; Makhlouf, A.S.H.; Terryn, H.; Baert, K.; Delplancke, M.-P.; El-Sheikh, S.M.; Rahier, H. A green, simple chemical route for the synthesis of pure nanocalcite crystals. Cryst. Growth Desig. 2015, 15, 573–580. [Google Scholar] [CrossRef]
- Ghasemi, S.; Dabirian, S.; Kariminejad, F.; Koohi, D.E.; Nemattalab, M.; Majidimoghadam, S.; Zamani, E.; Yousefbeyk, F. Process optimization for green synthesis of silver nanoparticles using Rubus discolor leaves extract and its biological activities against multi-drug resistant bacteria and cancer cells. Sci. Rep. 2024, 14, 4130. [Google Scholar] [CrossRef]
- Khanal, L.N.; Sharma, K.R.; Paudyal, H.; Parajuli, K.; Dahal, B.; Ganga, G.; Pokharel, Y.R.; Kalauni, S.K. Green synthesis of silver nanoparticles from root extracts of Rubus ellipticus Sm. and comparison of antioxidant and antibacterial activity. J. Nanomater. 2022, 2022, 1832587. [Google Scholar] [CrossRef]
- Asefian, S.; Ghavam, M. Green and environmentally friendly synthesis of silver nanoparticles with antibacterial properties from some medicinal plants. BMC Biotechnol. 2024, 24, 5. [Google Scholar] [CrossRef]
- Poli, V.; Madduru, R.; Aparna, Y.; Kandukuri, V.; Motireddy, S.R. Amelioration of cadmium-induced oxidative damage in wistar rats by Vitamin C, zinc and N-acetylcysteine. Med. Sci. 2022, 10, 7. [Google Scholar] [CrossRef]
- Pyatha, S.; Kim, H.; Lee, D.; Kim, K. Co-exposure to lead, mercury, and cadmium induces neurobehavioral impairments in mice by interfering with dopaminergic and serotonergic neurotransmission in the striatum. Front. Public Health 2023, 11, 1265864. [Google Scholar] [CrossRef]
- Wu, Y.; Tian, W.; Cheng, C.; Yang, L.; Ye, Q.; Li, W.; Jiang, J. Effects of cadmium exposure on metabolism, antioxidant defense, immune function, and the hepatopancreas transcriptome of Cipangopaludina cathayensis. Ecotoxicol. Environ. Saf. 2023, 264, 115416. [Google Scholar] [CrossRef]
- Liu, X.; Deng, Q.; Yang, H.; Wang, J.; Wang, M. Oxidative stress of Cadmium and Lead at environmentally relevant concentrations on hepatopancreas of macrobrachium nipponensis and their mixture interactivity: Implications for water quality criteria amendment. Int. J. Environ. Res. Public Health 2022, 20, 360. [Google Scholar] [CrossRef]
- Winiarska-Mieczan, A. Protective effect of tannic acid on the brain of adult rats exposed to cadmium and lead. Environ. Toxicol. Pharmacol. 2013, 36, 9–18. [Google Scholar] [CrossRef]
- Winiarska-Mieczan, A.; Krusiński, R.; Kwiecień, M. Tannic acid influence on lead and cadmium accumulation in the hearts and lungs of rats. Adv. Clin. Exp. Med. 2013, 22, 615–620. [Google Scholar]
- Bem, E.M.; Piotrowski, J.K.; Sobczak-Kozlowska, M.; Dmuchowski, C. Cadmium, zinc, copper and metallothionein levels in human liver. Int. Arch. Occup. Environ. Health 1988, 60, 413–417. [Google Scholar] [CrossRef]
- Sainath, S.; Meena, R.; Supriya, C.; Reddy, K.P.; Reddy, P.S. Protective role of Centella asiatica on lead-induced oxidative stress and suppressed reproductive health in male rats. Environ. Toxicol. Pharmacol. 2011, 32, 146–154. [Google Scholar] [CrossRef]
- BarathManiKanth, S.; Kalishwaralal, K.; Sriram, M.; Pandian, S.R.K.; Youn, H.-s.; Eom, S.; Gurunathan, S. Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J. Nanobiotechnol. 2010, 8, 16. [Google Scholar] [CrossRef]
- Majeed, M.; Hakeem, K.R.; Rehman, R.U. Synergistic effect of plant extract coupled silver nanoparticles in various therapeutic applications-present insights and bottlenecks. Chemosphere 2022, 288, 132527. [Google Scholar] [CrossRef]
- Rehman, G.; Umar, M.; Shah, N.; Hamayun, M.; Ali, A.; Khan, W.; Khan, A.; Ahmad, S.; Alrefaei, A.F.; Almutairi, M.H. Green synthesis and characterization of silver nanoparticles using Azadirachta indica seeds extract: In vitro and in vivo evaluation of anti-diabetic activity. Pharmaceuticals 2023, 16, 1677. [Google Scholar] [CrossRef]
- El-Baz, Y.G.; Moustafa, A.; Ali, M.A.; El-Desoky, G.E.; Wabaidur, S.M.; Iqbal, A. Green synthesized silver nanoparticles for the treatment of diabetes and the related complications of hyperlipidemia and oxidative stress in diabetic rats. Exp. Biol. Med. 2023, 248, 2237–2248. [Google Scholar] [CrossRef]
- Liu, J.; Habeebu, S.S.; Liu, Y.; Klaassen, C.D. Acute CdMT Injection Is Not a Good Model to Study Chronic Cd Nephropathy: Comparison of Chronic CdCl2and CdMT Exposure with Acute CdMT Injection in Rats. Toxicol. Appl. Pharmacol. 1998, 153, 48–58. [Google Scholar] [CrossRef]
- Uchida, N.S.; Silva-Filho, S.E.; Cardia, G.F.E.; Cremer, E.; Silva-Comar, F.M.d.S.; Silva, E.L.; Bersani-Amado, C.A.; Cuman, R.K.N. Hepatoprotective effect of citral on acetaminophen-induced liver toxicity in mice. Evid.-Based Complement. Altern. Med. 2017, 2017, 1796209. [Google Scholar] [CrossRef]
- González-Gallego, J.; García-Mediavilla, M.V.; Sánchez-Campos, S.; Tuñón, M.J. Anti-inflammatory and immunomodulatory properties of dietary flavonoids. In Polyphenols in Human Health and Disease; Elsevier: Amsterdam, The Netherlands, 2014; pp. 435–452. [Google Scholar] [CrossRef]
- Ozkan, G.; Ceyhan, T.; Çatalkaya, G.; Rajan, L.; Ullah, H.; Daglia, M.; Capanoglu, E. Encapsulated phenolic compounds: Clinical efficacy of a novel delivery method. Phytochem. Rev. 2024, 23, 1–39. [Google Scholar] [CrossRef]
- Carmo de Carvalho e Martins, M.d.; da Silva Santos Oliveira, A.S.M.; da Silva, L.A.A.; Primo, M.G.S.; de Carvalho Lira, V.B. Biological indicators of oxidative stress [malondialdehyde, catalase, glutathione peroxidase, and superoxide dismutase] and their application in nutrition. In Biomarkers in Nutrition; Springer: Cham, Switzerland, 2022; pp. 1–25. [Google Scholar] [CrossRef]
- Ebhohon, S.O.; Asoya, E.V.; Okwor, L.O.; Ezeokeke, C. Nephroprotective Effects of Aqueous Extract of Loranthus micranthus Linn Leaf Against Cadmium-Induced Kidney Toxicity in Male Rats. J. Basics Appl. Sci. Res. 2023, 1, 16–26. [Google Scholar] [CrossRef]
- Albasher, G.; Albrahim, T.; Aljarba, N.; Alharbi, R.I.; Alsultan, N.; Alsaiari, J.; Rizwana, H. Involvement of redox status and the nuclear-related factor 2 in protecting against cadmium-induced renal injury with Sana Makki (Cassia senna L.) pre-treatment in male rats. An. Acad. Bras. Cienc. 2020, 92, e20191237. [Google Scholar] [CrossRef]
- Laib, I.; Djahra, A.B. Phenolic Compound Profile And Evaluation Of Biological Activities Of The Crude Extract and Some Bioactive Compounds of Helianthemum lippii AERIAL PARTS. Ann. Oradea Univ. Biol. Fascicle/Analele Univ. Din Oradea Fasc. Biologie. 2023, 30, 117–124. [Google Scholar]
- Abdallah, E.A.; Almilaibary, A.; El-Refaei, M.F. Fagonia indica ameliorates chromium-induced nephrotoxicity: Role of antioxidant activity and pro-inflammatory cytokines in in-vivo renoprotection. Arch. Environ. Occup. Health 2023, 78, 289–303. [Google Scholar] [CrossRef]
- Salama, B.; Alzahrani, K.J.; Alghamdi, K.S.; Al-Amer, O.; Hassan, K.E.; Elhefny, M.A.; Albarakati, A.J.A.; Alharthi, F.; Althagafi, H.A.; Al Sberi, H. Silver nanoparticles enhance oxidative stress, inflammation, and apoptosis in liver and kidney tissues: Potential protective role of thymoquinone. Biol. Trace Elem. Res. 2023, 201, 2942–2954. [Google Scholar] [CrossRef]
- Guo, A.H.; Kumar, S.; Lombard, D.B. Epigenetic mechanisms of cadmium-induced nephrotoxicity. Curr. Opin. Toxicol. 2022, 32, 100372. [Google Scholar] [CrossRef]
- Karami, E.; Goodarzi, Z.; Ghanbari, A.; Bandegi, A.R.; Yosefi, S.; Dehdashti, A. In vivo antioxidant and kidney protective potential of Atorvastatin against cadmium chloride-induced kidney injury in male Wistar rat. All Life 2022, 15, 1025–1036. [Google Scholar] [CrossRef]
- Dkhil, M.A.; Diab, M.S.; Lokman, M.S.; El-Sayed, H.; Bauomy, A.A.; Al-Shaebi, E.M.; Al-Quraishy, S. Nephroprotective effect of Pleurotus ostreatus extract against cadmium chloride toxicity in rats. An. Acad. Bras. Ciências 2020, 92, e20191121. [Google Scholar] [CrossRef]
- Djahra, A.B.; Lmhanat, I.; Benkaddour, M.; Benkherara, S.; Laib, I.; Benine, C. Traditional Herbal Remedies from Algeria for Treating Digestive Disorders. J. Drug Deliv. Ther. 2023, 13, 84–92. [Google Scholar] [CrossRef]
- Kukreti, N.; Chitme, H.R.; Varshney, V.K.; Abdel-Wahab, B.A.; Khateeb, M.M.; Habeeb, M.S. Antioxidant properties mediate nephroprotective and hepatoprotective activity of essential oil and hydro-alcoholic extract of the high-altitude plant Skimmia anquetilia. Antioxidants 2023, 12, 1167. [Google Scholar] [CrossRef]
- Gao, C.; Liu, C.; Chen, Y.; Wang, Q.; Hao, Z. Protective effects of natural products against drug-induced nephrotoxicity: A review in recent years. Food Chem. Toxicol. 2021, 153, 112255. [Google Scholar] [CrossRef]
- Kotcherlakota, R.; Das, S.; Patra, C.R. Therapeutic applications of green-synthesized silver nanoparticles. In Green Synthesis, Characterization and Applications of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2019; pp. 389–428. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, L.; Mi, Y.; Si, Y. Silver nanoparticles induced cell apoptosis, membrane damage of Azotobacter vinelandii and Nitrosomonas europaea via generation of reactive oxygen species. Bull. Environ. Contam. Toxicol. 2019, 103, 181–186. [Google Scholar] [CrossRef]
- Ibtissam, L.; Boutlilis, D.A. Interaction Study of Greenly Synthesized Silver Nanoparticles with Bovine Serum Albumin (BSA) Using Spectrophotometric and Voltammetric Assays. Curr. Trends Biotechnol. Pharm. 2023, 17, 1013–1019. [Google Scholar] [CrossRef]
- Wei, L.; Lu, J.; Xu, H.; Patel, A.; Chen, Z.-S.; Chen, G. Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug Discov. Today 2015, 20, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Budha Magar, A.; Shrestha, D.; Pakka, S.; Sharma, K.R. Phytochemistry, biological, and toxicity study on aqueous and methanol extracts of Chromolaena odorata. Sci. World J. 2023, 2023, 6689271. [Google Scholar] [CrossRef]
- Ouandaogo, H.S.; Diallo, S.; Odari, E.; Kinyua, J. Phytochemical Screening and GC-MS Analysis of Methanolic and Aqueous Extracts of Ocimum kilimandscharicum Leaves. ACS Omega 2023, 8, 47560–47572. [Google Scholar] [CrossRef] [PubMed]
- Nhon Hoang, T.N.; Phan, T.T.; Lien Phan, T.K.; Van Nguyen, N.H.; Dao Dong, T.A.; Anh Le, T.H. Phytochemical Screening, Extraction, and Determination of the Bioactivities of the Extract-Enriched Polyphenols and Saponins from Musa balbisiana Fruit. J. Food Process. Preserv. 2023, 2023, 2581641. [Google Scholar] [CrossRef]
- Mokhtar, L.M.; Salim, I.A.; Alotaibi, S.N.; Awaji, E.A.; Alotaibi, M.M.; Doman, A.O. Phytochemical Screening and Antimicrobial Activity of Methanolic Extract of Cymbopogon schoenanthus (L.)(azkhar) Collected from Afif City, Saudi Arabia. Life 2023, 13, 1451. [Google Scholar] [CrossRef]
- Sadeq, O.; Mechchate, H.; Es-Safi, I.; Bouhrim, M.; Jawhari, F.; Ouassou, H.; Kharchoufa, L.; AlZain, M.; Alzamel, N.; Al Kamaly, O.M. Phytochemical Screening, Antioxidant and Antibacterial Activities of Pollen Extracts from Micromeria Fruticosa, Achillea Fragrantissima, and Phoenix Dactylifera. Plants 2021, 10, 676. [Google Scholar] [CrossRef]
- Gacem, M.A.; Telli, A.; Gacem, H.; Ould-El-Hadj-Khelil, A. Phytochemical screening, antifungal and antioxidant activities of three medicinal plants from Algerian steppe and Sahara (preliminary screening studies). SN Appl. Sci. 2019, 1, 1721. [Google Scholar] [CrossRef]
- Nisa, H.; Kamili, A.N.; Bandh, S.A.; Lone, B.A.; Parray, J.A. Phytochemical screening, antimicrobial and antioxidant efficacy of different extracts of Rumex dentatus L.–a locally used medicinal herb of Kashmir Himalaya. Asian Pac. J. Trop. Dis. 2013, 3, 434–440. [Google Scholar] [CrossRef]
- María, R.; Shirley, M.; Xavier, C.; Jaime, S.; David, V.; Rosa, S.; Jodie, D. Preliminary phytochemical screening, total phenolic content and antibacterial activity of thirteen native species from Guayas province Ecuador. J. King Saud Univ.-Sci. 2018, 30, 500–505. [Google Scholar] [CrossRef]
- Saeed, R.A.; Khan, M.I.; Butt, M.S.; Faisal, M.N. Phytochemical screening of Prunus avium for its antioxidative and anti-mutagenic potential against DMBA-induced hepatocarcinogenesis. Front. Nutr. 2023, 10, 1132356. [Google Scholar] [CrossRef]
- Singh, A.; Dar, M.Y.; Joshi, B.; Sharma, B.; Shrivastava, S.; Shukla, S. Phytofabrication of silver nanoparticles: Novel drug to overcome hepatocellular ailments. Toxicol. Rep. 2018, 5, 333–342. [Google Scholar] [CrossRef]
- Aguwa, U.; Eze, C.; Obinwa, B.; Okeke, S.; Onwuelingo, S.; Okonkwo, D.; Ogbuokiri, D.; Agulanna, A.; Obiesie, I.; Umezulike, A. Comparing the effect of methods of rat euthanasia on the brain of Wistar rats: Cervical dislocation, chloroform inhalation, diethyl ether inhalation and formalin inhalation. J. Adv. Med. Med. Res. 2020, 32, 8–16. [Google Scholar] [CrossRef]
- Kongara, K.; McIlhone, A.; Kells, N.; Johnson, C. Electroencephalographic evaluation of decapitation of the anaesthetized rat. Lab. Anim. 2014, 48, 15–19. [Google Scholar] [CrossRef]
- Lee, W.-K.; Probst, S.; Scharner, B.; Deba, T.; Dahdouh, F.; Thévenod, F. Distinct concentration-dependent oxidative stress profiles by cadmium in a rat kidney proximal tubule cell line. Arch. Toxicol. 2024, 98, 1043–1059. [Google Scholar] [CrossRef]
- Ma, Y.; Su, Q.; Yue, C.; Zou, H.; Zhu, J.; Zhao, H.; Song, R.; Liu, Z. The effect of oxidative stress-induced autophagy by cadmium exposure in kidney, liver, and bone damage, and neurotoxicity. Int. J. Mol. Sci. 2022, 23, 13491. [Google Scholar] [CrossRef]
Phytochemical Compounds | H. lippii (Aqueous Extract) | |
---|---|---|
Polyphenols | (+) | |
Alkaloids | Mayer | (−) |
Wagner | (+) | |
Tannins | Catechin | (+) |
Gallic | (+) | |
Flavonoids | (+) | |
Saponins | (+) | |
Anthocyanins | (+) | |
Leucoanthocyanins | (+) | |
Cardiac glycosides | (+) | |
Steroids and terpenoids | (+) | |
Mucilages | (+) |
Phenolic Compound | Retention Time (Min) | Equation | Concentration (µg/g Extract) |
---|---|---|---|
Caffeic acid | 16.27 | y = 42,239x | 444.81 |
p-Coumaric acid | 23.81 | y = 27,977 | 663.77 |
Gallic acid | 5.29 | y = 54,681x | 9495.11 |
Vanillic acid | 15.53 | y = 20,674 | ND |
Chlorogenic acid | 13.39 | y = 21,665x | 7107.24 |
Naringin | 34.78 | y = 19,379x | 738.19 |
Rutin | 28.37 | y = 1649x | ND |
Quercetin | 45.04 | y = 2,142,281x | 1118.64 |
Vanillin | 21.46 | y = 9286x | ND |
Parameters | Dose of H.lippii | Dose of Ag NPs | |||||
---|---|---|---|---|---|---|---|
Control Group (0 mg/kg) | Low Dose Group (100 mg/kg) | Medium Dose Group (1000 mg/kg) | High Dose Group (4000 mg/kg) | Control Group (0 mg/kg | Low Dose Group (2 mg/kg) | Medium Dose Group (10 mg/kg) | |
Body weight changes | N | N | N | N | N | N | N |
Death | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Movement | N | N | N | N | N | N | N |
Diarrhea | N | N | N | N | N | N | N |
Eyes | N | N | N | N | N | N | N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laib, I.; Ali, B.D.; Alsalme, A.; Cornu, D.; Bechelany, M.; Barhoum, A. Therapeutic Efficacy of Helianthemum lippii Extract and Silver Nanoparticles Synthesized from the Extract against Cadmium-Induced Renal Nephrotoxicity in Wistar Rats. Pharmaceuticals 2024, 17, 982. https://doi.org/10.3390/ph17080982
Laib I, Ali BD, Alsalme A, Cornu D, Bechelany M, Barhoum A. Therapeutic Efficacy of Helianthemum lippii Extract and Silver Nanoparticles Synthesized from the Extract against Cadmium-Induced Renal Nephrotoxicity in Wistar Rats. Pharmaceuticals. 2024; 17(8):982. https://doi.org/10.3390/ph17080982
Chicago/Turabian StyleLaib, Ibtissam, Boutlilis Djahra Ali, Ali Alsalme, David Cornu, Mikhael Bechelany, and Ahmed Barhoum. 2024. "Therapeutic Efficacy of Helianthemum lippii Extract and Silver Nanoparticles Synthesized from the Extract against Cadmium-Induced Renal Nephrotoxicity in Wistar Rats" Pharmaceuticals 17, no. 8: 982. https://doi.org/10.3390/ph17080982
APA StyleLaib, I., Ali, B. D., Alsalme, A., Cornu, D., Bechelany, M., & Barhoum, A. (2024). Therapeutic Efficacy of Helianthemum lippii Extract and Silver Nanoparticles Synthesized from the Extract against Cadmium-Induced Renal Nephrotoxicity in Wistar Rats. Pharmaceuticals, 17(8), 982. https://doi.org/10.3390/ph17080982