A Systematic Review of Laser Photobiomodulation Dosimetry and Treatment Protocols in the Management of Medications-Related Osteonecrosis of the Jaws: A Rationalised Consensus for Future Randomised Controlled Clinical Trials
Abstract
:1. Introduction
1.1. Antiresorptive Agent
1.1.1. Bisphosphonates
1.1.2. Denosumabs (DNBs)
1.2. Antiangiogenic Drugs
1.3. MRONJ Pathophysiology and Aetiopathogenesis
1.3.1. Inhibition of Bone Resorption and Remodelling
1.3.2. Inflammation or Infection
1.3.3. Mitochondrial Homeostasis and Oxidative Stress
1.4. Epidemiology of MRONJ Development
1.4.1. Local and Anatomical
1.4.2. Systemic
1.4.3. Genetic
1.5. Diagnostic Criteria
1.6. MRONJ Clinical and Radiographical Presentations
1.7. MRONJ Management—Current Scientific Literature
1.7.1. Medical Treatments
1.7.2. Invasive Treatment Modalities
1.7.3. Hormonal Therapy
1.7.4. Autologous Hemoderivatives
1.7.5. Antimicrobial Photodynamic Therapy (aPDT)
1.7.6. PBM Therapy
1.8. Rationale of Conducting the Present Systematic Review
2. Materials and Methods
2.1. Protocol and PROSPERO Registration
2.2. Focused Research Questions
2.3. Patient, Interventional, Comparative and Outcome (PICO)
2.4. Search Strategy
2.5. Relevant Free Keywords and MeSH Terms
2.6. Eligibility Criteria
- Inclusion Criteria
- Subjects who did not receive radiotherapy in the craniofacial region and for whom the lesion has not healed during the 8 weeks following its identification by healthcare professional, according to the AAOMS.
- Subjects who underwent various oral interventional procedures and subsequently developed ONJ.
- Subjects who were on bisphosphates or any oncology medications regardless of dose, route of administration and treatment duration.
- Studies utilised PBM as a monotherapy or combined with any of the following treatments and compared to any of them: medical approach (antibiotic and antifungal therapy); autologous hemoderivatives—PRF or L-PRF; BMPs; surgical approach—standard surgical debridement, sequestrectomy, surgical Er:YAG and piezo-surgery; ozone; and aPDT.
- Studies utilised PBM wavelengths within the optical window (600–1100 nm).
- Studies reported completer or incomplete PBM dosimetry and parameters.
- Studies with a mean follow-up period of ≥3 months.
- Studies treated any size of bone lesion.
- Prospective randomised, quasi-randomised, non-randomised controlled clinical trials (CCTs), prospective clinical studies, case series of ≥20 patients or retrospective clinical trials, including RCTs and cohort studies.
- Studies included ≥10 subjects in each interventional arm.
- Studies in the English language.
- The period of the search was up to 15 December 2023.
- Exclusion Criteria
- In vitro and in vivo animal studies.
- Case reports or short communications.
- Letter to the editor or any type of literature.
- Case series studies of <20 patients.
- Studies utilised < 10 subjects per interventional arm.
- Studies used PBM wavelengths outside the optical window.
- Studies utilised aPDT as a primary treatment or any other treatment modalities apart from PBM.
- Subjects who had radiotherapy and developed osteoradionecrosis of the jaws.
- Studies utilised home-based devices approach as part of the treatment protocols.
- Studies utilised pharmacotherapy or any conventional treatment as a primary outcome.
- Subjects with active malignant tumours.
- Studies utilised homeopathic therapy as a comparative therapy.
- Studies with the mean follow-up <3 months.
2.7. Review Outcome and Assessment Measures
2.7.1. Primary Endpoints
- Mucosal healing.
2.7.2. Secondary Endpoint
- Healing time;
- QoL;
- Recurrence rate;
- Rate of complications and side effects of the intervention.
- Preventive Approach:
- QoL;
- Time-to-event;
- Rate of complications and side effects of the intervention.
- Therapeutic Approach:
- QoL;
- Recurrence;
- Rate of complications and side effects of the intervention.
2.8. Data Extraction
2.9. Qualitative Analysis
2.10. Quantitative Analysis
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.2.1. Country of Origin
3.2.2. Study Design
3.3. Participants Demographic Characteristics
3.3.1. Age and Gender
3.3.2. Sample Size and MRONJ Diagnostic Criteria
3.3.3. Number of the Lesions/Sites in Studies Employed Therapeutic Approach
3.3.4. Underlying Comorbidity and Other Medical Conditions
3.3.5. Type of Predisposing Trauma
3.3.6. Smoking Status
3.3.7. Bisphosphonates Type, Duration and Route of Administration
3.3.8. Bisphosphonate Treatment Break Prior to Dental Intervention (Drug Holiday)
3.4. Interventional Groups and Primary Disease Distribution
3.4.1. Only Oncology Cohort
3.4.2. Mixed Cohort: Oncology and Non-Oncology Cohort
3.5. MRONJ Staging
3.6. Presenting Symptoms
3.7. Documentation of the PBM Parameters
3.7.1. Utilised Wavelength (λ)
3.7.2. Power Output/Therapeutic Power Output (W, mW)/Emission Mode
3.7.3. Power Output/Therapeutic Power Output (W, mW)/Emission Mode
3.7.4. Irradiation Time and Points
3.7.5. Reported Energy
3.7.6. Energy Density (Dose, J/cm2)
3.7.7. Irradiance (W/cm2)
3.7.8. Pulse Width (s, μs) and Frequency (Hz)
3.7.9. Spot Size/Spot Area/Beam Diameter/Beam Profile
3.7.10. Distance of Laser Tip-to-Target Tissue (Contact/Non-Contact)
3.7.11. Frequency and Treatment Duration
3.8. Interventional Groups Number and Associated Treatment Modalities
3.9. Medical and Antiseptic Treatment Regimens
3.10. Outcome Assessment Tools
3.11. MRONJ Diagnostic Tools
3.12. Evaluation of MRONJ Outcomes
3.13. Representation of MRONJ Staging Downscaled
3.14. Declaration of Funding
3.15. Assessment Clinical Parameters
3.16. Qualitative Assessment
3.17. Quantitative Assessment
4. Discussion
4.1. Description Analysis of Demographic Characteristics
4.2. MRONJ Incidence, Associated Risk Factors and Affected Site
4.3. Methodology Quality
4.3.1. Evaluation of Study Design
4.3.2. Role of Diagnostic Criteria and Outcome Tools in MRONJ Prediction
- MRONJ Staging
- Molecular Biomarkers
- Correlation between Duration of BPs Intake and MRONJ Prediction
- Histological Analysis
4.4. Evaluation of Holiday Protocols in MRONJ Reduction
4.5. Therapeutic Protocol Strategy
4.5.1. Medical Regimen (Antibiotics and or Antiseptic Mouthwash)
4.5.2. Autologous Platelet Concentrates (APCs)
4.5.3. Surgical Approaches
4.5.4. Therapeutic PBM
4.6. Assessment of the Reported PBM Parameters
4.7. Preventive Protocol Strategy
4.7.1. Preventive PBM
4.7.2. Oral and Dental Care Pathways
4.8. Limitations of the Quantitative Analysis
4.9. Suggested Rationalised Recommendations and Consensus for Future RCTs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, A.A.; Morrison, A.; Kendler, D.L.; Rizzoli, R.; Hanley, D.A.; Felsenberg, D.; McCauley, L.K.; O’Ryan, F.; Reid, I.R.; Ruggiero, S.L.; et al. Case-Based Review of Osteonecrosis of the Jaw (ONJ) and Application of the international recommendations for management from the international task force on ONJ. J. Clin. Densitom. 2017, 20, 8–24. [Google Scholar] [CrossRef] [PubMed]
- King, R.; Tanna, N.; Patel, V. Medication-related osteonecrosis of the jaw unrelated to bisphosphonates and denosumab—A review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 127, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Shibahara, T. Antiresorptive agent-related osteonecrosis of the jaw (ARONJ): A twist of fate in the bone. Tohoku J. Exp. Med. 2019, 247, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Eguia, A.; Bagán-Debón, L.; Cardona, F. Review and update on drugs related to the development of osteonecrosis of the jaw. Med. Oral Patol. Oral Cir. Bucal 2020, 25, e71–e83. [Google Scholar] [CrossRef] [PubMed]
- Santos-Silva, A.R.; Belizario Rosa, G.A.; Castro Junior, G.; Dias, R.B.; Prado Ribeiro, A.C.; Brandao, T.B. Osteonecrosis of the mandible associated with bevacizumab therapy. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 115, e32–e36. [Google Scholar] [CrossRef] [PubMed]
- Lombard, T.; Neirinchx, V.; Rogister, B.; Gilon, Y.; Wislet, S. Medications-Related Osteonecrosis of the Jaw: New Insights into Molecular Mechanisms and Cellular Therapeutic Approaches. Stem Cells Int. 2016, 2016, 8768162. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Peng, W.; Yang, C.; Zheng, J. Teriparatide versus bisphosphonates for treatment of postmenopausal osteoporosis: A meta-analysis. Int. J. Surg. 2019, 66, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bartl, R.; Frisch, B.; von Tresckow, E.; Bartl, C. Bisphosphonates in Medical Practice Actions, Side Effects, Indication, Strategies; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef]
- Diel, I.J.; Bergner, R.; Grötz, K.A. Adverse effects of bisphosphonates: Current issues. J. Support. Oncol. 2007, 5, 475–482. [Google Scholar] [PubMed]
- Shkolnikova, J.; Flynn, J.; Choong, P. Burden of bisphosphonate-associated femoral fractures. ANZ J. Surg. 2013, 83, 175–181. [Google Scholar] [CrossRef]
- Orozco, C.; Maalouf, N.M. Safety of bisphosphonates. Rheum. Dis. Clin. N. Am. 2012, 38, 681–705. [Google Scholar] [CrossRef]
- Lasseter, K.C.; Porras, A.G.; Denker, A.; Santhanagopal, A.; Daifotis, A. Pharmacokinetic considerations in determining the terminal elimination half-lives of bisphosphonates. Clin. Drug Investig. 2005, 25, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Walter, C.; Klein, M.O.; Pabst, A.; Al-Nawas, B.; Duschner, H.; Ziebart, T. Influence of bisphosphonates on endothelial cells, fibroblasts, and osteogenic cells. Clin. Oral Investig. 2010, 14, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Hampson, G.; Fogelman, I. Clinical role of bisphosphonate therapy. Int. J. Women’s Health 2012, 4, 455–469. [Google Scholar] [CrossRef]
- Abdelmoula, L.C.; Ben M’barek, R.; Ben Hadj Yahia, C.; Tekaya, R.; Testouri, N.; Chaabouni, L.; Zouari, R. Indications des bisphosphonates dans les affections osseuses autres que l’ostéoporose [Bisphosphonates: Indications in bone diseases other than osteoporosis]. Tunis. Med. 2011, 89, 511–516. [Google Scholar] [PubMed]
- Otto, S.; Pautke, C.; Van den Wyngaert, T.; Niepel, D.; Schiødt, M. Medication-related osteonecrosis of the jaw: Prevention, diagnosis and management in patients with cancer and bone metastases. Cancer Treat. Rev. 2018, 69, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.-H., Jr.; Mendonça, K.D., Jr.; Chaves de Souza, J.; Soares Dos Reis, D.C.; do Carmo Faleiros Veloso Guedes, C.; de Souza Castro Filice, L.; Bruzadelli Macedo, S.; Soares Rocha, F. Bisphosphonate-associated osteonecrosis of the jaw. Minerva Dent. Oral Sci. 2021, 70, 49–57. [Google Scholar] [CrossRef]
- Zavras, A.I. The impact of bisphosphonates on oral health: Lessons from the past and opportunities for the future. Ann. N. Y. Acad. Sci. 2011, 1218, 55–56. [Google Scholar] [CrossRef] [PubMed]
- Berenson, J.R.; Hillner, B.E.; Kyle, R.A.; Anderson, K.; Lipton, A.; Yee, G.C.; Biermann, J.S. American Society of Clinical Oncology clinical practice guidelines: The role of bisphosphonates in multiple myeloma. J. Clin. Oncol. 2002, 20, 3719–3736. [Google Scholar] [CrossRef] [PubMed]
- Cremers, S.; Ebetino, F.H.; Phipps, R. On the pharmacological evaluation of bisphosphonates in humans. Bone 2020, 139, 115501. [Google Scholar] [CrossRef]
- Qi, W.X.; Tang, L.N.; He, A.N.; Yao, Y.; Shen, Z. Risk of osteonecrosis of the jaw in cancer patients receiving denosumab: A meta-analysis of seven randomized controlled trials. Int. J. Clin. Oncol. 2014, 19, 403–410. [Google Scholar] [CrossRef]
- Cummings, S.R.; San Martin, J.; McClung, M.R.; Siris, E.S.; Eastell, R.; Reid, I.R.; Delmas, P.; Zoog, H.B.; Austin, M.; Wang, A.; et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 2009, 361, 756–765. [Google Scholar] [CrossRef] [PubMed]
- Thumbigere-Math, V.; Tu, L.; Huckabay, S.; Dudek, A.Z.; Lunos, S.; Basi, D.L.; Hughes, P.J.; Leach, J.W.; Swenson, K.K.; Gopalakrishnan, R. A retrospective study evaluating frequency and risk factors of osteonecrosis of the jaw in 576 cancer patients receiving intravenous bisphosphonates. Am. J. Clin. Oncol. 2012, 35, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Van den Wyngaert, T.; Claeys, T.; Huizing, M.T.; Vermorken, J.B.; Fossion, E. Initial experience with conservative treatment in cancer patients with osteonecrosis of the jaw [ONJ] and predictors of outcome. Ann. Oncol. 2009, 20, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Henry, D.H.; Costa, L.; Goldwasser, F.; Hirsh, V.; Hungria, V.; Prausova, J.; Scagliotti, G.V.; Sleeboom, H.; Spencer, A.; Vadhan-Raj, S.; et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer [excluding breast and prostate cancer] or multiple myeloma. J. Clin. Oncol. 2011, 29, 1125–1132. [Google Scholar] [CrossRef]
- Khosla, S.; Burr, D.; Cauley, J.; Dempster, D.W.; Ebeling, P.R.; Felsenberg, D.; Gagel, R.F.; Gilsanz, V.; Guise, T.; Koka, S.; et al. Bisphosphonate-associated osteonecrosis of the jaw: Report of a task force American Society for Bone and Mineral Research. J. Bone Miner. Res. 2007, 22, 1479–1491. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, S.L.; Dodson, T.B.; Fantasia, J.; Goodday, R.; Aghaloo, T.; Mehrotra, B.; O’Ryan, F. American Association of Oral Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaw-2014 update. J. Oral Maxillofac. Surg. 2014, 72, 1938–1956. [Google Scholar] [CrossRef] [PubMed]
- Then, C.; Hörauf, N.; Otto, S.; Pautke, C.; von Tresckow, E.; Röhnisch, T.; Baumann, P.; Schmidmaier, R.; Bumeder, I.; Oduncu, F.S. Incidence and risk factors of bisphosphonate related osteonecrosis of the jaw in multiple myeloma patients having undergone autologous stem cell transplantation. Onkologie 2012, 35, 658–664. [Google Scholar] [CrossRef] [PubMed]
- Lo, J.C.; O’Ryan, F.S.; Gordon, N.P.; Yang, J.; Hui, R.L.; Martin, D.; Hutchinson, M.; Lathon, P.V.; Sanchez, G.; Silver, P.; et al. Prevalence of osteonecrosis of the jaw in patients with oral bisphosphonate exposure. J. Oral Maxillofac. Surg. 2010, 68, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Jadu, F.; Lee, L.; Pharoah, M.; Reece, D.; Wang, L. A retrospective study assessing the incidence, risk factors and comorbidities of pamidronate-related necrosis of the jaws in multiple myeloma patients. Ann. Oncol. 2007, 18, 2015–2019. [Google Scholar] [CrossRef]
- Bittrich, M.; Hetterich, R.; Solimando, A.G.; Krebs, M.; Loda, S.; Danhof, S.; Anton, S.; Zhou, X.; Kerscher, A.; Beilhack, A.; et al. Does medication-related osteonecrosis of the jaw affect survival of patients with Multiple Myeloma? Exploring a large single center database using artificial intelligence. Clin. Exp. Med. 2023, 23, 5215–5226. [Google Scholar] [CrossRef]
- Hoff, A.O.; Toth, B.B.; Altudag, K.; Johnson, M.M.; Warneke, C.L.; Hu, M.; Nooka, A.; Sayegh, G.; Guarneri, V.; Desrouleaux, K.; et al. Frequency and risk factors associated with osteonecrosis of the jaw in cancer patients related with intravenous bisphosphonates. J. Bone Miner. Res. 2008, 23, 826–836. [Google Scholar] [CrossRef]
- Fehm, T.; Beck, V.; Banys, M.; Lipp, H.P.; Hairass, M.; Reinert, S.; Solomayer, E.; Wallwiener, D.; Krimmel, M. Bisphosphonate-induced osteonecrosis of the jaw [ONJ]: Incidence and risk factors in patients with breast cancer and gynecological malignancies. Gynecol. Oncol. 2009, 112, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Assaf, A.T.; Smeets, R.; Riecke, B.; Weise, E.; Gröbe, A.; Blessmann, M.; Steiner, T.; Wikner, J.; Friedrich, R.E.; Heiland, M.; et al. Incidence of bisphosphonate-related osteonecrosis of the jaw in consideration of primary diseases and concomitant therapies. Anticancer. Res. 2013, 33, 3917–3924. [Google Scholar] [PubMed]
- Troeltzsch, M.; Woodlock, T.; Kriegelstein, S.; Steiner, T.; Messlinger, K. Physiology and pharmacology of nonbisphosphonate drugs implicated in osteonecrosis of the jaw. J. Can. Dent. Assoc. 2012, 78, c85. [Google Scholar] [PubMed]
- Ortega, J.; Vigil, C.E.; Chodkiewicz, C. Current progress in targeted therapy for colorectal cancer. Cancer Control 2010, 17, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Schmid, T.A.; Gore, M.E. Sunitinib in the treatment of metastatic renal cell carcinoma. Ther. Adv. Urol. 2016, 8, 348–371. [Google Scholar] [CrossRef]
- Estilo, C.L.; Fornier, M.; Farooki, A.; Carlson, D.; Bohle, G., 3rd; Huryn, J.M. Osteonecrosis of the jaw related to bevacizumab. J. Clin. Oncol. 2008, 26, 4037–4038. [Google Scholar] [CrossRef]
- Wimalawansa, S.J. Insight into bisphosphonate-associated osteomyelitis of the jaw: Pathophysiology, mechanisms and clinical management. Expert Opin. Drug Saf. 2008, 7, 491–512. [Google Scholar] [CrossRef]
- Marx, R.E.; Sawstari, Y.; Fortin, M.; Broumand, V. Bisphosphonate-induced exposed bone [osteonecrosis/osteoporosis] of the jaws: Risk factors, recognition, prevention, and treatment. J. Oral Maxillofac. Surg. 2005, 63, 1567–15751. [Google Scholar] [CrossRef]
- Sharma, D.; Hamlet, S.; Petcu, E.; Ivanovski, S. The effect of bisphosphonates on the endothelial differentiation of mesenchymal stem cells. Sci. Rep. 2016, 6, 20580. [Google Scholar] [CrossRef]
- Walter, C.; Pabst, A.; Ziebart, T.; Klein, M.; Al-Nawas, B. Bisphosphonates affect migration ability and cell viability of HUVEC, fibroblasts and osteoblasts in vitro. Oral Dis. 2011, 17, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Tamaoka, J.; Takaoka, K.; Hattori, H.; Ueta, M.; Maeda, H.; Yamamura, M.; Yamanegi, K.; Noguchi, K.; Kishimoto, H. Osteonecrosis of the jaws caused by bisphosphonate treatment and oxidative stress in mice. Exp. Ther. Med. 2019, 17, 1440–1448. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.; Kunkel, M.; Springer, E.; Walter, C.; Weber, A.; Siegel, E.; Kirkpatrick, C.J. Actinomycosis of the jaws-histopathological study of 45 patients shows significant involvement in bisphosphonate-associated osteonecrosis and infected osteoradionecrosis. Virchows Arch. 2007, 451, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Landesberg, R.; Woo, V.; Cermers, S.; Cozin, M.; Marolt, D.; Vunjak-Novakovic, G.; Kousteni, S.; Raghavan, S. Potential pathophysiological mechanisms in osteonecrosis of the jaw. Ann. N. Y. Acad. Sci. 2011, 1218, 62–79. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, T.; Hagino, H.; Sugimoto, T.; Ohta, H.; Takahashi, S.; Soen, S.; Taguchi, A.; Toyosawa, S.; Nagata, T.; Urade, M. Bisphosphonate-related osteonecrosis of jaw: Position paper form the Allied Task Force Committee of Japanese Society for Bone and Mineral Research, Japan Osteoporosis Society, Japanese Society of Periodontology, Japanese Society of Oral and Maxillofacial Radiology, and Japanese Society of Oral and Maxillofacial Surgeons. J. Bone Miner. Metab. 2010, 28, 365–383. [Google Scholar] [CrossRef] [PubMed]
- Bagan, J.; Sáez, G.T.; Tormos, M.C.; Gavalda-Esteve, C.; Bagan, L.; Leopoldo-Rodado, M.; Calvo, J.; Camps, C. Oxidative stress in bisphosphonate-related osteonecrosis of the jaws. J. Oral Pathol. Med. 2014, 43, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, E.; Nicolatou-Galitis, O.; Papassotiriou, I.; Linardou, H.; Karagianni, A.; Tsixlakis, K.; Tarampikou, A.; Michalakakou, K.; Vardas, E.; Bafaloukos, D. The use of crevicular fluid to assess markers of inflammation and angiogenesis, IL-17 and VEGF, in patients with solid tumors receiving zoledronic acid and/or bevacizumab. Support. Care Cancer 2020, 28, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Marx, R.E.; Cillo, J.E.; Ulloa, J.J. Oral bisphosphonate-induced osteonecrosis: Risk factors, prediction of risk using serum CTX testing prevention, and treatment. J. Oral Maxillofac. Surg. 2007, 65, 2397–2410. [Google Scholar] [CrossRef] [PubMed]
- Aghaloo, T.L.; Kang, B.; Sung, E.C.; Shoff, M.; Ronconi, M.; Gotcher, J.E.; Bezouglaia, O.; Dry, S.M.; Tetradis, S. Periodontal disease and bisphosphonates induced osteonecrosis of the jaws in the rat. J. Bone Min. Res. 2011, 26, 1871–1882. [Google Scholar] [CrossRef]
- Otto, S.; Aljohani, S.; Fliefel, R.; Ecke, S.; Ristow, O.; Burian, E.; Troeltzsch, M.; Pautke, C.; Ehrenfeld, M. Infection as an important factor in medication-related osteonecrosis of the jaw (MRONJ). Medicina 2021, 57, 463. [Google Scholar] [CrossRef]
- Neviaser, A.S.; Lane, J.M.; Lenart, B.A.; Edobor-Osula, F.; Lorich, D.G. Low-energy femoral shaft fractures associated with alendronate use. J. Orthop. Trauma 2008, 22, 346–350. [Google Scholar] [CrossRef] [PubMed]
- O’Ryan, F.S.; Lo, J.C. Bisphosphonate-related osteonecrosis of the jaw in patients with oral bisphosphonate exposure: Clinical course and outcomes. J. Oral Maxillofac. Surg. 2012, 70, 1844–1853. [Google Scholar] [CrossRef] [PubMed]
- Di Fede, O.; Fusco, V.; Matranga, D.; Solazzo, L.; Gabriele, M.; Gaeta, G.M.; Favia, G.; Sprini, D.; Peluso, F.; Colella, G.; et al. Osteonecrosis of the jaws in patients assuming oral bisphosphonates for osteoporosis: A retrospective multihospital-based study of 87 Italian cases. Eur. J. Intern. Med. 2013, 24, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Malden, N.; Lopes, V. An epidemiological study of alendronate-related osteonecrosis of the jaws. A case series from the south-east of Scotland with attention given to case definition and prevalence. J. Bone Miner. Metab. 2012, 30, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Diniz-Freitas, M.; Lopez-Cendrun, J.L.; Fernandez-Sanroman, J.; Garcia-Garcia, A.; FernandezFeijoo, J.; Diz-Dios, P. Oral bisphosphonate- related osteonecrosis of the jaws: Clinical charasteristics of a series of 20 cases in Spain. Med. Oral Patol. Oral Cir. Bucal. 2012, 17, 751–758. [Google Scholar] [CrossRef]
- Zhong, D.N.; Wu, J.Z.; Li, G.J. Association between CYP2C8 [rs1934951] polymorphism and bisphosphonate-related osteonecrosis of the jaws in patients on bisphosphonate therapy: A meta-analysis. Acta Haematol. 2013, 129, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, S.L.; Dodson, T.B.; Aghaloo, T.; Carlson, E.R.; Ward, B.B.; Kademani, D. American Association of Oral and Maxillofacial Surgeons’ Position Paper on Medication-Related Osteonecrosis of the Jaws-2022 Update. J. Oral Maxillofac. Surg. 2022, 80, 920–943. [Google Scholar] [CrossRef] [PubMed]
- On, S.W.; Cho, S.W.; Byun, S.H.; Yang, B.E. Various Therapeutic Methods for the Treatment of Medication-Related Osteonecrosis of the Jaw (MRONJ) and Their Limitations: A Narrative Review on New Molecular and Cellular Therapeutic Approaches. Antioxidants 2021, 10, 680. [Google Scholar] [CrossRef] [PubMed]
- Hanna, R.; Bensadoun, R.J.; Beken, S.V.; Burton, P.; Carroll, J.; Benedicenti, S. Outpatient Oral Neuropathic Pain Management with Photobiomodulation Therapy: A Prospective Analgesic Pharmacotherapy-ParalleledFeasibility Trial. Antioxidants 2022, 11, 533. [Google Scholar] [CrossRef]
- Hanna, R.; Dalvi, S.; Bensadoun, R.J.; Raber-Durlacher, J.E.; Benedicenti, S. Role of Photobiomodulation Therapy in Neurological Primary Burning Mouth Syndrome. A Systematic Review and Meta-Analysis of Human Randomised Controlled Clinical Trials. Pharmaceutics 2021, 13, 1838. [Google Scholar] [CrossRef]
- Hanna, R.; Dalvi, S.; Bensadoun, R.J.; Benedicenti, S. Role of Photobiomodulation Therapy in Modulating Oxidative Stress in Temporomandibular Disorders. A Systematic Review and Meta-Analysis of Human Randomised Controlled Trials. Antioxidants 2021, 10, 1028. [Google Scholar] [CrossRef] [PubMed]
- Hanna, R.; Dalvi, S.; Tomov, G.; Hopper, C.; Rebaudi, F.; Rebaudi, A.L.; Bensadoun, J.R. Emerging potential of phototherapy in management of symptomatic oral lichen planus: A systematic review of randomised controlled clinical trials. J. Biophotonics 2023, 16, e202300046. [Google Scholar] [CrossRef] [PubMed]
- Hanna, R.; Dalvi, S.; Benedicenti, S.; Amaroli, A.; Sălăgean, T.; Pop, I.D.; Todea, D.; Bordea, I.R. Photobiomodulation Therapy in Oral Mucositis and Potentially Malignant Oral Lesions: A Therapy Towards the Future. Cancers 2020, 12, 1949. [Google Scholar] [CrossRef] [PubMed]
- Hanna, R.; Agas, D.; Benedicenti, S.; Ferrando, S.; Laus, F.; Cuteri, V.; Lacava, G.; Sabbieti, M.G.; Amaroli, A. A Comparative Study Between the Effectiveness of 980 nm Photobiomodulation Delivered by Hand-Piece with Gaussian vs. Flat-Top Profiles on Osteoblasts Maturation. Front. Endocrinol. 2019, 10, 92. [Google Scholar] [CrossRef] [PubMed]
- Hanna, R.; Dalvi, S.; Amaroli, A.; De Angelis, N.; Benedicenti, S. Effects of photobiomodulation on bone defects grafted with bone substitutes: A systematic review of in vivo animal studies. J. Biophotonics 2021, 14, e202000267. [Google Scholar] [CrossRef] [PubMed]
- Abdolrahmani, A.; Epstein, J.B.; Samim, F. Medication-related osteonecrosis of the jaw: Evolving research for multimodality medical management. Support. Care Cancer 2024, 32, 212. [Google Scholar] [CrossRef] [PubMed]
- Favia, G.; Tempesta, A.; Limongelli, L.; Crincoli, V.; Maiorano, E. Medication-Related Osteonecrosis of the Jaws: Considerations on a New Antiresorptive Therapy (Denosumab) and Treatment Outcome after a 13-Year Experience. Int. J. Dent. 2016, 2016, 1801676. [Google Scholar] [CrossRef] [PubMed]
- Albanese, M.; Zotti, F.; Capocasale, G.; Bonetti, S.; Lonardi, F.; Nocini, P.F. Conservative non-surgical management in medication related osteonecrosis of the jaw: A retrospective study. Clin. Exp. Dent Res. 2020, 6, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Kaibuchi, N.; Hoshi, K.; Yamazaki, A.; Miyamoto-Sangu, N.; Akagi, Y.; Okamoto, T. The Progress of Medication-Related Osteonecrosis of the Jaw with Conservative Initial Treatment: A 12-Year Retrospective Study of 129 Patients. Bone Rep. 2021, 14, 101072. [Google Scholar] [CrossRef]
- Osaka, R.; Kato, H.; Hamada, Y.; Fujimoto, Y.; Mizusawa, N.; Watanabe, D.; Kaneko, A. Clinicostatistical Analyses of Medication-Related Osteonecrosis of the Jaws (MRONJ): Evaluation of the Treatment Method and Prognosis. Oral Sci. Int. 2021, 18, 184–192. [Google Scholar] [CrossRef]
- Pavlíková, G.; Foltán, R.; Horká, M.; Hanzelka, T.; Borunska, H.; Sedy, J. Piezosurgery in oral and maxillofacial surgery. Int. J. Oral Maxillofac. Surg. 2011, 40, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Gera, I.; Szücs, N. The recombinant human parathyroid hormone, teriparatide as an alternative remedy for the medication-related osteonecrosis of the jaw. Orv. Hetil. 2023, 164, 1406–1415. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Shim, G.J.; Kim, M.; Yoon, Y.; Kim, J.E.; Jue, S.S.; Al-Nawas, B.; Kwon, Y.D. Effect and timing of parathyroid hormone analog administration for preventing medication-related osteonecrosis of the jaws in a murine model. J. Craniomaxillofacial Surg. 2021, 49, 719–725. [Google Scholar] [CrossRef]
- Sarkarat, F.; Kalantar Motamedi, M.H.; Jahanbani, J.; Sepehri, D.; Kahali, R.; Nematollahi, Z. Platelet-Rich Plasma in Treatment of Zoledronic Acid-Induced Bisphosphonate-Related Osteonecrosis of the Jaws. Trauma. Mon. 2014, 19, e17196. [Google Scholar] [CrossRef] [PubMed]
- Sohn, D.-S.; Heo, J.-U.; Kwak, D.-H.; Kim, D.-E.; Kim, J.-M.; Moon, J.-W.; Lee, J.-H.; Park, I.-S. Bone Regeneration in the Maxillary Sinus Using an Autologous Fibrin-Rich Block with Concentrated Growth Factors Alone. Implant. Dent. 2011, 20, 389–395. [Google Scholar] [CrossRef]
- Borsani, E.; Bonazza, V.; Buffoli, B.; Nocini, P.F.; Albanese, M.; Zotti, F.; Inchingolo, F.; Rezzani, R.; Rodella, L.F. Beneficial Effects of Concentrated Growth Factors and Resveratrol on Human Osteoblasts In Vitro Treated with Bisphosphonates. Biomed Res. Int. 2018, 2018, 4597321. [Google Scholar] [CrossRef]
- Dohan Ehrenfest, D.M.; Bielecki, T.; Jimbo, R.; Barbé, G.; Del Corso, M.; Inchingolo, F.; Sammartino, G. Do the Fibrin Architecture and Leukocyte Content Influence the Growth Factor Release of Platelet Concentrates? An Evidence-Based Answer Comparing a Pure Platelet-Rich Plasma (P-PRP) Gel and a Leukocyte- and Platelet-Rich Fibrin (L-PRF). Curr. Pharm. Biotechnol. 2012, 13, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Mijiritsky, E.; Assaf, H.D.; Kolerman, R.; Mangani, L.; Ivanova, V.; Zlatev, S. Autologous Platelet Concentrates (APCs) for Hard Tissue Regeneration in Oral Implantology, Sinus Floor Elevation, Peri-Implantitis, Socket Preservation, and Medication-Related Osteonecrosis of the Jaw (MRONJ): A Literature Review. Biology 2022, 11, 1254. [Google Scholar] [CrossRef]
- Wisniewska, L.M.; Dohan Ehrenfest, D.M.; Galindo-Moreno, P.; Segovia, J.D.; Inchingolo, F.; Wang, H.-L.; Fernandes-Cruz, M. Molecular, Cellular and Pharmaceutical Aspects of Biomaterials in Dentistry and Oral and Maxillofacial Surgery. An Internationalization of Higher Education and Research Perspective. Curr. Pharm. Biotechnol. 2017, 18, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Del Corso, M.; Vervelle, A.; Simonpieri, A.; Jimbo, R.; Inchingolo, F.; Sammartino, G.; Dohan Ehrenfest, D.M. Current Knowledge and Perspectives for the Use of Platelet-Rich Plasma (PRP) and Platelet-Rich Fibrin (PRF) in Oral and Maxillofacial Surgery Part 1: Periodontal and Dentoalveolar Surgery. Curr. Pharm. Biotechnol. 2012, 13, 1207–1230. [Google Scholar] [CrossRef]
- Bonazza, V.; Borsani, E.; Buffoli, B.; Parolini, S.; Inchingolo, F.; Rezzani, R.; Rodella, L.F. In Vitro Treatment with Concentrated Growth Factors (CGF) and Sodium Orthosilicate Positively Affects Cell Renewal in Three Different Human Cell Lines. Cell Biol. Int. 2018, 42, 353–364. [Google Scholar] [CrossRef]
- Borsani, E.; Buffoli, B.; Bonazza, V.; Brunelli, G.; Monini, L.; Inchingolo, F.; Ballini, A.; Rezzani, R.; Rodella, L.F. In Vitro Effects of Concentrated Growth Factors (CGF) on Human SH-SY5Y Neuronal Cells. Eur. Rev. Med. Pharm. Sci. 2020, 24, 304–314. [Google Scholar] [CrossRef]
- Rusilas, H.; Balčiūnaitė, A.; Žilinskas, J. Autologous Platelet Concentrates in Treatment of Medication Related Osteonecrosis of the Jaw. Stomatologija 2020, 22, 23–27. [Google Scholar]
- Aljohani, S.; Fliefel, R.; Ihbe, J.; Kühnisch, J.; Ehrenfeld, M.; Otto, S. What Is the Effect of Anti-Resorptive Drugs (ARDs) on the Development of Medication-Related Osteonecrosis of the Jaw (MRONJ) in Osteoporosis Patients: A Systematic Review. J. Craniomaxillofacal Surg. 2017, 45, 1493–1502. [Google Scholar] [CrossRef]
- Simonpieri, A.; Del Corso, M.; Vervelle, A.; Jimbo, R.; Inchingolo, F.; Sammartino, G.; Dohan Ehrenfest, D.M. Current Knowledge and Perspectives for the Use of Platelet-Rich Plasma (PRP) and Platelet-Rich Fibrin (PRF) in Oral and Maxillofacial Surgery Part 2: Bone Graft, Implant and Reconstructive Surgery. Curr. Pharm. Biotechnol. 2012, 13, 1231–1256. [Google Scholar] [CrossRef]
- Giudice, A.; Barone, S.; Giudice, C.; Bennardo, F.; Fortunato, L. Can Platelet-Rich Fibrin Improve Healing after Surgical Treatment of Medication-Related Osteonecrosis of the Jaw? A Pilot Study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 126, 390–403. [Google Scholar] [CrossRef]
- Asaka, T.; Ohga, N.; Yamazaki, Y.; Sato, J.; Satoh, C.; Kitagawa, Y. Platelet-Rich Fibrin May Reduce the Risk of Delayed Recovery in Tooth-Extracted Patients Undergoing Oral Bisphosphonate Therapy: A Trial Study. Clin. Oral Investig. 2017, 21, 2165–2172. [Google Scholar] [CrossRef] [PubMed]
- Yarom, N.; Shapiro, C.L.; Peterson, D.E.; Van Poznak, C.H.; Bohlke, K.; Ruggiero, S.L.; Migliorati, C.A.; Khan, A.; Morrison, A.; Anderson, H.; et al. Medication-Related Osteonecrosis of the Jaw: MASCC/ISOO/ASCO Clinical Practice Guideline. J. Clin. Oncol. 2019, 37, 2270–2290. [Google Scholar] [CrossRef]
- Hepburn, J.; Williams-Lockhart, S.; Bensadoun, R.J.; Hanna, R. A Novel Approach of Combining Methylene Blue Photodynamic Inactivation, Photobiomodulation and Oral Ingested Methylene Blue in COVID-19 Management: A Pilot Clinical Study with 12-Month Follow-Up. Antioxidants 2022, 11, 2211. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, M.R. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 2017, 4, 337–361. [Google Scholar] [CrossRef] [PubMed]
- Kuffler, D.P. Photobiomodulation in promoting wound healing: A review. Regen. Med. 2016, 11, 107–122. [Google Scholar] [CrossRef]
- Dompe, C.; Moncrieff, L.; Matys, J.; Grzech-Lesniak, K.; Kocherova, I.; Bryja, A.; Bruska, M.; Dominiak, M.; Mozdziak, P.; Skiba, T.H.I.; et al. Photobiomodulation-underlying mechanism and clinical applications. J. Clin. Med. 2020, 9, 6. [Google Scholar] [CrossRef]
- de Freitas, L.F.; Hamblin, M.R. Proposed Mechanism of Photobiomodulation or Low-Level Light. Ther. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 7000417. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Higgins, J.P.T.; Elbers, R.G.; Reeves, B.C.; the Development Group for ROBINS-I. Risk of Bias in Non-randomized Studies of Interventions (ROBINS-I): Detailed Guidance, Updated 12 October 2016. Available online: http://www.riskofbias.info (accessed on 1 March 2024).
- The Cochrane Collaboration. Review Manager (RevMan) [Computer Program]. Version 5.4.1; The Cochrane Collaboration: London, UK, 2020. [Google Scholar]
- Lau, J.; Ioannidis, J.P.; Schmid, C.H. Quantitative synthesis in systematic reviews. Ann. Intern. Med. 1997, 127, 820–826. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Egger, M. Funnel plots for detecting bias in meta-analysis: Guidelines on choice of axis. J. Clin. Epidemiol. 2001, 54, 1046–1055. [Google Scholar] [CrossRef]
- Lin, L.; Chu, H. Quantifying publication bias in meta-analysis. Biometrics 2018, 74, 785–794. [Google Scholar] [CrossRef]
- Scoletta, M.; Arduino, P.G.; Reggio, L.; Dalmasso, P.; Mozzati, M. Effect of low-level laser irradiation on bisphosphonate-induced osteonecrosis of the jaws: Preliminary results of a prospective study. Photomed. Laser Surg. 2010, 28, 179–184. [Google Scholar] [CrossRef]
- Altay, M.A.; Tasar, F.; Tosun, E.; Kan, B. Low-level laser therapy supported surgical treatment of bisphosphonate related osteonecrosis of jaws: A retrospective analysis of 11 cases. Photomed. Laser Surg. 2014, 32, 468–475. [Google Scholar] [CrossRef]
- Atalay, B.; Yalcin, S.; Emes, Y.; Aktas, I.; Aybar, B.; Issever, H.; Mandel, N.M.; Cetin, O.; Oncu, B. Bisphosphonate-related osteonecrosis: Laser-assisted surgical treatment or conventional surgery? Lasers Med. Sci. 2011, 26, 815–823. [Google Scholar] [CrossRef]
- Favia, G.; Tempesta, A.; Limongelli, L.; Crincoli, V.; Maiorano, E. Medication-related osteonecrosis of the jaw: Surgical or nonsurgical treatment? Oral Dis. 2018, 24, 238–242. [Google Scholar] [CrossRef]
- Merigo, E.; Cella, L.; Oppici, A.; Cristina Arbasi, M.; Clini, F.; Fontana, M.; Fornaini, C. Combined Approach to Treat Medication-Related Osteonecrosis of the Jaws. J. Lasers Med. Sci. 2018, 9, 92–100. [Google Scholar] [CrossRef]
- Şahin, O.; Tatar, B.; Ekmekcioğlu, C.; Aliyev, T.; Odabaşı, O. Prevention of medication related osteonecrosis of the jaw after dentoalveolar surgery: An institution’s experience. J. Clin. Exp. Dent. 2020, 12, e771–e776. [Google Scholar] [CrossRef]
- Şahin, O.; Akan, E.; Tatar, B.; Ekmekcioğlu, C.; Ünal, N.; Odabaşı, O. Combined approach to treatment of advanced stages of medication-related osteonecrosis of the jaw patients. Braz. J. Otorhinolaryngol. 2022, 88, 613–620. [Google Scholar] [CrossRef]
- Vescovi, P.; Giovannacci, I.; Merigo, E.; Meleti, M.; Manfredi, M.; Fornaini, C.; Nammour, S. Tooth extractions in high-risk patients under bisphosphonate therapy and previously affected with osteonecrosis of the jaws: Surgical protocol supported by low-level laser therapy. J. Craniofacial Surg. 2015, 26, 696–699. [Google Scholar] [CrossRef]
- Vescovi, P.; Manfredi, M.; Merigo, E.; Guidotti, R.; Meleti, M.; Pedrazzi, G.; Fornaini, C.; Bonanini, M.; Ferri, T.; Nammour, S. Early surgical laser-assisted management of bisphosphonate-related osteonecrosis of the jaws (BRONJ): A retrospective analysis of 101 treated sites with long-term follow-up. Photomed. Laser Surg. 2012, 30, 5–13. [Google Scholar] [CrossRef]
- Vescovi, P.; Manfredi, M.; Merigo, E.; Meleti, M.; Fornaini, C.; Rocca, J.P.; Nammour, S. Surgical approach with Er:YAG laser on osteonecrosis of the jaws (ONJ) in patients under bisphosphonate therapy (BPT). Lasers Med. Sci. 2010, 25, 101–113. [Google Scholar] [CrossRef]
- Vescovi, P.; Merigo, E.; Meleti, M.; Manfredi, M.; Fornaini, C.; Nammour, S. Surgical Approach and Laser Applications in BRONJ Osteoporotic and Cancer Patients. J. Osteoporos. 2012, 2012, 585434. [Google Scholar] [CrossRef]
- Vescovi, P.; Meleti, M.; Merigo, E.; Manfredi, M.; Fornaini, C.; Guidotti, R.; Nammour, S. Case series of 589 tooth extractions in patients under bisphosphonates therapy. Proposal of a clinical protocol supported by Nd:YAG low-level laser therapy. Med. Oral Patol. Oral Cir. Bucal 2013, 18, e680–e685. [Google Scholar] [CrossRef]
- Tenore, G.; Zimbalatti, A.; Rocchetti, F.; Graniero, F.; Gaglioti, D.; Mohsen, A.; Caputo, M.; Lollobrigida, M.; Lamazza, L.; De Biase, A.; et al. Management of Medication-Related Osteonecrosis of the Jaw (MRONJ) Using Leukocyte- and Platelet-Rich Fibrin (L-PRF) and Photobiomodulation: A Retrospective Study. J. Clin. Med. 2020, 9, 3505. [Google Scholar] [CrossRef]
- Manfredi, M.; Merigo, E.; Guidotti, R.; Meleti, M.; Vescovi, P. Bisphosphonate-related osteonecrosis of the jaws: A case series of 25 patients affected by osteoporosis. Int. J. Oral Maxillofac. Surg. 2011, 40, 277–284. [Google Scholar] [CrossRef]
- Martins, M.A.; Martins, M.D.; Lascala, C.A.; Curi, M.M.; Migliorati, C.A.; Tenis, C.A.; Marques, M.M. Association of laser phototherapy with PRP improves healing of bisphosphonate-related osteonecrosis of the jaws in cancer patients: A preliminary study. Oral Oncol. 2012, 48, 79–84. [Google Scholar] [CrossRef]
- Vescovi, P.; Merigo, E.; Meleti, M.; Fornaini, C.; Nammour, S.; Manfredi, M. Nd:YAG laser biostimulation of bisphosphonate-associated necrosis of the jawbone with and without surgical treatment. Br. J. Oral Maxillofac. Surg. 2007, 45, 628–632. [Google Scholar] [CrossRef]
- Vescovi, P.; Merigo, E.; Manfredi, M.; Meleti, M.; Fornaini, C.; Bonanini, M.; Rocca, J.P.; Nammour, S. Nd:YAG laser biostimulation in the treatment of bisphosphonate-associated osteonecrosis of the jaw: Clinical experience in 28 cases. Photomed. Laser Surg. 2008, 26, 37–46. [Google Scholar] [CrossRef]
- Poli, P.P.; Ávila Souza, F.; Susanna Ferrario, S.; Carlo Maiorana, C. Adjunctive application of antimicrobial photodynamic therapy in the prevention of medication-related osteonecrosis of the jaw following dentoalveolar surgery: A case series. Photodiagnosis Photodyn. Ther. 2019, 27, 117–123. [Google Scholar] [CrossRef]
- Tartaroti, N.C.; Marques, M.M.; Naclério-Homem, M.D.G.; Migliorati, C.A.; Zindel Deboni, M.C. Antimicrobial photodynamic and photobiomodulation adjuvant therapies for prevention and treatment of medication-related osteonecrosis of the jaws: Case series and long-term follow-up. Photodiagnosis Photodyn. Ther. 2020, 29, 101651. [Google Scholar] [CrossRef]
- Erovigni, F.M.; Cabras, M.; Gambino, A.; Todaro, D.; Carcieri, P.; Dell’Acqua, A. Photobiomodulation vs. photodynamic therapy as adjuvant treatments in patients with medication-related osteonecrosis of the jaw (mronj): A pilot study. Qeios, 2021; pre-print. [Google Scholar] [CrossRef]
- Vescovi, P.; Merigo, E.; Meleti, M.; Manfredi, M.; Fornaini, C.; Nammour, S.; Mergoni, G.; Sarraj, A.; Bagan, J.V. Conservative surgical management of stage I bisphosphonate-related osteonecrosis of the jaw. Int. J. Dent. 2014, 2014, 107690. [Google Scholar] [CrossRef]
- Angiero, F.; Sannino, C.; Borloni, R.; Crippa, R.; Benedicenti, S.; Romanos, G.E. Osteonecrosis of the jaws caused by bisphosphonates: Evaluation of a new therapeutic approach using the Er:YAG laser. Lasers Med. Sci. 2009, 24, 849–856. [Google Scholar] [CrossRef]
- Nica, D.F.; Riviș, M.; Roi, C.I.; Todea, C.D.; Duma, V.-F.; Sinescu, C. Complementarity of Photo-Biomodulation, Surgical Treatment, and Antibiotherapy for Medication-Related Osteonecrosis of the Jaws (MRONJ). Medicina 2021, 57, 145. [Google Scholar] [CrossRef]
- Merigo, E.; Manfredi, M.; Meleti, M.; Guidotti, R.; Ripasarti, A.; Zanzucchi, E.; D’Aleo, P.; Corradi, D.; Corcione, L.; Sesenna, E.; et al. Bone necrosis of the jaws associated with bisphosphonate treatment: A report of twenty-nine cases. Acta Biomed. 2006, 77, 109–117. [Google Scholar] [PubMed]
- Vescovi, P.; Merigo, E.; Meleti, M.; Manfredi, M.; Guidotti, R.; Nammour, S. Bisphosphonates-related osteonecrosis of the jaws: A concise review of the literature and a report of a single-centre experience with 151 patients. J. Oral Pathol. Med. 2012, 41, 214–221. [Google Scholar] [CrossRef]
- Ribeiro, G.H.; Minamisako, M.C.; Rath, I.B.d.S.; Santos, A.M.B.; Simões, A.; Pereira, K.C.R.; Grando, L.J. Osteoradionecrosis of the jaws: Case series treated with adjuvant low-level laser therapy and antimicrobial photodynamic therapy. J. Appl. Oral Sci. 2018, 26, e20170172. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Dioguardi, M.; Spirito, F.; Alovisi, M.; Aiuto, R.; Garcovich, D.; Crincoli, V.; Ballini, A.; Caloro, G.A.; Muzio, L.; Ballini, A.; et al. Location and Gender Differences in Osteonecrosis of the Jaws in Patients Treated with Antiresorptive and Antineoplastic Drugs Undergoing Dentoalveolar Surgical, Systematic Review with Meta-Analysis and Trial Sequential Analysis. J. Clin. Med. 2023, 12, 3299. [Google Scholar] [CrossRef]
- Gaudin, E.; Seidel, L.; Bacevic, M.; Rompen, E.; Lambert, F. Occurrence and risk indicators of medication-related osteonecrosis of the jaw after dental extraction: A systematic review and meta-analysis. J. Clin. Periodontol. 2015, 42, 922–932. [Google Scholar] [CrossRef]
- Srivastava, A.; Nogueras Gonzalez, G.M.; Geng, Y.; Won, A.M.; Myers, J.; Li, Y.; Chambers, M.S. Medication-Related Osteonecrosis of the Jaw in Patients Treated Concurrently with Antiresorptive and Antiangiogenic Agents: Systematic Review and Meta-Analysis. J. Immunother. Precis. Oncol. 2021, 4, 196–207. [Google Scholar] [CrossRef]
- Momesso, G.A.C.; Lemos, C.A.A.; Santiago-Júnior, J.F.; Faverani, L.P.; Pellizzer, E.P. Laser surgery in management of medication-related osteonecrosis of the jaws: A meta-analysis. Oral Maxillofac. Surg. 2020, 24, 133–144. [Google Scholar] [CrossRef]
- Yarom, N.; Lazarovici, T.S.; Whitefield, S.; Weissman, T.; Wasserzug, O.; Yahalom, R. Rapid onset of osteonecrosis of the jaw in patients switching from bisphosphonates to denosumab. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 125, 27–30. [Google Scholar] [CrossRef]
- Ciobanu, G.A.; Mogoantă, L.; Popescu, S.M.; Ionescu, M.; Munteanu, C.M.; Staicu, I.E.; Mercuț, R.; Georgescu, C.C.; Scrieciu, M.; Vlad, D.; et al. Correlations between Immune Response and Etiopathogenic Factors of Medication-Related Osteonecrosis of the Jaw in Cancer Patients Treated with Zoledronic Acid. Int. J. Mol. Sci. 2023, 24, 14345. [Google Scholar] [CrossRef]
- Taniguchi, N.; Osaki, M.; Onuma, K.; Ishikawa, M.; Ryoke, K.; Kodani, I.; Okada, F. Bisphosphonate-induced reactive oxygen species inhibit proliferation and migration of oral fibroblasts: A pathogenesis of bisphosphonate-related osteonecrosis of the jaw. J. Periodontol. 2020, 91, 947–955. [Google Scholar] [CrossRef]
- Ciobanu, G.A.; Camen, A.; Ionescu, M.; Vlad, D.; Mercut, V.; Staicu, I.E.; Petrescu, G.S.; Asan, A.A.; Popescu, S.M. Bisphosphonates related osteonecrosis of the jaw in cancer patients—Epidemiological study. Rom. J. Oral Rehabil. 2022, 14, 56–66. [Google Scholar]
- Ciobanu, G.A.; Mogoantă, L.; Camen, A.; Ionescu, M.; Vlad, D.; Staicu, I.E.; Munteanu, C.M.; Gheorghit, M.I.; Mercut, R.; Sin, E.C.; et al. Clinical and Histopathological Aspects of MRONJ in Cancer Patients. J. Clin. Med. 2023, 12, 3383. [Google Scholar] [CrossRef]
- Kim, H.Y. Review and Update of the Risk Factors and Prevention of Antiresorptive-Related Osteonecrosis of the Jaw. Endocrinol. Metab. 2021, 36, 917–927. [Google Scholar] [CrossRef]
- Querrer, R.; Ferrare, N.; Melo, N.; Stefani, C.M.; Dos Reis, P.E.D.; Mesquita, C.R.M.; Borges, G.A. Differences between bisphosphonate-related and denosumab-related osteonecrosis of the jaws: A systematic review. Support. Care Cancer 2021, 29, 2811–2820. [Google Scholar] [CrossRef]
- Di Fede, O.; Canepa, F.; Panzarella, V.; Mauceri, R.; Del Gaizo, C.; Bedogni, A.; Fusco, V.; Tozzo, P.; Pizzo, G.; Campisi, G.; et al. The Treatment of Medication-Related Osteonecrosis of the Jaw (MRONJ): A Systematic Review with a Pooled Analysis of Only Surgery versus Combined Protocols. Int. J. Environ. Res. Public Health 2021, 18, 8432. [Google Scholar] [CrossRef]
- Moraschini, V.; Calasans-Maia, M.D.; Louro, R.S.; Arantes, E.B.R.; Calasans-Maia, J.A. Weak evidence for the management of medication-related osteonecrosis of the jaw: An overview of systematic reviews and meta-analyses. J. Oral Pathol. Med. 2021, 50, 10–21. [Google Scholar] [CrossRef]
- Campisi, G.; Bedogni, A.; Fusco, V. Raccomandazioni Clinico-Terapeutiche sull’Osteonecrosi delle ossa Mascellari (ONJ) Farmaco-Relata e sua Prevenzione. Version 2.0-July 2020. Available online: https://www.sipmo.it/versione-2-0-delle-raccomandazioni-clinico-terapeutiche-sullosteonecrosi-delle-ossa-mascellari-onj-farmaco-relata-e-sua-prevenzione/ (accessed on 15 March 2024).
- Aguirre, J.I.; Castillo, E.J.; Kimmel, D.B. Biologic and pathologic aspects of osteocytes in the setting of medication-related osteonecrosis of the jaw (MRONJ). Bone 2021, 153, 116168. [Google Scholar] [CrossRef]
- De Cicco, D.; Boschetti, C.E.; Santagata, M.; Colella, G.; Staglianò, S.; Gaggl, A.; Bottini, G.B.; Vitagliano, R.; D’amato, S. Medication-Related Osteonecrosis of the Jaws: A Comparison of SICMF–SIPMO and AAOMS Guidelines. Diagnostics 2023, 13, 2137. [Google Scholar] [CrossRef]
- Marx, R.E. Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: A growing epidemic. J. Oral Maxillofac. Surg. 2003, 61, 1115–1117. [Google Scholar] [CrossRef]
- Moraschini, V.; de Almeida, D.C.F.; Figueredo, C.M.; Calasans-Maia, M.D. Association between biomarkers and medication-related osteonecrosis of the jaws: A systematic review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 127, 504–515. [Google Scholar] [CrossRef]
- Lorenzo-Pouso, A.I.; Pérez-Sayáns, M.; González-Palanca, S.; Chamorro-Petronacci, C.; Bagán, J.; García-García, A. Biomarkers to predict the onset of biphosphonate-related osteonecrosis of the jaw: A systematic review. Med. Oral Patol. Oral Cir. Bucal. 2019, 24, e26–e36. [Google Scholar] [CrossRef]
- Prá, K.D.; Lemos, C.; Okamoto, R.; Soubhia, A.; Pellizzer, E. Efficacy of the C-terminal telopeptide test in predicting the development of bisphosphonate-related osteonecrosis of the jaw: A systematic review. Int. J. Oral Maxillofac. Surg. 2017, 46, 151–156. [Google Scholar] [CrossRef]
- Tsuchimochi, M.; Kurabayashi, T. Symposium: Imaging modalities for drug-related osteonecrosis of the jaw (1), role of imaging in drug-related osteonecrosis of the jaw: An up-to-date review (secondary publication). Jpn. Dent. Sci. Rev. 2019, 55, 1–4. [Google Scholar] [CrossRef]
- Melguizo-Rodríguez, L.; Costela-Ruiz, V.J.; Manzano-Moreno, F.J.; Ruiz, C.; Illescas-Montes, R. Salivary Biomarkers and Their Application in the Diagnosis and Monitoring of the Most Common Oral Pathologies. Int. J. Mol. Sci. 2020, 21, 5173. [Google Scholar] [CrossRef]
- Bagan, J.; Sheth, C.C.; Soria, J.M.; Margaix, M.; Bagan, L. Bisphosphonates-related osteonecrosis of the jaws: A preliminary study of salivary interleukins. J. Oral Pathol. Med. 2012, 42, 405–408. [Google Scholar] [CrossRef]
- Bagan, J.; Sáez, G.; Tormos, M.; Hens, E.; Terol, M.; Bagan, L.; Diaz-Fernandez, J.; Lluch, A.; Camps, C. Interleukin-6 concentration changes in plasma and saliva in bisphosphonate-related osteonecrosis of the jaws. Oral Dis. 2013, 20, 446–452. [Google Scholar] [CrossRef]
- Thumbigere-Math, V.; Michalowicz, B.S.; De Jong, E.P.; Griffin, T.J.; Basi, D.L.; Hughes, P.J.; Tsai, M.L.; Swenson, K.K.; Rockwell, L.; Gopalakrishnan, R. Salivary proteomics in bisphosphonate-related osteonecrosis of the jaw. Oral Dis. 2013, 21, 46–56. [Google Scholar] [CrossRef]
- Thumbigere-Math, V.; Michalowicz, B.S.; Hughes, P.J.; Basi, D.L.; Tsai, M.L.; Swenson, K.K.; Rockwell, L.; Gopalakrishnan, R. Serum Markers of Bone Turnover and Angiogenesis in Patients with Bisphosphonate-Related Osteonecrosis of the Jaw after Discontinuation of Long-Term Intravenous Bisphosphonate Therapy. J. Oral Maxillofac. Surg. 2015, 74, 738–746. [Google Scholar] [CrossRef]
- Kim, J.W.; Kwak, M.K.; Han, J.J.; Lee, S.T.; Kim, H.Y.; Kim, S.H.; Jung, J.; Lee, J.K.; Lee, Y.K.; Kwon, Y.D.; et al. Medication Related Osteonecrosis of the Jaw: 2021 Position Statement of the Korean Society for Bone and Mineral Research and the Korean Association of Oral and Maxillofacial Surgeons. J. Bone Metab. 2021, 28, 279–296. [Google Scholar] [CrossRef]
- Hanley, D.A.; Adachi, J.D.; Bell, A.; Brown, V. Denosumab: Mechanism of action and clinical outcomes. Int. J. Clin. Pract. 2012, 66, 1139–1146. [Google Scholar] [CrossRef]
- Hansen, T.; Kunkel, M.; Weber, A.; James Kirkpatrick, C. Osteonecrosis of the jaws in patients treated with bisphosphonates-histomorphologic analysis in comparison with infected osteoradionecrosis. J. Oral Pathol. Med. 2006, 35, 155–160. [Google Scholar] [CrossRef]
- Koizumi, G.; Hayashi, A.; Takigawa, A.; Yamada, R.; Murata, T.; Shimizu, K.; Watanabe, M.; Arai, N. Novel Histopathological Findings of Micro Bone Fragments and Epithelial Response in the Oral Mucosa in Bisphosphonate-Related Osteonecrosis of the Jaw. J. Investig. Med. High Impact Case Rep. 2024, 12, 23247096241258076. [Google Scholar] [CrossRef]
- Sedghizadeh, P.P.; Yooseph, S.; Fadrosh, D.W.; Zeigler-Allen, L.; Thiagarajan, M.; Salek, H.; Farahnik, F.; Williamson, S.J. Metagenomic investigation of microbes and viruses in patients with jaw osteonecrosis associated with bisphosphonate therapy. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 114, 764–770. [Google Scholar] [CrossRef]
- Pushalkar, S.; Li, X.; Kurago, Z.; Ramanathapuram, L.V.; Matsumura, S.; Fleisher, K.E.; Glickman, R.; Yan, W.; Li, Y.; Saxena, D. Oral microbiota and host innate immune response in bisphosphonate-related osteonecrosis of the jaw. Int. J. Oral Sci. 2014, 6, 219–226. [Google Scholar] [CrossRef]
- Govaerts, D.; Piccart, F.; Ockerman, A.; Coropciuc, R.; Politis, C.; Jacobs, R. Adjuvant therapies for MRONJ: A systematic review. Bone 2020, 141, 115676. [Google Scholar] [CrossRef]
- Kuroshima, S.; Sasaki, M.; Sawase, T. Medication-related osteonecrosis of the jaw: A literature review. J. Oral Biosci. 2019, 61, 99–104. [Google Scholar] [CrossRef]
- Ottesen, C.; Schiodt, M.; Gotfredsen, K. Efficacy of a high-dose antiresorptive drug holiday to reduce the risk of medication-related osteonecrosis of the jaw (MRONJ): A systematic review. Heliyon 2020, 6, e03795. [Google Scholar] [CrossRef]
- Khan, L.A.; Morrison, A.; Hanley, D.A.; Felsenberg, D.; McCauley, L.K.; O’Ryan, F.; Reid, I.R.; Ruggiero, S.L.; Taguchi, A.; Tetradis, S.; et al. on behalf of the International Task Force on Osteonecrosis of the Jaw, Diagnosis and Management of Osteonecrosis of the Jaw: A Systematic Review and International Consensus. J. Bone Min. Res. 2015, 30, 3–23. [Google Scholar] [CrossRef]
- Wilde, F.; Heufelder, M.; Winter, K.; Hendricks, J.; Frerich, B.; Schramm, A.; Hemprich, A. The role of surgical therapy in the management of intravenous bisphosphonates-related osteonecrosis of the jaw. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011, 111, 153–163. [Google Scholar] [CrossRef]
- Bermúdez-Bejarano, E.-B.; Serrera-Figallo, M.Á.; Gutiérrez-Corrales, A.; Romero-Ruiz, M.-M.; Castillo-De-Oyagüe, R.; Gutiérrez-Pérez, J.-L.; Torres-Lagares, D. Prophylaxis and antibiotic therapy in management protocols of patients treated with oral and intravenous bisphosphonates. J. Clin. Exp. Dent. 2017, 9, e141–e149. [Google Scholar]
- De Bruyn, L.; Coropciuc, R.; Coucke, W.; Politis, C. Microbial population changes in patients with medication-related osteonecrosis of the jaw treated with systemic antibiotics. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 125, 268–275. [Google Scholar] [CrossRef]
- Boff, R.C.; Salum, F.G.; Figueiredo, M.A.; Cherubini, K. Important aspects regarding the role of microorganisms in bisphosphonate-related osteonecrosis of the jaws. Arch. Oral Biol. 2014, 59, 790–799. [Google Scholar] [CrossRef]
- Shamsoddin, E.; Mahboobi, F.; Kargar, K.; Latifi, F. Etiologic Role of Bacterial Microorganisms in Medication Related Osteonecrosis of the Jaws: A Systematic Review. Int. J. Pharm. Phytopharm. 2019, 9, 64–72. [Google Scholar]
- Kiss, C.; Connoley, D.; Connelly, K.; Horne, K.; Korman, T.; Woolley, I.; Lau, J.S.Y. Long-Term Outcomes in Patients on Life-Long Antibiotics: A Five-Year Cohort Study. Antibiotics 2022, 11, 62. [Google Scholar] [CrossRef]
- Walker, G.T.; Quan, J.; Higgins, S.G.; Toraskar, N.; Chang, W.; Saeed, A.; Sapiro, V.; Pitzer, K.; Whitfield, N.; Lopansri, B.K.; et al. Predicting antibiotic resistance in gram-negative bacilli from resistance genes. Antimicrob. Agents Chemother. 2019, 63, e02462-18. [Google Scholar] [CrossRef]
- Ji, X.; Pushalkar, S.; Li, Y.; Glickman, R.; Fleisher, K.; Saxena, D. Antibiotic effects on bacterial profile in osteonecrosis of the jaw. Oral Dis. 2012, 18, 85–95. [Google Scholar] [CrossRef]
- Ewald, F.; Wuesthoff, F.; Koehnke, R.; Friedrich, R.E.; Gosau, M.; Smeets, R.; Rohde, H.; Assaf, A.T. Retrospective analysis of bacterial colonization of necrotic bone and antibiotic resistance in 98 patients with medication-related osteonecrosis of the jaw (MRONJ). Clin. Oral Investig. 2021, 25, 2801–2809. [Google Scholar] [CrossRef]
- Sawada, K.; Fujioka-Kobayashi, M.; Kobayashi, E.; Schaller, B.; Miron, R.J. Effects of Antiseptic Solutions Commonly Used in Dentistry on Bone Viability, Bone Morphology, and Release of Growth Factors. J. Oral Maxillofac. Surg. 2016, 74, 247–254. [Google Scholar] [CrossRef]
- Fortunato, L.; Bennardo, F.; Buffone, C.; Giudice, A. Is the application of platelet concentrates effective in the prevention and treatment of medication-related osteonecrosis of the jaw? A systematic review. J. Craniomaxillofacial Surg. 2020, 48, 268–285. [Google Scholar] [CrossRef] [PubMed]
- Del Fabbro, M.; Gallesio, G.; Mozzati, M. Autologous platelet concentrates for bisphosphonate-related osteonecrosis of the jaw treatment and prevention. A systematic review of the literature. Eur. J. Cancer 2015, 51, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Scribante, A.; Ghizzoni, M.; Pellegrini, M.; Pulicari, F.; Spadari, F. Laser Devices and Autologous Platelet Concentrates in Prevention and Treatment of Medication-Related Osteonecrosis of the Jaws: A Systematic Review. Medicina 2023, 59, 972. [Google Scholar] [CrossRef] [PubMed]
- Mücke, T.; Haarmann, S.; Wolff, K.D.; Hölzle, F. Bisphosphonate related osteonecrosis of the jaws treated by surgical resection and immediate osseous microvascular reconstruction. J. Craniomaxillofacial Surg. 2009, 37, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Ristow, O.; Otto, S.; Troeltzsch, M.; Hohlweg-Majert, B.; Pautke, C. Treatment perspectives for medication-related osteonecrosis of the jaw (MRONJ). J. Craniomaxillofacial Surg. 2015, 43, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Giudice, A.; Bennardo, F.; Barone, S.; Antonelli, A.; Figliuzzi, M.M.; Fortunato, L. Can Autofluorescence Guide Surgeons in the Treatment of Medication-Related Osteonecrosis of the Jaw? A Prospective Feasibility Study. J. Oral Maxillofac. Surg. 2018, 76, 982–995. [Google Scholar] [CrossRef]
- de Mello, E.D.; Pagnoncelli, R.M.; Munin, E.; Filho, M.S.; de Mello, G.P.; Arisawa, E.A.; de Oliveira, M.G. Comparative histological analysis of bone healing of standardized bone defects performed with the Er:YAG laser and steel burs. Lasers Med. Sci. 2008, 23, 253–260. [Google Scholar] [CrossRef]
- de Souza Tolentino, E.; de Castro, T.F.; Michellon, F.C.; Passoni, A.C.C.; Ortega, L.J.A.; Iwaki, L.C.V.; da Silva, M.C. Adjuvant therapies in the management of medication-related osteonecrosis of the jaws: Systematic review. Head Neck 2019, 41, 4209–4228. [Google Scholar] [CrossRef]
- Holzinger, D.; Seemann, R.; Klug, C.; Ewers, R.; Millesi, G.; Baumann, A.; Wutzl, A. Long-term success of surgery in bisphosphonate-related osteonecrosis of the jaws (BRONJs). Oral Oncol. 2013, 49, 66–70. [Google Scholar] [CrossRef]
- Fusco, V.; Campisi, G.; Carcieri, P.; Fagioli, F.; Bertetto, O.; Mignogna, M.D.; Bedogni, A. ONJ (MRONJ) Update 2021—Osteonecrosis of Jaw Related to Bisphosphonates and Other Drugs—Prevention, Diagnosis, Pharmacovigilance, Treatment: A 2021 Web Event. Oral 2022, 2, 137–147. [Google Scholar] [CrossRef]
- Katsarelis, H.; Shah, N.P.; Dhariwal, D.K.; Pazianas, M. Infection and medication-related osteonecrosis of the jaw. J. Dent. Res. 2015, 94, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, S.L. Bisphosphonate-related osteonecrosis of the jaw: An overview. Ann. N. Y. Acad. Sci. 2011, 1218, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Jornet, P.; Sanchez Perez, A.; Amaral Mendes, R.; Tobias, A. Medication-Related Osteonecrosis of the Jaw: Is Autologous Platelet Concentrate Application Effective for Prevention and Treatment? A Systematic Review. J. Craniomaxillofacial Surg. 2016, 44, 1067–1072. [Google Scholar] [CrossRef] [PubMed]
- Porcaro, G.; Caccianiga, P.; Bader, A.A.; Caccianiga, G. Treatment of Medication-Related Osteonecrosis of the Jaw (MRONJ) with Er:YaG Laser and Ozone Therapy: A Case Series. Inventions 2022, 7, 97. [Google Scholar] [CrossRef]
- Lee, L.W.; Hsiao, S.H.; Chen, L.K. Clinical treatment outcomes for 40 patients with bisphosphonates-related osteonecrosis of the jaws. J. Formos. Med. Assoc. 2014, 113, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Rahman, S.U.; Tang, E.; Engel, K.; Hall, B.; Kulkarni, A.B.; Arany, P.R. Accelerated burn wound healing with photobiomodulation therapy involves activation of endogenous latent TGF-β1. Sci. Rep. 2021, 11, 13371. [Google Scholar] [CrossRef]
- de Barros Silva, P.G.; de Lima Praxedes Praxedes Neto, R.A.; Lima, L.A.; Lemos, J.V.M.; De Queiroz Rodrigues, M.I.; Alves, A.P.N.N.; Dantas, T.S.; Lima, R.A. Photodynamic therapy and photobiomodulation therapy in zoledronic acid-induced osteonecrosis in rats. Photodiagnosis Photodyn. Ther. 2022, 38, 102889. [Google Scholar] [CrossRef] [PubMed]
- Wehrhan, F.; Hyckel, P.; Guentsch, A.; Nkenke, E.; Stockmann, P.; Schlegel, K.A.; Neukam, F.W.; Amann, K. Bisphosphonate-associated osteonecrosis of the jaw is linked to suppressed TGFβ1-signaling and increased Galectin-3 expression: A histological study on biopsies. J. Transl. Med. 2011, 9, 102. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Williams, D.W.; Lee, C.; Kim, T.; Arai, A.; Shi, S.; Li, X.; Shin, K.-H.; Kang, M.K.; Park, N.-H.; et al. IL-36 induces bisphosphonate-related osteonecrosis of the jaw-like lesions in mice by inhibiting TGF-β-mediated collagen expression. J. Bone Min. Res. 2017, 32, 309–318. [Google Scholar] [CrossRef]
- Lee, K.H.; Kim, S.H.; Kim, C.H.; Min, B.J.; Kim, G.J.; Lim, Y.; Kim, H.-S.; Ahn, K.-M.; Kim, J.H. Identifying genetic variants underlying medication-induced osteonecrosis of the jaw in cancer and osteoporosis: A case control study. J. Transl. Med. 2019, 17, 381. [Google Scholar] [CrossRef]
- Robijns, J.; Nair, R.G.; Lodewijckx, J.; Arany, P.; Barasch, A.; Bjordal, J.M.; Bossi, P.; Chilles, A.; Corby, P.M.; Epstein, J.B.; et al. Photobiomodulation therapy in management of cancer therapy-induced side effects: WALT position paper 2022. Front. Oncol. 2022, 12, 927685. [Google Scholar] [CrossRef]
- Sim, I.W.; Sanders, K.M.; Borromeo, G.L.; Seymour, J.F.; Ebeling, P.R. Declining incidence of medication-related osteonecrosis of the jaw in patients with cancer. J. Clin. Endocrinol. Metab. 2015, 100, 3887–3893. [Google Scholar] [CrossRef] [PubMed]
- Nicolatou-Galitis, O.; Schiødt, M.; Mendes, R.A.; Ripamonti, C.; Hope, S.; Drudge-Coates, L.; Niepel, D.; Van den Wyngaert, T. Medication-related osteonecrosis of the jaw: Definition and best practice for prevention, diagnosis, and treatment. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 127, 117–135. [Google Scholar] [CrossRef]
- Matsumoto, A.; Sasaki, M.; Schmelzeisen, R.; Oyama, Y.; Mori, Y.; Voss, P.J. Primary wound closure after tooth extraction for prevention of medication-related osteonecrosis of the jaw in patients under denosumab. Clin. Oral Investig. 2017, 21, 127–134. [Google Scholar] [CrossRef]
- Hasegawa, T.; Kawakita, A.; Ueda, N.; Funahara, R.; Tachibana, A.; Kobayashi, M.; Kondou, E.; Takeda, D.; Kojima, Y.; Sato, S.; et al. A multicenter retrospective study of the risk factors associated with medication-related osteonecrosis of the jaw after tooth extraction in patients receiving oral bisphosphonate therapy: Can primary wound closure and a drug holiday really prevent MRONJ? Osteoporos. Int. 2017, 28, 2465–2473. [Google Scholar] [CrossRef] [PubMed]
- Beth-Tasdogan, N.H.; Mayer, B.; Hussein, H.; Zolk, O.; Peter, J.U. Interventions for managing medication-related osteonecrosis of the jaw. Cochrane Database Syst. Rev. 2022, 2022, Cd012432. [Google Scholar] [CrossRef]
- Mosaico, G.; Casu, C. Management and maintenance of oral health: Personalized primary prevention strategies and protocols in patients at risk of developing medication-related osteonecrosis of the jaw. INNOSC Pharmacol. Sci. 2024, 7, 1419. [Google Scholar] [CrossRef]
- Rupel, K.; Ottaviani, G.; Gobbo, M.; Contardo, L.; Tirelli, G.; Vescovi, P.; Di Lenarda, R.; Biasotto, M. A systematic review of therapeutical approaches in bisphosphonates-related osteonecrosis of the jaw (BRONJ). Oral Oncol. 2014, 50, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.B.; Camilotti, R.S.; Ponte, M.E. Efficacy of laser therapy in the management of bisphosphonate-related osteonecrosis of the jaw (BRONJ): A systematic review. Lasers Med. Sci. 2016, 31, 1261–1272. [Google Scholar] [CrossRef]
- Li, F.L.; Wu, C.B.; Sun, H.J.; Zhou, Q. Effectiveness of laser-assisted treatments for medication-related osteonecrosis of the jaw: A systematic review. Br. J. Oral Maxillofac. Surg. 2020, 58, 256–267. [Google Scholar] [CrossRef]
- Razavi, P.; Jafari, A.; Vescovi, P.; Fekrazad, R. Efficacy of Adjunctive Photobiomodulation in the Management of Medication-Related Osteonecrosis of the Jaw: A Systematic Review. Photobiomodulation Photomed. Laser Surg. 2022, 40, 777–791. [Google Scholar] [CrossRef] [PubMed]
- Somerfield, M.R.; Padberg, J.R.; Pfister, D.G.; Bennett, C.L.; Recht, A.; Smith, T.J.; Weeks, R.J.; Durant, J.R. ASCO clinical practice guidelines: Process, progress, pitfalls, and prospects. Class. Pap. Curr. Comments 2000, 4, 881–886. [Google Scholar]
- Kaptein, M. A practical approach to sample size calculation for fixed populations. Contemp. Clin. Trials Commun. 2019, 14, 100339. [Google Scholar] [CrossRef] [PubMed]
- Das Graças Miranda Coutinho, B.; Gerônimo Caetano, A.B.; Oliveira, A.L.; De Castro Lara, S.M.; Wilker Mustafa Gomes Muniz, F.; Barbosa Calcia, T.B. clinical effectiveness of photodynamic antimicrobial therapy in mronj—Systematic review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2022, 134, e238. [Google Scholar] [CrossRef]
- Zheng, Y.; Dong, X.; Chen, S.; He, Y.; An, J.; Liu, M.; He, L.; Zhang, Y. Low-level laser therapy prevents medication-related osteonecrosis of the jaw-like lesions via IL-1RA-mediated primary gingival wound healing. BMC Oral Health 2023, 23, 14. [Google Scholar] [CrossRef]
Category | Description |
---|---|
Stage 0 | No apparent necrotic bone in asymptomatic patients who have been treated with IV or oral ART. Patients with no clinical evidence of necrotic bone but who present with non-specific symptoms or clinical and radiographic findings, such as the following: Symptoms Odontalgia not explained by an odontogenic cause. Dull, aching bone pain in the jaw, which may radiate to the temporomandibular joint region. Sinus pain, which may be associated with inflammation and thickening of the maxillary sinus wall. Altered neurosensory function. Clinical findings Loosening of teeth not explained by chronic periodontal disease. Intraoral or extraoral swelling—radiographic findings. Alveolar bone loss or resorption not attributable to chronic periodontal disease. Changes to trabecular pattern sclerotic bone and no new bone in extraction sockets. Regions of osteosclerosis involving alveolar bone and/or the surrounding basilar bone. Thickening/obscuring of periodontal ligament (thickening of the lamina dura, Sclerosis and decreased size of the periodontal ligament space). |
Stage I | Exposed and necrotic bone or fistula that probes to the bone in patients who are asymptomatic and have no evidence of infection/inflammation. these patients also may present with radiographic findings mentioned for Stage 0 that are localised to the alveolar bone region. |
Stage II | Exposed and necrotic bone or fistula that probes to the bone, with evidence of infection/inflammation. These patients are symptomatic and may present with radiographic findings mentioned for Stage 0 localised to the alveolar bone region. |
Stage III | Exposed and necrotic bone or fistulae that probes to the bone, with evidence of infection and one or more of the following: Exposed necrotic bone extending beyond the region of alveolar bone (i.e., inferior border and ramus in the mandible, maxillary sinus and zygoma in the maxilla). Pathologic fracture. Extraoral fistula. Oral antral/oral–nasal communication. Osteolysis extending to the inferior border of the mandible or sinus floor. |
Study Reference | Mean Age (yrs) | Sample Size pt/Lesion (M/F) | Smoking | Underlining Diseases | Associated Treatments | Primary Diagnosis | Site/s of Lesion/No. of Lesion | Initial MRONJ Staging | Type of Dental Trauma/Timing | Symptoms’ Onset |
---|---|---|---|---|---|---|---|---|---|---|
[103] | 71.3 | 20 [6(30%)/14 (70%)] | 2/20 (10%) | NM | Steroids CT | BC: 6/20 (30%)/ MM 6/20 (30%)/osteoporosis 5/20 (25%)/ PC: 3/20 (15%) | NM | Stage IA 1/20 (5%)/Stage IB 1/20 (5%)/Stage IIA 13/20 (65%)/Stage IIB 3/20 (15%)/Stage IIIA 2/20 (10%) | Dental extractions: 15/20 (75%); PDD: 2/20 (10%); Prosthetic trauma: 1/20 (5%); Dental implant: 1/20 (5%); MOS 1/20 (5%) | EO oedema; pus; EOF; halitosis; bone exposure; pain; patho fracture; EOF; asymptomatic |
[104] | 64.1 | 11 (7/4) 63.63%/36.36% | NM | NM | NM | BC: 3/11 (27.27%); MM 4/11 (36%); PC: cancer 3/11 (27.27%); LC: 1/11 (9.09%) | Max: 7/11 (63.63%); Mand: 2/11 (18.18%); max and Mand: 2/11 (18.18%) | Stage II 9/11 (81.81%); Stage III 2/11 (18.18%) | Extraction 9/11 (81.81%) Denture irritation 2/11 (18.18%) | Pain; necrotic bone; granulation tissue; OAC |
[105] | 55.4 | 20 [7 (35%)/ 13(65%)] | NM | NM | NM | BC: 1/20 (5%); PC: 1/20 (5%); MM 7/20 (35%); neuro-endocrine tumour 1/20 (5%) | 20/20 Max: 11/20 (55%); Mand: 9/20 (45%) | Stage I 6/20 (30%) Stage II 14/20 (70%) | MOS 100% | Necrotic bone exposure |
[106] | 71 | 106/131 [32 (30.18%)/74 (69.811)] | NM | NM | Steroids | Oncology: 72.51% non-oncology: 27.48% | Max: 46/131(35.11%) Mand: 85/131 (64.88%) | Stage I 11/131 (8.39%); stage II 65/131 (49.61%); stage III 55/131 (41.98%)/(34.57%) | Spontaneous 44/131 (33.58%); OS: 87/131 (10.68%) | Bone exposure; pus discharge; tooth mobility |
[107] | 72.6 | 21[5 (23.80)/16 (76.19%)] | 3/21 (14.28%) | HTN; arrythmia; DVT; DM (NM, type); | Steroids | Solid tumour: 11/21 (52.38%). Osteometabolic diseases: 10/21 (47.61%) | Max: 6/21 (28.6%); Mand:15/21 (71.4%) | Stage I 2/21 (9.6%); Stage II 15/21 (71.4%); Stage III 4/21 (19%) | Dental Prosthesis 8/21 (38.05%); Dental implant 1/21 (4.76%); NM 12/21 (57.14%) | NM |
[108] | 66.3 | 44 [12 (27.27%)/32 (72.72%)] | 7 /44 (15.90%) | DM (NM, type) | Steroids | BPs for oncology: 21/44 (42.72%): BC: 14/21 (66.66%); PC: 6/21 (28.57%), NPC: 1/21 (4.76%); BPs for non-oncology: osteoporosis: 23/44 (52.27%) | NA | NA | NA | NA |
[109] | 68.04 | 21 (7/14) 33.33%/66.66% | 6/21 (28.57%) | DM (NM, type) | Steroids CT | BC: 14/21 (66.66%); PC: 3/21 (14.28%); LC: 2/21 (9.52%): KC: 1/21 (4.76%); MM: 1/21 (4.76%) | Max: 8/21 (38.05%) Mand: 13/21 (61.90%) | Stage II 15/21 (71.42%) Stage III 6/21 (28.57%) | Extraction 18/21 (85.71%); Dental implant 2/21 (38.05%); Prosthesis pressure: 1/21 (4.76%) | Bone exposure; Swelling; inflamed mucosa; OAC |
[110] | 68.5 | 36 (12/24) 33.33%/66.66% | NM | NM | Steroids | BM: 18/38 (50%); MM 11/36 (30.55%); osteoporosis 7/36 (19.44%) | NA/ 82 Extractions/ Max: 31/82 (37.80%)/Mand: 51/82 (62.19%) | NA | NA | NA |
[111] | NM | 128 (33/95) 25.78%/74.21% | 26/128 (20.31%) | DM: 7.03% | Steroids | MM 52/128 (40.62%) BM: 53/128 (41.40%) Osteoporosis 23/128 (17.96%) | Max: 30/128 (23.43%); Mand: 85/128 (66.4%); Max + Mand: 13/128 (10.15%) | Stage I 17/128 (13.28%);; Stage II 92/128 (71.87%); Stage III 19/128 (14.84%) | NM | Bone: Exposed/ unexposed; OAC |
[112] | 67 | 91(25/66) 27.47%/ 72.52% | NM | NM | CT | MM 39/91 (42.85%); BCM: 33/91 (36.26%); Osteoporosis 16/91 (17.58%); NM: 3/91 (3.26%); 1 pt bilateral femur bone necrosis | Max: 21/91 (23.07%) Mand: 62/91 (68.13%) Max+ Mand 8/91 (8.79%); Treated lesions: Max: 10/55 (18.18%); Mand 45/55 (81.81%) | Stage I 8/91 (8.79%); Stage II 66/91 (72.52%); Stage III 17/91 (18.68%) | Spontaneously 41/91 (45.1%); After surgical procedures 50/91 (54.9%) | Bone exposure; Pain; Swelling; Pus discharge; Halitosis; Paraesthesia |
[113] | 67.3 | 190 (52/138) 27.36%/ 72.63% | 39/190 (20.5%) | DM:11.5% | Steroids | MM 62/190 (32.63%); BM: 85/190 (44.73%); Osteoporosis 43/190 (22.63%) | Max: 53/190 (27.89%); Mand: 120/190 (63.15%); Max+ Mand: 17/190 (8.94%) | Stage I 34/190 (17.89%); Stage II 126/190 (66.31%); Stage III 30/190 (15.78%) | NM | Necrotic bone exposure; inflamed mucosa; OAC |
[114] | 68.72 | 217 (38/179) 17.51%/ 82.48% | Y (pt. no. NM) | DM; vascular disease; renal failure | Steroids; chemo; hormonal; AC | MM 23/217 (10.59%); BM: 72/217 (33.17%); non-oncologic: (osteoporosis; RA; Paget’s disease) 122/217 (56.22%) | NA | NA | NA | NA |
Treatment Approach | Study Reference | Group No. | Treatment Protocol | No. of Treated pt. | Lesion No. | Lesion Distribution in Affected Site | ||||
---|---|---|---|---|---|---|---|---|---|---|
Max | Mand | Combined Max & Mand | ||||||||
Preventive | [108] | G1 | PBM | 20 | NA | NA | ||||
[110] | G1 | Med + CS + PBM | 36 | NA | ||||||
[114] | G1 | Med + CS + PBM | 217 | NA | ||||||
Therapeutic | [103] | G1 | PBM | 20 | NM | NM | NM | NM | ||
[104] | G1 | Med + CS + PBM | 11 | 15 | 2 | 7 | 6 | |||
[105] | G1 | Med + SL + PBM | 20 | 20 | 11 | 9 | 0 | |||
G2 | Med + CS | |||||||||
[106] | G1 | Med + CS | 106 | 131 | 46 | 85 | 0 | |||
G2 | Med + PBM | |||||||||
[107] | G1 | G1a | Med + CS + LS + Piezo + PRP + PBM | 21 | 21 | 6 | 15 | 0 | ||
G1b | Med + CS + PRP + PBM | |||||||||
G1c | Med + CS + LS + PRP + PBM | |||||||||
G1d | Med + CS + Piezo + PRP + PBM | |||||||||
G1e | Med + Piezo + PRP + PBM | |||||||||
G1f | Med + LS + PRP + PBM | |||||||||
G1g | Med + LS + Piezo + PRP + PBM | |||||||||
[109] | G1 | Med + CS + Piezo + PRF + PBM | 21 | 21 | 8 | 13 | 0 | |||
[111] | G1 | Med | 128 | 12 | 101 | 30 | 85 | 13 | ||
G2 | Med+ PBM | 27 | ||||||||
G3 | Med+ CS | 17 | ||||||||
G4 | Med + CS + LS + PBM | 45 | ||||||||
[112] | G1 | Med | 48 | 13 | 55 | 10 | 45 | 0 | ||
G2 | Med + PBM | 17 | ||||||||
G3 | Med + CS | 13 | ||||||||
G4 | LS + PBM | 12 | ||||||||
[113] | G1 | Med | 190 | 32 | 166 | 53 | 120 | 17 | ||
G2 | Med + PBM | 37 | ||||||||
G3 | Med + CS | 17 | ||||||||
G4 | Med + CS + PBM | 39 | ||||||||
G5 | Med + LS | 41 | ||||||||
Total of lesions in all the eligible studies | 530 | 166 | 379 | 36 | ||||||
% of total lesions in each affected site | 28.57 | 66.23 | 6.19 |
Study Reference | Duration of BP Medication in Months (Range) | BPs Drug Holiday | Duration-BPs Drug Holiday-Month | ||||
---|---|---|---|---|---|---|---|
Y | N | All Subjects | Few No. of Cohort “Y” | NM | |||
[103] | 42.95 ± 32.16 | - | x | x | - | - | NA |
[104] | 21.27 (9–629) | x | - | x | - | - | Until complete mucosal healing |
[105] | 32.35 (6–132) | x | - | - | 19/20 | 1/20 | 4.5 |
[106] | NM | x | - | - | 85/106 | 21/106 | 3 pre-op in G1 (85/106) |
[107] | 8/21 subjects-NM 13/21 subjects—54.53 (5–164) | NM | |||||
[108] | IV—44.6 (25–108); PO—36.3 (18–96) | - | x | x | - | - | NA |
[109] | 64.76 ± 21.53 (39–96) | x | - | x | - | - | 4.52 ± 1.12 |
[110] | NM | x | x | - | 1/36 | 34/36 | NM |
[111] | 28 (1–96) | x | x | - | x | x | NM |
[112] | 25 (2–120) | x | x | - | x | x | NM |
[113] | Oncology, 26 ± 20 (3–72); Non-oncology, 90 ± 40 (24–144) | NM | |||||
[114] | Oncology, 17 Non-oncology, 53 (1–92) | x | - | - | 49/217 | 168/217 | 2 prior and after tooth extraction |
Study Reference | Asympto-Matic | Pain | Halitosis | EO Oedema | Swelling | IM | Paraest-Hesia | Pus | EOF | BE | Symptomatic/Mobile Teeth | OAC | PF |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[103] | x | x | x | x | - | - | - | x | x | x | - | x | x |
[104] | - | x | - | - | - | - | - | x | x | x | - | ||
[105] | - | - | - | - | - | - | - | x | - | - | |||
[106] | - | - | - | - | - | - | x | x | x | - | |||
[107] | NM | NM | NM | NM | NM | NM | NM | NM | NM | NM | NM | NM | NM |
[108] | NA (preventive) | ||||||||||||
[109] | - | - | - | - | x | x | - | - | x | - | x | - | |
[110] | NA (preventive) | ||||||||||||
[111] | - | - | - | - | - | - | - | - | x | - | x | - | |
[112] | - | x | x | - | x | - | x | x | - | x | - | - | |
[113] | - | - | - | - | - | x | - | - | - | x | - | x | - |
[114] | NA (preventive) |
Study Reference | λ (nm) Laser | Emission Mode | Contact/Non-Contact | Energy (J) per Spot | No. of Irradiation Points | Power Output (W) | Use of Power Meter | Laser–Tissue Distance | Spot Size/Fibre Diameter/Spot Diameter | Energy Density (J/cm²) | Irradiance (W/cm²) | Exposure Time (min/s) | Irradiation Frequency/ Time Interval | Treatment Duration/No. of Sessions |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[103] | 904 | Pulsed/40% duty cycle | Contact | NM | NM | NM | NM | NA | 0.8 cm | 28.4 | NM | NM | 1st week: 4 sessions; 2nd week: 3 sessions; 3rd week: 3 sessions | 20 d/10 |
[104] | 808 | CW | Non-contact | 1.4 | NM | 0.5 | NM | 0.5–1 cm | 0.28 cm² R = 6 mm | 5 | NM | 3 s/point total: 120 s | At day 1, 3, 5, 7, 10 | 10 d/5 |
[105] | 1064 | LP mode/ 10 Hz | Non-contact | 2.5 | NM | 0.25 | NM | 4 cm | 0.4 cm²/950 μm | 6.25 | NM | 1 min | 5 sessions for 10 d. | 10 d/5 sessions |
[106] | 810 | NM | NM | NM | NM | 0.5–1 | NM | NM | 320 μm | NM | NM | NM | monthly | NM |
[107] | 808 | CW | Non-contact | NM | NM | 1 | NM | NM | 600 μm | Theoretical 21231 | NM | 1 min | 5 times/session | 1st session immediately after surgery; then twice a week until mucosal closure. |
[108] | 1064 | 15 Hz | Contact | NM | NM | 1.25 | NM | 1–2 mm | 320 μm | NM | NM | 1 min repeated 5 times | At day; 2,5,7, 10, 14,21,28 | 1 month/7 sessions |
[109] | 1064 | 15 Hz | Non-contact | NM | NM | 1.25 | NM | 1–2 mm | 320 μm | NM | NM | 1 min, repeated 5 times | At day;2,5, 7,10,14,21,28 | 1 month/7 sessions |
[110] | 1064 | 15 Hz | Non-contact | NM | NM | 1.25 | NM | 2 mm | 320 μm | 7 | 1562.5 | 1 min | Repeated 5 times | Weekly for 1st six weeks + until mucosal closure |
[111] | 1064 | Pulsed/5%; 15 Hz | Non-contact | NM | NM | 1.25 | NM | 2 mm | 320 μm | 14.37 | 268.81 | 1 min | Repeated 5 times | G2: once a week for 2/12; G4: during surgery, then weekly for 2/12 |
[112] | 1064 | Pulsed, 15 Hz | Non-contact | NM | NM | 1.25 | NM | 2 mm | 320 μm | 2.01 | 268.57 | 1 min | Repeated 5 times | once a week for 2/12 |
[113] | 1064 | Pulsed: VSP/15 Hz | Non-contact | NM | NM | 1.25 | NM | 2 mm | 320 μm | 14.37 | 268.81 | 1 min | Repeated 5 times | Once a week for 2/12 |
[114] | 1064 | 15 Hz | Non-contact | NM | NM | 1.25 | NM | 2 mm | 320 μm | 7 | 1562.5 | NM | Repeated 5 times. | 6 sessions (once a week), until complete healing |
Missing data (%) | 0 | 0 | 8.33 | 83.33 | 100 | 8.33 | 100 | 16.66 | 0 | 16.66 | 58.33 | 25 | 0 | 8.33 |
Study Reference | Type of Antibiotics and Antiseptic Mouthwash | Pre- and Post-op | Pre-op | Post-op | Dose | Route of Administration | Frequency | Duration (Day) | ||
---|---|---|---|---|---|---|---|---|---|---|
[103] | Antibiotics | NA | ||||||||
Antiseptics | NA | |||||||||
[104] | Antibiotics | Amoxicillin clavulanate | x | 1000 mg | Po | BD | 7 | |||
Clindamycin | x | 150 mg | Po | BD | 7 | |||||
Sulbactam–ampicillin | x | 1500 mg | IV | QDS | 7 | |||||
Antiseptics | Benzylamine hydrochloride Chlorhexidine digluconate | x | 0.15% 0.12% | Mouth rinse Mouth rinse | NM NM | NM NM | ||||
[105] | Antibiotics | Amoxicillin + Clavulanic acid | x | 1000 mg | Po | BD | NM | |||
Metronidazole | x | 500 mg | Po | BD | NM | |||||
Antiseptics | Chlorhexidine gluconate | x | 0.2% | Mouth rinse | BD | 10 | ||||
[106] | Antibiotics | Ceftriaxone | x | x | 1 g | IM | OD | 7 | ||
Metronidazole | x | x | 500 mg | Po | BD | 7 | ||||
Antiseptics | Chlorhexidine | x | x | NM | Mouth rinse | NM | NM | |||
[107] | Antibiotics | Amoxicillin clavulanate | x | x | 2 g | Po | OD | 14 | ||
Metronidazole | x | x | 500 mg | Po | OD | 14 | ||||
Clindamycin | In case of allergy | |||||||||
Antiseptics | NM | NM | NM | NM | NM | NM | NM | NM | NM | |
[108] | Antibiotics | Amoxicillin + Clavulanic acid | x | x | 1000 mg | Po | NM | 14 | ||
Metronidazole | x | x | 500 mg | Po | NM | 14 | ||||
Antiseptics | Chlorhexidine digluconate | x | x | 0.12% | Mouth rinse | NM | 14 | |||
[109] | Antibiotics | Amoxicillin + Clavulanic acid | x | x | 1000 mg | Po | NM | 14 | ||
Metronidazole | x | x | 500 mg | Po | NM | 14 | ||||
Antiseptics | Chlorhexidine digluconate | x | x | 0.12% | Mouth rinse | NM | 14 | |||
[110] | Antibiotics | Amoxicillin | x | x | 2 g | Po | OD | 14 | ||
Metronidazole | x | x | 1 g | Po | OD | 14 | ||||
Antiseptics | Chlorhexidine digluconate | x | 0.2% | Mouth rinse | TDS | Until mucosal healing | ||||
[111] | Antibiotics | Amoxicillin | x | x | 1 g | Po | BD | 14 | ||
Metronidazole | x | x | 250 mg | Po | BD | 14 | ||||
Antiseptics | Chlorhexidine Hydrogen peroxide | x x | 0.2% 3% | Mouth rinse Mouth rinse | BD BD | NM NM | ||||
[112] | Antibiotics | Amoxicillin | x | x | 1 g | Po | TDS | 14 | ||
Metronidazole | x | x | 250 mg | Po | BD | 14 | ||||
Antiseptics | Chlorhexidine Hydrogen peroxide | x x | NM NM | Mouth rinse Mouth rinse | BD BD | NM NM | ||||
[113] | Antibiotics | Amoxicillin | x | x | 1 g | Po | BD | 14 | ||
Metronidazole | x | x | 250 mg | Po | BD | 14 | ||||
Antiseptics | Chlorhexidine Hydrogen peroxide | x | x | 0.2% 3% | Mouth rinse Mouth rinse | BD BD | NM NM | |||
[114] | Antibiotics | Amoxicillin | x | x | 2 g | Po | OD | 14 | ||
Antiseptics | Chlorhexidine | x | NM | Mouth rinse | TDS | Until mucosal healing |
Study Reference | Outcomes (Variables) | Diagnostic Tools | Outcome Assessment Tools | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mucosal Healing | Healing Time | Pain VAS | Clinical Exam + Photos | Imaging (OPT/ CBCT) | Histology | CTX | Clinical Exam + Photos | Imaging (OPT/ CBCT) | Histology | CTX | |
[103] | CH | 1/12 | Y | Y | N | N | N | Y | N | N | N |
[104] | 1° and 2° healing | NM | N | Y | OPT+ CBCT | Y | N | Y | N | N | N |
[105] | CH/ICH | NM | N | Y | OPT | N | Y | Y | OPT | N | Y |
[106] | CH/DH | NM | N | Y | OPT | Y | N | Y | OPT | N | N |
[107] | CH; Recurrence | NM | N | Y | OPT+ CBCT | Y | N | Y | N | N | N |
[108] | CH | 1/12 | N | Y | OPT | N | N | Y | OPT | N | N |
[109] | CH | 3/12 | N | Y | OPT | N | N | Y | OPT | N | N |
[110] | Complete healing @ 2 weeks | 2–8/52 | N | Y | OPT | N | N | Y | OPT | N | N |
[111] | CH | NM | N | Y | OPT+ CBCT | N | N | Y | CBCT | N | N |
[112] | CH | 3/12 | N | Y | OPT+ CBCT | N | N | Y | N | N | N |
[113] | CH | NM | N | Y | OPT+ CBCT | N | N | Y | CBCT | N | N |
[114] | 10% DH, 90% NM | NM | N | Y | OPT+ CBCT | N | N | Y | OPT | N | N |
Study Reference | P/T | Oncology/Non-Oncology/Mixed | Interventional Groups | Follow-Up (Mean Value)/Statistical Significance | MRONJ Staging Improvement | Resolved/Improved/ Stable/Progressive | Recurrence |
---|---|---|---|---|---|---|---|
[103] | T | Mixed | G1: PBM | At 1/12 A statistically significant difference was observed for reported pain, lesion size, oedema and presence of pus and OAC | NM | 40% Stable; 60% Improved. No adverse effects reported | No |
At 8/12 | NM | 85% Stable (symptoms); 80% Stable (lesion size); 10% Progressive (exposed bone); 15% Progressive—new lesion | 25% | ||||
[104] | T | Oncology | G1: Med + CS + PBM | NM | NM | 100% Resolved: 63% healing with primary closure; 36.36% by secondary closure | No |
[105] | T | Oncology | G1: Med + SL + PBM G2: Med + CS | Nothing mentioned about the follow-up timepoints. Statistically significant difference in MRONJ stage healing p = 0.050. Statistical comparison of treatment-type healing (p = 0.370). No significant correlation between CTX and healing status. | Complete healing: Stage I: 16.7%, Stage II: 71,4%; Incomplete healing: Stage I: 83.3%, Stage II: 28.6% | 55% Resolved (complete healing) 45% Improved (incomplete healing) | No |
[106] | T | Mixed | G1: Med + CS G2: Med + PBM | NM about statistics | G1: 86.5%—stage III to I, 13.5%—III to I | G1: 100%, complete healing—86% resolved and 13.5% improved | One |
G2: 0%—complete healing 2.2%: from stage II to I; and III to II | G2: Complete healing (0%); 87.5% stable, 2.2% Improved; 1.14% Progressive | ||||||
[107] | T | Mixed | G1a: Med + CS + SL + Piezo + PRP + PBM G1b: Med + CS + PRP + PBM G1c: Med + CS + SL + PRP + PBM G1d: Med + CS + Piezo + PRP + PBM G1e: Med + Piezo + PRP + PBM G1f: Med + SL + PRP + PBM G1g: Med + SL + Piezo + PRP + PBM | 95.23%—complete healing. Statistical analysis: NM | NM | 95.23% Resolved | One |
At 9/12 | One patient—recurrent—Stage III | 4.76% progressive | |||||
[108] | p | Mixed | G1: PBM | At 1/12; No recurrence in long-term follow-up based on clinical and radiological assessment | NA | 100% resolved | No |
No significant difference between the variable (age, gender, BPs type/duration and healing time) | |||||||
[109] | T | Oncology | G1: Med + CS + Piezo + PRF + PBM | At 3/12: Complete mucosal healing. No significant difference between each variable and delayed healing | 100% Resolved, but 3% showed delayed healing | No | |
[110] | P | Mixed | G1: Med + CS + PBM | At 2/52 | 100% Resolved | 100% Resolved | No |
At 5/12, follow-up: 2 cases developed delayed healing in which one of them was under antiangiogenic therapy | 100% resolved, but with 2 cases delayed healing | ||||||
At 33/12 follow-up | 100% Resolved | 100% Resolved | |||||
[111] | T | Mixed | G1: Med G2: Med + PBM G3: Med + CS G4: Med + CS + SL + PBM | At mean of 3/12 | G1: 16.6% transition to stage 0 G2: 33% transition to stage 0 G3: 52.9% transition to stage 0 G4: 88.8% (73.3% permanent transition to stage 0, 15.5% transition to a lower stage) | G1: 25% improved; 16.6% resolved G2: 66.6% improved in which 33% had complete healing (resolved) G3: 52.9% resolved G4: 88.8% improved | No |
Statistical significance comparing G1 with G2 (p = 0.0346), G4: healing improved compared with G1, G2 and G3 (p < 0.05); Comparing G1 + G2 vs. G3 + G4 showed complete healing and clinical improvement in all (p = 0.0003). No statistical difference in healing between G1 + G3 vs. G2 + G4, but clinical improvement in G4 (p = 0.0003); None of the results influenced by site (p = 0.28) or underlying diseases (p = 0.088). No significant difference in drug holiday protocols observed (p = 0.4656). No significant difference between smoking, type of BPs and lesion improvement p = 0.9027 | BRONJ stage III clinical improvement (p = 0.0007) | ||||||
[112] | T | Mixed | G1: Med G2: Med + PBM G3: Med + CS G4: SL + PBM | Follow-up timepoints not specified | Nothing mentioned in terms of staging improvement for G1, G2 and G3; G4, transition to stage 0 | G1: 0% healed, but NM in reasons and course of action. G2: 41%—Resolved G3: 46%—Resolved G4: 100% improvement, but a relapse of one patient after 10 months—Progressive | One at 10/12 |
Statistically significant (p < 0.001) in G4 compared to G1. Statistically significant (p = 0.03) in G4 compared to G3. G4 had best mucosal healing p < 0.0001. Slight clinical improvement difference between CS 46% and PBM alone 41% | |||||||
[113] | T | mixed | G1: Med G2: Med + PBM G3: Med + CS G4: Med + CS + PBM G5: Med + SL | Non-oncology: Statistically significant improvement in G1 + G2 compared with G3 + G4 + G5 p = 0.0080. Statistically significant in wound healing in G1 + G2 compared with G3 + G4 + G5 p = 0.00001. In Oncology: Statistically significant improvement in G1 compared to G2; Statistically significant improvement in G1 + G2 compared with G3 + G4 + G5 p < 0.0001. Statistically significant in terms of healing G1 + G2 compared with G3 + G4 + G5 p < 0.0001. Statistically significant improvement in G1 + G2 compared with G3 + G4 + G5 p = 0.0061; Comparing oncology and non-oncology patients in terms of complete healing for G3 + G4 + G5 showed statistically significant for surgical approach, indicating complete mucosal healing and clinical improvement with surgical treatment at early stages (better results) | Stage I: 75%, Stage II: 54.24% Stage III: 33.3% | Improved: 81.57% sites treated in non-oncology patients and 68.75% in oncology patients. Complete healing: 71.05% sites treated in non-oncology patients and 53% sites in oncology patients. Resolved; Nonsurgical approach adopted on 69 sites induced an improvement in 35 sites and complete healing in 19 sites, while surgical approach performed on 97 sites induced an improvement in 84 sites, of which 78 completely healed. | No |
[114] | P | mixed | G1: Med + CS + PBM | Only 15 patients had a delayed healing with minimal bone exposure. NM for the rest of the recruited patients; follow-up, healing time | NM | NM | No |
Study Reference | Therapeutic Protocol | Initial Stage | Downscaling MRONJ Grade and % |
---|---|---|---|
[103] | PBM | I:5%; IB: 5%; IIA: 65%; IIB:15%; IIIA: 10% | Stage I + II + III → downstaged → 60% |
Stage I + Stage II → 40% | |||
[104] | Med + CS + PBM | II: 81.81%; III: 18.18% | NM the grade |
[105] | Med + SL + PBM Med + CS | I: 30% II: 70% | 16.7% Stage I + 71.4% Stage II → Stage 0 83.3% Stage I + 28.6% Stage II → Downscaled (NM) |
[106] | Med + CS | I: 8.39%; II 65/131 (49.61%); I II: 55/131 (41.98%) | 100% I + Stage II → Stage 0 31/37 (86.48%) Stage III → Stage 0 5/37 (13.51%) Stage III → Stage I |
Med + PBM | 1/24 (4.16%) Stage II → Stage I 1/24 (4.16%) Stage III → Stage II 21/24 (87.5%) → Stable 1/24 (4.16%) Stage II → Stage III | ||
[107] | G1a: Med + CS + SL + Piezo + PRP + PBM G1b: Med + CS + PRP + PBM G1c: Med + CS + SL + PRP + PBM G1d: Med + CS + Piezo + PRP + PBM G1e: Med + Piezo + PRP + PBM G1f: Med + SL + PRP + PBM G1g: Med + SL + Piezo + PRP + PBM | I: 9.6%; II: 71.4%; III:19% | I + II + III → 0 (100%) |
[109] | Med + CS + Piezo + PRF + PBM | II: 71.42%; III: 8.57% | III → II |
[111] | Med | I: 17/128 (13.28%) II: 92/128 (71.87%) III: 19/128 (14.84%) | 3/12 (2%) → Stage 0 |
Med + PBM | 66.6% → downscaled, in which 50% → Stage 0 | ||
Med + CS | 9/17 (52.9%) → downscaled, | ||
Med + CS + LD + PBM | 88.8% → downstaged | ||
[112] | G1: Med | I: 8.79% II: 72.52% III: 8.68% | 0% → 0 |
G2: Med + PBM | 41% → Stage 0 | ||
G3: Med + CS | 46% → Stage 0 | ||
G4: LS + PBM | 83.3% → downstaged | ||
[113] | G1: Med | I: 17.89% II: 66.31% III: 15.78% | Stage I → Stage 0 → 75% Stage II → Stage 0 → 54.2% Stage III → Stage 0 → 33.33% |
G2: Med + PBM | |||
G3: Med + CS | |||
G4: Med + CS + PBM | |||
G5: Med + LS |
Study Reference | Pain | Infection | Paraesthesia | Bone Exposure | Oro-Antral Communication | Complete Mucosal Healing | Complete Resolution | No Response | Lesion Recurrence | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SS Y/N/NS/NI | NSS Y/N/NS/ NI | SS Y/N/ NS/NI | NSS Y/N/ NS/NI | SS Y/N/NS/NI | NSS Y/N/NS/NI | SS Y/N/NS/NI | NSS Y/N/NS/NI | SS Y/N/NS/NI | NSS Y/N/NS/NI | SS Y/N/NS/NI | NSS Y/N/NS/NI | SS Y/N/NS/NI | NSS Y/N/NS/NI | SS Y/N/NS/NI | NSS Y/N/NS /NI | SS Y/N/NS/ NI | NSS Y/N/NS/NI | |
[103] | Y | N | Y | N | NI | NI | N | Y | NI | NI | Y | N | Y | N | NS | NS | NS | NS |
[104] | NI | NI | NI | NI | NI | NI | NI | NI | NI | NI | NI | NI | NI | NI | NI | NI | NI | NI |
[105] | NI | NI | NI | NI | NI | NI | NI | NI | NI | NI | N | Y | NI | NI | NI | NI | NI | NI |
[106] | NI | NI | NI | NI | NI | NI | NI | NI | NI | NI | NS | NS | NI | NI | NI | NI | NI | NI |
[107] | NI | NI | NI | NI | NI | NI | NI | NI | NI | NI | NS | NS | NI | NI | NI | NI | NS | NS |
[108] | NI | NI | NI | NI | NI | NI | NI | NI | NI | NI | N | Y | NI | NI | NI | NI | NI | NI |
[109] | NI | NI | NI | NI | NI | NI | NI | NI | NI | NI | NS | NS | NI | NI | NI | NI | NI | NI |
[110] | NS | NS | NS | NS | NI | NI | NI | NI | NI | NI | NS | NS | NI | NI | NI | NI | NI | NI |
[111] | NI | NI | NI | NI | NI | NI | NI | NI | NI | NI | Y | N | NI | NI | NI | NI | NI | NI |
[112] | NI | NI | NI | NI | NI | NI | NI | NI | NI | NI | Y | N | NI | NI | NI | NI | NI | NI |
[113] | NI | NI | NI | NI | NI | NI | NI | NI | NI | NI | Y | N | Y | N | NI | NI | NI | NI |
[114] | NS | NS | NS | NS | NI | NI | NI | NI | NI | NI | NS | NS | NS | NS | NI | NI | NI | NI |
Domains | Overall Risk of Bias | |||||||
---|---|---|---|---|---|---|---|---|
Study Reference | Pre-Intervention | Intervention | Post-Intervention | |||||
Bias Due to Confounding | Bias in Selection of Participants for the Study | Bias in Classifying Interventions | Bias Due to Deviations from Intended Interventions | Bias Due to Missing Data | Bias to Measuring Outcomes | Bias in Selecting Reported Results | ||
[103] | Moderate | Low | Low | Low | Low | Low | Low | Moderate |
[104] | Moderate | Low | Low | Low | Low | Moderate | Low | Serious |
[105] | Moderate | Low | Low | Low | Low | Moderate | Low | Serious |
[106] | Moderate | Low | Low | Low | Low | Moderate | Low | Serious |
[107] | Moderate | Low | Low | Low | Low | Moderate | Low | Serious |
[108] | Moderate | Low | Low | Low | Low | Moderate | Low | Serious |
[109] | Moderate | Low | Low | Low | Low | Moderate | Low | Serious |
[110] | Moderate | Low | Low | Low | Low | Moderate | Low | Serious |
[111] | Moderate | Low | Low | Low | Low | Moderate | Low | Serious |
[112] | Moderate | Low | Low | Low | Low | Moderate | Low | Serious |
[113] | Moderate | Low | Low | Low | Low | Moderate | Low | Serious |
[114] | Moderate | Low | Low | Low | Low | Moderate | Low | Serious |
Study Reference | Important Characteristics to Consider for a Potential MA |
---|---|
[103] | Therapeutic PBM approach, prospective cohort study, no control group, study groups—only PBMT (diode GaAs 904 nm laser), follow-up duration: 242 d (±38)–8 months, moderate RoB |
[104] | Therapeutic PBM approach, retrospective case series, no control group, study groups—PBM (GaAlAs diode 808 nm/laser) + medical/surgical interventions, missing numerical data, follow-up duration: 11.72 m (range between 6 m and 25 m), severe RoB |
[105] | Therapeutic PBM approach, retrospective study, study groups—PBMT (1064 nm Nd:YAG laser) + laser surgery vs. conventional surgery, follow-up duration: 13.3 m (range between 3 m and 28 m), severe RoB |
[106] | Therapeutic PBM approach, retrospective study, study groups—surgical vs. non-surgical t/t (diode 810 nm/laser), missing numerical data, follow-up duration: 18 m (range 12–28), severe RoB |
[107] | Therapeutic PBM approach, prospective study, study groups surgery vs. laser surgery vs. PRP vs. PBMT (diode 808 nm laser), missing numerical data, follow-up duration: 9.6 m (range 2–24 months), severe RoB |
[108] | Preventive PBM approach, retrospective study, study groups—antibiotics vs. surgical vs. PRP vs. PBMT (1064 nm Nd:YAG laser), missing numerical data, follow-up duration: 1, 3, 6 m (mean follow-up 14.2 m), severe RoB |
[109] | Therapeutic PBM approach, prospective study, study groups—surgical vs. PRP vs. PBMT (1064 nm Nd:YAG laser), missing numerical data, follow-up duration: 18.04 ± 2.14 months, severe RoB |
[110] | Preventive PBM approach, prospective study, study groups—Group 1 (G1) included extractions performed in patients previously treated and completely healed for MRONJ in a different site from extraction. Group 2 (G2) included extractions performed in patients previously affected with MRONJ in the same site of extraction, laser parameters (1064 nm Nd:YAG laser), missing numerical data, follow-up duration: 33 m, severe RoB |
[111] | Therapeutic PBM approach, retrospective study, study groups—medical or surgical, traditional or laser-assisted approach, with or without PBMT (1064 nm Nd:YAG laser), missing numerical data, follow-up duration: 16 months (range of 6–54 months), severe RoB |
[112] | Therapeutic PBM approach, retrospective study, study groups—medical vs. surgical vs. PBMT (1064 nm Nd:YAG laser), missing numerical data, follow-up duration: G1: 4.1 m, G2: 7.5 m, G3: 8.8 m, G4:13 m), severe RoB |
[113] | Therapeutic PBM approach, retrospective study, study groups—oncology vs. non-oncology, medical or surgical, traditional or laser-assisted approach, with or without LLLT (1064 nm Nd:YAG laser), missing numerical data, follow-up duration: 16.44 ± 10.95 months, severe RoB |
[114] | Preventive PBM approach, case series, study groups—no control group, study groups—only LLLT (1064 nm Nd:YAG laser), follow-up duration: 15 m (4–31 months), severe RoB |
Demographic and Clinical Variable of all the Eligible Studies | % of Data Present | % of NM | |
---|---|---|---|
Gender | M: 26.07; F: 73.92 | NA | |
Mean age (yrs) | 67.52 | 8.33 | |
Primary disease | Malignant | 25 | NA |
Mixed (Malignant/ Non-malignant) | 75 | NA | |
Type of malignant | Prostate | 41.66 | 8.33 |
Breast | 41.66 | ||
Kidney | 8.33 | ||
Others | 83.33 | ||
Risk factors | Extraction/MOS | 77.77 | NA |
Denture wearer | 44.44 | ||
Absence of traumatic factors | 22.22 | ||
Systematic corticosteroids | 75 | ||
DM | 50 | ||
Comorbidities | 1 | 33.33 | 50 |
2 | 0 | ||
≥3 | 16.66 | ||
ART/antiangiogenic medications | Zoledronic acid | 58.33 | NA |
Alendronic acid | 25 | ||
Ibandronic acid | 8.33 | ||
Pamidronate | 16.66 | ||
Denosumab | 8.33 | ||
Sunitinib | 16.66 | ||
Route of drug administration | IV | 66.66 | NA |
PO | 41.66 | ||
IM | 8.33 | ||
Length of the administration (months) (mean) | 40.24 (in 83.33%) | 16.66 |
ART Timeframe | Risk | Oral and Dental Care Protocol and Treatment Plan | Reference |
---|---|---|---|
Pre/peri/post-ART | At low and high |
| Table 7 Subheadings 4.5.4. and 4.7.1. [27,200,201,202] |
Key Factors | Suggested Recommendation | Citation of Evidence | ||
---|---|---|---|---|
Recruiting subjects and sample size |
| Subheadings 4.1 and 4.2, [208] and Table 2 and Table 14 | ||
Randomisation and blinding processes |
| Subheading 4.3.1 Evaluation of study design | ||
Risk factors |
| Subheadings: 1.1.,1.4, 4.2., 4.4 and 4.3.2 Table 14 | ||
Eligibility criteria |
| [58] | ||
Study protocol |
| Subheadings: 3.13, 3.14 and 3.17. Table 2 and Table 9 | ||
Interventional arms | Therapeutic |
| Subheading 4.5.4 | |
Preventive |
| Subheading 4.7.1 | ||
Note: advanced stage III MRONJ | Invasive surgery (resection) would be the primary treatment modality, and combined PBM and aPDT, as adjunct with or without bone augmentation (APCs or bone graft depending on the size of the defect). MDT consensus is crucial prior to the therapeutic | Subheading 4.5.3 | ||
PBM and aPDT dosimetry and treatment protocols (therapeutic or preventive) | PBM | WALT suggested dosimetry (oncology and non-oncology cohort) Based on the included studies [104,105], the authors suggested the following laser dosimetry: 808 nm at 5 J/cm2 is 7.5 p.J/cm2 which is 1.7 Einstein; 1060 nm at 6.5 J/cm2 is also 7.5 p.J/cm2 which is 1.7 Einstein. | Subheading 4.6[104,105,196] | |
aPDT | 0.01% methylene blue and its derivative, 0.01% phenothiazine chloride were the reported photosensitisers. | [120,209] | ||
Oral and dental assessment pathways |
| Table 7 and Table 15 | ||
Diagnostic criteria/assessment tools for preventive and therapeutic approaches |
| Subheadings 1.3.3., 1.3.1. and 4.3.2; Table 8; and [47,89,210] | ||
CT | treatment protocol increase MRONJ incidence. Medication type and dose; | Subheadings 1.2. 1.1.1 and 1.4.2; and [38] | ||
Comorbidity/primary lesion evaluation | Validated Adult Comorbidity Evaluation (ACE) | Results section and Table 2 and Table 14 | ||
Endpoints | Quantifiable and clinically relevant. | Subheadings 2.2 and 2.7, Table 14 and [89] | ||
Response assessment criteria | Complete healing time; lesion response criteria: resolved; recurrence; stable; complete healing; VAS for pain; Wound-healing grades for mucosal healing | [89] | ||
Follow-up timepoint | 1/12; 3/12; 6/12; 12/12; 18/12; 24/12 for both therapeutic and preventive approaches for both oncology and non-oncology cohorts. The authors advise the follow-up period to be up to 4 years in advanced MRONJ (stage III) and in oncology cases. MDT needs is the decision maker | Table 4 and Table 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanna, R.; Miron, I.C.; Dalvi, S.; Arany, P.; Bensadoun, R.J.; Benedicenti, S. A Systematic Review of Laser Photobiomodulation Dosimetry and Treatment Protocols in the Management of Medications-Related Osteonecrosis of the Jaws: A Rationalised Consensus for Future Randomised Controlled Clinical Trials. Pharmaceuticals 2024, 17, 1011. https://doi.org/10.3390/ph17081011
Hanna R, Miron IC, Dalvi S, Arany P, Bensadoun RJ, Benedicenti S. A Systematic Review of Laser Photobiomodulation Dosimetry and Treatment Protocols in the Management of Medications-Related Osteonecrosis of the Jaws: A Rationalised Consensus for Future Randomised Controlled Clinical Trials. Pharmaceuticals. 2024; 17(8):1011. https://doi.org/10.3390/ph17081011
Chicago/Turabian StyleHanna, Reem, Ioana Cristina Miron, Snehal Dalvi, Praveen Arany, René Jean Bensadoun, and Stefano Benedicenti. 2024. "A Systematic Review of Laser Photobiomodulation Dosimetry and Treatment Protocols in the Management of Medications-Related Osteonecrosis of the Jaws: A Rationalised Consensus for Future Randomised Controlled Clinical Trials" Pharmaceuticals 17, no. 8: 1011. https://doi.org/10.3390/ph17081011
APA StyleHanna, R., Miron, I. C., Dalvi, S., Arany, P., Bensadoun, R. J., & Benedicenti, S. (2024). A Systematic Review of Laser Photobiomodulation Dosimetry and Treatment Protocols in the Management of Medications-Related Osteonecrosis of the Jaws: A Rationalised Consensus for Future Randomised Controlled Clinical Trials. Pharmaceuticals, 17(8), 1011. https://doi.org/10.3390/ph17081011