Survey of Potential Drug Interactions, Use of Non-Medical Health Products, and Immunization Status among Patients Receiving Targeted Therapies
Abstract
:1. Introduction
2. Results
2.1. Medication Therapy and Drug Interactions in 2018/2019
2.2. Medication Therapy and Drug Interactions in 2022
2.3. Supplement Use
2.4. Immunization Status
2.5. Statistical Analysis
3. Discussion
Strengths and Limitations
4. Materials and Methods
4.1. Study Design
4.2. Data Collection
4.3. Polypharmacy and Potential Drug–Drug Interactions
4.4. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sultana, J.; Cutroneo, P.; Trifirò, G. Clinical and economic burden of adverse drug reactions. J. Pharmacol. Pharmacother. 2013, 4 (Suppl. S1), S73–S77. [Google Scholar] [CrossRef]
- Kjeldsen, L.J.; Nielsen, T.R.H.; Olesen, C. Investigating the Relative Significance of Drug-Related Problem Categories. Pharmacy 2017, 5, 31. [Google Scholar] [CrossRef]
- Zheng, W.Y.; Richardson, L.C.; Li, L.; Day, R.O.; Westbrook, J.I.; Baysari, M.T. Drug-drug interactions and their harmful effects in hospitalized patients: A systematic review and meta-analysis. Eur. J. Clin. Pharmacol. 2018, 74, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Garin, N.; Sole, N.; Lucas, B.; Matas, L.; Moras, D.; Rodrigo-Troyano, A.; Gras-Martin, L.; Fonts, N. Drug related problems in clinical practice: A cross-sectional study on their prevalence, risk factors and associated pharmaceutical interventions. Sci. Rep. 2021, 11, 883. [Google Scholar] [CrossRef] [PubMed]
- Pharmaceutical Care Network Europe Foundation. Classification for Drug Related Problems: PCNE Classification for Drug-Related Problems V9.1 PCNE. 2020. Available online: https://www.pcne.org/upload/files/417_PCNE_classification_V9-1_final.pdf (accessed on 21 July 2023).
- Lainer, M.; Mann, E.; Sönnichsen, A. Information technology interventions to improve medication safety in primary care: A systematic review. Int. J. Qual. Health Care 2013, 25, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Leng, J.; Liu, Y. Deep learning for drug-drug interaction extraction from the literature: A review. Brief. Bioinform. 2020, 21, 1609–1627. [Google Scholar] [CrossRef]
- Guthrie, B.; Makubate, B.; Hernandez-Santiago, V.; Dreischulte, T. The rising tide of polypharmacy and drug-drug interactions: Population database analysis 1995–2010. BMC Med. 2017, 13, 74. [Google Scholar] [CrossRef]
- Akbar, Z.; Rehman, S.; Khan, A.; Atif, M.; Ahmad, N. Potential drug-drug interactions in patients with cardiovascular diseases: Findings from a prospective observational study. J. Pharm. Policy Pract. 2021, 14, 63. [Google Scholar] [CrossRef]
- Khaled, A.; Almaghaslah, D.; Nagib, R.; Makki, S.; Siddiqua, A. Detection and analysis of potential drug-drug interactions among patients admitted to the cardiac care unit in a tertiary care hospital. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 737–743. [Google Scholar] [CrossRef]
- Ismail, M.; Khan, S.; Khan, F.; Noor, S.; Sajid, H.; Yar, S.; Rasheed, I. Prevalence and significance of potential drug-drug interactions among cancer patients receiving chemotherapy. BMC Cancer 2020, 20, 335. [Google Scholar] [CrossRef]
- Krähenbühl-Melcher, A.; Schlienger, R.; Lampert, M.; Haschke, M.; Drewe, J.; Krähenbühl, S. Drug-related problems in hospitals. Drug Saf. 2007, 30, 379–407. [Google Scholar] [CrossRef] [PubMed]
- Spanakis, M.; Ioannou, P.; Tzalis, S.; Papakosta, V.; Patelarou, E.; Tzanakis, N.; Patelarou, A.; Kofteridis, D.P. Drug-Drug Interactions among Patients Hospitalized with COVID-19 in Greece. J. Clin. Med. 2022, 11, 7172. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Iqbal, Z.; Khattak, M.B.; Javaid, A.; Khan, M.I.; Asim, S.M. Potential drug-drug interactions in the psychiatric ward of a tertiary care hospital: Prevalence, levels, and association with risk factors. Trop. J. Pharm. Res. 2012, 11, 289–296. [Google Scholar] [CrossRef]
- Sunny, S.; Prabhu, S.; Chand, S.; Nandakumar, U.; Chacko, C.S.; Joel, J.J. Assessment of drug-drug interactions among patients with psychiatric disorders: A clinical pharmacist-led study. Clin. Epidemiol. Glob. Health 2022, 13, 100930. [Google Scholar] [CrossRef]
- Dechanont, S.; Maphanta, S.; Butthum, B.; Kongkaew, C. Hospital admissions/visits associated with drug-drug interactions: A systematic review and meta-analysis. Pharmacoepidemiol. Drug Saf. 2014, 23, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Miranda, V.; Fede, A.; Nobuo, M.; Ayres, V.; Giglio, A.; Miranda, M.; Riechelmann, R.P. Adverse drug reactions and drug interactions as causes of hospital admission in oncology. J. Pain Symptom Manag. 2011, 42, 342–353. [Google Scholar] [CrossRef] [PubMed]
- Kovačević, M.; Vezmar Kovačević, S.; Radovanović, S.; Stevanović, P.; Miljković, B. Adverse drug reactions caused by drug–drug interactions in cardiovascular disease patients: Introduction of a simple prediction tool using electronic screening database items. Curr. Med. Res. Opin. 2019, 35, 1873–1883. [Google Scholar] [CrossRef] [PubMed]
- Reinhild Haerig, T.; Krause, D.; Klaassen-Mielke, R.; Rudolf, H.; Trampisch, H.J.; Thuermann, P. Potentially inappropriate medication including drug-drug interaction and the risk of frequent falling, hospital admission, and death in older adults—Results of a large cohort study (getABI). Front. Pharmacol. 2023, 14, 1062290. [Google Scholar] [CrossRef] [PubMed]
- Aronson, J.K. Classifying drug interactions. Br. J. Clin. Pharmacol. 2004, 58, 343–344. [Google Scholar] [CrossRef]
- Bushra, R.; Aslam, N.; Khan, A.Y. Food-drug interactions. Oman Med. J. 2011, 26, 77–83. [Google Scholar] [CrossRef]
- Lucas, C.; Martin, J. Smoking and drug interactions. Aust. Prescr. 2013, 36, 102–104. [Google Scholar] [CrossRef]
- Murphy, J.E.; Lee, M.W.L. American College of Clinical Pharmacy Pharmacotherapy Self-Assessment Program Book 3: Chronic Conditions and Public Health. In Chapter Drug Interactions: Scientific and Clinical Principles; ACCP: Lenexa, KS, USA, 2021; pp. 8–27. [Google Scholar]
- Becker, D.E. Adverse drug interactions. Anesth. Prog. 2011, 58, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Gerber, W.; Steyn, J.D.; Kotzé, A.F.; Hamman, J.H. Beneficial Pharmacokinetic Drug Interactions: A Tool to Improve the Bioavailability of Poorly Permeable Drugs. Pharmaceutics 2018, 10, 106. [Google Scholar] [CrossRef] [PubMed]
- Pflugbeil, S.; Böckl, K.; Pongratz, R.; Leitner, M.; Graninger, W.; Ortner, A. Drug interactions in the treatment of rheumatoid arthritis and psoriatic arthritis. Rheumatol. Int. 2020, 40, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Végh, A.; Lankó, E.; Fittler, A.; Vida, R.G.; Miseta, I.; Takács, G.; Botz, L. Identification and evaluation of drug-supplement interactions in Hungarian hospital patients. Int. J. Clin. Pharm. 2014, 36, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Ábrahám, E.; Somogyi-Végh, A.; Osváth, P.; Fekete, S.; Rávai, A.; Botz, L. INT-006 Investigation and identification of drug supplement interactions in a population with unipolar depression. Eur. J. Hosp. Pharm. 2017, 24, A175–A177. [Google Scholar]
- Somogyi-Végh, A.; Nyaka, B.; Vida, R.G.; Lovász, A.; Botz, L. Gyógyszerkölcsönhatások kiszűrésére szolgáló adatbázisok értékelése: Ellentmondások és egyezőségek [Comprehensive evaluation of drug interaction screening programs: Discrepancies and concordances]. Orv. Hetil. 2015, 156, 720–730. [Google Scholar] [CrossRef]
- Kheshti, R.; Aalipour, M.; Namazi, S. A comparison of five common drug-drug interaction software programs regarding accuracy and comprehensiveness. J. Res. Pharm. Pract. 2016, 5, 257–263. [Google Scholar] [CrossRef]
- Hecker, M.; Frahm, N.; Bachmann, P.; Debus, J.L.; Haker, M.C.; Mashhadiakbar, P.; Langhorst, S.E.; Baldt, J.; Streckenbach, B.; Heidler, F.; et al. Screening for severe drug-drug interactions in patients with multiple sclerosis: A comparison of three drug interaction databases. Front. Pharmacol. 2022, 13, 946351. [Google Scholar] [CrossRef]
- Souza-Peres, J.V.; Flores, K.; Umloff, B.; Heinan, M.; Herscu, P.; Babos, M.B. Everyday Evaluation of Herb/Dietary Supplement-Drug Interaction: A Pilot Study. Medicines 2023, 10, 20. [Google Scholar] [CrossRef]
- Inotai, A.; Csanádi, M.; Harsányi, A.; Németh, B. Drug Policy in Hungary. Value Health Reg. Issues 2017, 13, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Decree No. 9/1993. (IV. 2.) NM of the Minister of Welfare on the Social Insurance Financing of Specialist Services. 2024. Available online: https://net.jogtar.hu/jogszabaly?docid=99300009.nm (accessed on 21 July 2023).
- Yang, V.; Kragstrup, T.W.; McMaster, C.; Reid, P.; Singh, N.; Haysen, S.R.; Robinson, P.C.; Liew, D.F.L. Managing Cardiovascular and Cancer Risk Associated with JAK Inhibitors. Drug Saf. 2023, 46, 1049–1071. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Wu, J.J.; Levin, E.; Koo, J.Y.; Liao, W. Possible drug-drug interaction between adalimumab and duloxetine and/or pregabalin in a psoriasis patient. J. Drugs Dermatol. 2013, 12, 1089. [Google Scholar] [PubMed]
- Pfeifer, E.C.; Saxon, D.R.; Janson, R.W. Etanercept-Induced Hypoglycemia in a Patient with Psoriatic Arthritis and Diabetes. J. Investig. Med. High Impact Case Rep. 2017, 5, 2324709617727760. [Google Scholar] [CrossRef] [PubMed]
- Bacic-Vrca, V.; Marusic, S.; Erdeljic, V.; Falamic, S.; Gojo-Tomic, N.; Rahelic, D. The incidence of potential drug-drug interactions in elderly patients with arterial hypertension. Pharm. World Sci. 2010, 32, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Zerah, L.; Henrard, S.; Wilting, I.; O’Mahony, D.; Rodondi, N.; Dalleur, O.; Dalton, K.; Knol, W.; Haschke, M.; Spinewine, A. Prevalence of drug-drug interactions in older people before and after hospital admission: Analysis from the OPERAM trial. BMC Geriatr. 2021, 21, 571. [Google Scholar] [CrossRef]
- Rasool, M.F.; Rehman, A.U.; Khan, I.; Latif, M.; Ahmad, I.; Shakeel, S.; Sadiq, M.; Hayat, K.; Shah, S.; Ashraf, W.; et al. Assessment of risk factors associated with potential drug-drug interactions among patients suffering from chronic disorders. PLoS ONE 2023, 18, e0276277. [Google Scholar] [CrossRef] [PubMed]
- Leal Rodríguez, C.; Kaas-Hansen, B.S.; Eriksson, R.; Biel, J.H.; Belling, K.G.; Andersen, S.E.; Brunak, S. Drug interactions in hospital prescriptions in Denmark: Prevalence and associations with adverse outcomes. Pharmacoepidemiol. Drug Saf. 2022, 31, 632–642. [Google Scholar] [CrossRef]
- Bagatini, F.; Blatt, C.R.; Maliska, G.; Trespash, G.V.; Pereira, I.A.; Zimmermann, A.F.; Storb, B.H.; Farias, M.R. Potential drug interactions in patients with rheumatoid arthritis. Rev. Bras. Reumatol. 2011, 51, 20–39. [Google Scholar] [PubMed]
- Ma, S.N.; Zaman Huri, H.; Yahya, F. Drug-related problems in patients with rheumatoid arthritis. Ther. Clin. Risk Manag. 2019, 15, 505–524. [Google Scholar] [CrossRef]
- Gomides, A.P.M.; Albuquerque, C.P.; Santos, A.B.V.; Amorim, R.B.C.; Bértolo, M.B.; Júnior, P.L.; Santos, I.A.; Giorgi, R.D.; Sacilotto, N.C.; Radominski, S.C.; et al. High Levels of Polypharmacy in Rheumatoid Arthritis—A Challenge Not Covered by Current Management Recommendations: Data from a Large Real-Life Study. J. Pharm. Pract. 2021, 34, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Jack, J.D.; McCutchan, R.; Maier, S.; Schirmer, M. Polypharmacy in Middle-European Rheumatoid Arthritis-Patients: A Retrospective Longitudinal Cohort Analysis with Systematic Literature Review. Front. Med. 2020, 7, 573542. [Google Scholar] [CrossRef] [PubMed]
- Bechman, K.; Clarke, B.D.; Rutherford, A.I.; Yates, M.; Nikiphorou, E.; Molokhia, M.; Norton, S.; Cope, A.P.; Hyrich, K.L.; Galloway, J.B. Polypharmacy is associated with treatment response and serious adverse events: Results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis. Rheumatology 2019, 58, 1767–1776. [Google Scholar] [CrossRef] [PubMed]
- Janchawee, B.; Wongpoowarak, W.; Owatranporn, T.; Chongsuvivatwong, V. Pharmacoepidemiologic study of potential drug interactions in outpatients of a university hospital in Thailand. J. Clin. Pharm. Ther. 2005, 30, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, H.; Hasanloei, M.A.; Mahmoudi, J. Polypharmacy-induced drug-drug interactions; threats to patient safety. Drug Res. 2014, 64, 633–637. [Google Scholar] [CrossRef] [PubMed]
- Lim, L.M.; McStea, M.; Chung, W.W.; Nor Azmi, N.; Abdul Aziz, S.A.; Alwi, S.; Kamarulzaman, A.; Kamaruzzaman, S.B.; Chua, S.S.; Rajasuriar, R. Prevalence, risk factors and health outcomes associated with polypharmacy among urban community-dwelling older adults in multi-ethnic Malaysia. PLoS ONE 2017, 12, e0173466. [Google Scholar] [CrossRef] [PubMed]
- Santos-Díaz, G.; Pérez-Pico, A.M.; Suárez-Santisteban, M.Á.; García-Bernalt, V.; Mayordomo, R.; Dorado, P. Prevalence of Potential Drug-Drug Interaction Risk among Chronic Kidney Disease Patients in a Spanish Hospital. Pharmaceutics 2020, 12, 713. [Google Scholar] [CrossRef]
- De Vincentis, A.; Gallo, P.; Finamore, P.; Pedone, C.; Costanzo, L.; Pasina, L.; Cortesi, L.; Nobili, A.; Mannucci, P.M.; Antonelli Incalzi, R. Potentially Inappropriate Medications, Drug-Drug Interactions, and Anticholinergic Burden in Elderly Hospitalized Patients: Does an Association Exist with Post-Discharge Health Outcomes? Drugs Aging 2020, 37, 585–593. [Google Scholar] [CrossRef]
- Zhou, H.; Sharma, A. Therapeutic protein-drug interactions: Plausible mechanisms and assessment strategies. Expert Opin. Drug Metab. Toxicol. 2016, 12, 1323–1331. [Google Scholar] [CrossRef]
- Serra López-Matencio, J.M.; Martínez Nieto, C.; Morell Baladrón, A.; Castañeda, S. Drug Interactions of Monoclonal Antibodies-Clinical Perspective. J. Immunol. Sci. 2018, 2, 4–7. [Google Scholar]
- Chen, K.F.; Jones, H.M.; Gill, K.L. Physiologically Based Pharmacokinetic Modeling to Predict Drug-Biologic Interactions with Cytokine Modulators: Are These Relevant and Is Interleukin-6 Enough? Drug Metab. Dispos. 2022, 50, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Armanious, M.; Vender, R. A Review of Drug-Drug Interactions for Biologic Drugs Used in the Treatment of Psoriasis. J. Cutan. Med. Surg. 2021, 25, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Calin, A.; Dijkmans, B.A.; Emery, P.; Hakala, M.; Kalden, J.; Leirisalo-Repo, M.; Mola, E.M.; Salvarani, C.; Sanmartí, R.; Sany, J.; et al. Outcomes of a multicentre randomised clinical trial of etanercept to treat ankylosing spondylitis. Ann. Rheum. Dis. 2004, 63, 1594–1600. [Google Scholar] [CrossRef]
- Van De Sijpe, G.; Quintens, C.; Walgraeve, K.; Van Laer, E.; Penny, J.; De Vlieger, G.; Schrijvers, R.; De Munter, P.; Foulon, V.; Casteels, M.; et al. Overall performance of a drug-drug interaction clinical decision support system: Quantitative evaluation and end-user survey. BMC Med. Inform. Decis. Mak. 2022, 22, 48. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.S.; Lim, K.N.; Anwar, M.; Sathvik, B.S.; Ahmadi, K.; Yuan, A.W.; Kamarunnesa, M.A. Impact of pharmacists’ intervention on identification and management of drug-drug interactions in an intensive care setting. Singapore Med. J. 2012, 53, 526–531. [Google Scholar] [PubMed]
- Zaal, R.J.; Jansen, M.M.; Duisenberg-van Essenberg, M.; Tijssen, C.C.; Roukema, J.A.; van den Bemt, P.M. Identification of drug-related problems by a clinical pharmacist in addition to computerized alerts. Int. J. Clin. Pharm. 2013, 35, 753–762. [Google Scholar] [CrossRef]
- Efthimiou, P.; Kukar, M.; Mackenzie, C.R. Complementary and alternative medicine in rheumatoid arthritis: No longer the last resort! HSS J. 2010, 6, 108–111. [Google Scholar] [CrossRef]
- National Institute of Pharmacy and Nutrition. Authorized Medicine Database. 2024. Available online: https://ogyei.gov.hu/drug_database (accessed on 21 July 2023).
- Baig, S.; DiRenzo, D.D. Complementary and Alternative Medicine Use in Rheumatoid Arthritis. Curr. Rheumatol. Rep. 2020, 22, 61. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.W.; Chee, S.X.; Wong, W.J.; He, Q.L.; Lau, T.C. Traditional Chinese medicine: Herb-drug interactions with aspirin. Singap. Med. J. 2018, 59, 230–239. [Google Scholar] [CrossRef]
- Zhuang, W.; He, T.; Jia, B.-B.; Wang, Z.-Z.; Zhang, L.; Dong, X.-Z.; Xi, S.-Y. Interaction between Chinese medicine and digoxin: Clinical and research update. Front. Pharmacol. 2023, 14, 1040778. [Google Scholar] [CrossRef]
- Ye, L.; Fan, S.; Zhao, P.; Wu, C.; Liu, M.; Hu, S.; Wang, P.; Wang, H.; Bi, H. Potential herb-drug interactions between anti-COVID-19 drugs and traditional chinese medicine. Acta Pharm. Sin. B 2023, 13, 3598–3637. [Google Scholar] [CrossRef]
- DeSalvo, J.C.; Skiba, M.B.; Howe, C.L.; Haiber, K.E.; Funk, J.L. Natural Product Dietary Supplement Use by Individuals with Rheumatoid Arthritis: A Scoping Review. Arthritis Care Res. 2019, 71, 787–797. [Google Scholar] [CrossRef]
- Skiba, M.B.; Hopkins, L.L.; Hopkins, A.L.; Billheimer, D.; Funk, J.L. Nonvitamin, Nonmineral Dietary Supplement Use in Individuals with Rheumatoid Arthritis. J. Nutr. 2020, 150, 2451–2459. [Google Scholar] [CrossRef] [PubMed]
- Lippert, A.; Renner, B. Herb-Drug Interaction in Inflammatory Diseases: Review of Phytomedicine and Herbal Supplements. J. Clin. Med. 2022, 11, 1567. [Google Scholar] [CrossRef]
- Fekete, M.; Pako, J.; Nemeth, A.N.; Tarantini, S.; Varga, J.T. Prevalence of influenza and pneumococcal vaccination in chronic obstructive pulmonary disease patients in association with the occurrence of acute exacerbations. J. Thorac. Dis. 2020, 12, 4233–4242. [Google Scholar] [CrossRef]
- Sandler, D.S.; Ruderman, E.M.; Brown, T.; Lee, J.Y.; Mixon, A.; Liss, D.T.; Baker, D.W. Understanding vaccination rates and attitudes among patients with rheumatoid arthritis. Am. J. Manag. Care 2016, 22, 161–167. [Google Scholar] [PubMed]
- Costello, R.; Winthrop, K.L.; Pye, S.R.; Brown, B.; Dixon, W.G. Influenza and Pneumococcal Vaccination Uptake in Patients with Rheumatoid Arthritis Treated with Immunosuppressive Therapy in the UK: A Retrospective Cohort Study Using Data from the Clinical Practice Research Datalink. PLoS ONE 2016, 11, e0153848. [Google Scholar] [CrossRef] [PubMed]
- Aberumand, B.; Dyck, B.A.; Towheed, T. Identifying perceptions and barriers regarding vaccination in patients with rheumatoid arthritis: A Canadian perspective. Int. J. Rheum. Dis. 2020, 23, 1526–1533. [Google Scholar] [CrossRef] [PubMed]
- Krasselt, M.; Wagner, U.; Seifert, O. Influenza, Pneumococcal and Herpes Zoster Vaccination Rates in Patients with Autoimmune Inflammatory Rheumatic Diseases. Vaccines 2023, 11, 760. [Google Scholar] [CrossRef]
- Thomas, K.; Lazarini, A.; Kaltsonoudis, E.; Voulgari, P.V.; Drosos, A.A.; Repa, A.; Sali, A.M.I.; Sidiropoulos, P.; Tsatsani, P.; Gazi, S.; et al. Patterns and factors associated with pneumococcal vaccination in a prospective cohort of 1,697 patients with rheumatoid arthritis. Front. Med. 2023, 9, 1039464. [Google Scholar] [CrossRef]
- Saedder, E.A.; Lisby, M.; Nielsen, L.P.; Bonnerup, D.K.; Brock, B. Number of drugs most frequently found to be independent risk factors for serious adverse reactions: A systematic literature review. Br. J. Clin. Pharmacol. 2015, 80, 808–817. [Google Scholar] [CrossRef] [PubMed]
- Masnoon, N.; Shakib, S.; Kalisch-Ellett, L.; Caughey, G.E. What is polypharmacy? A systematic review of definitions. BMC Geriatr. 2017, 17, 230. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, K.D.; Hvarchanova, N.; Stoychev, E.; Kanazirev, B. Prevalence of polypharmacy and risk of potential drug-drug interactions among hospitalized patients with emphasis on the pharmacokinetics. Sci. Prog. 2022, 105, 368504211070183. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen, R.W.; Brundel, D.H.; Neef, C.; van Gelder, T.; Mathijssen, R.H.; Burger, D.M.; Jansman, F.G. Prevalence of potential drug-drug interactions in cancer patients treated with oral anticancer drugs. Br. J. Cancer 2013, 108, 1071–1078. [Google Scholar] [CrossRef]
- UpToDate Lexicomp. Available online: https://www.uptodate.com/contents/table-of-contents/drug-information (accessed on 6 June 2024).
- Medscape’s Drug Interaction Checker. Available online: https://reference.medscape.com/drug-interactionchecker (accessed on 6 June 2024).
- Drugs.com. Available online: https://www.drugs.com/drug_interactions.html (accessed on 6 June 2024).
- Davis, J.S.; Ferreira, D.; Paige, E.; Gedye, C.; Boyle, M. Infectious Complications of Biological and Small Molecule Targeted Immunomodulatory Therapies. Clin. Microbiol. Rev. 2020, 33, e00035-19. [Google Scholar] [CrossRef]
2018–2019 (N = 100) | 2022 (N = 85) | Total (N = 185) | p-Value | |
---|---|---|---|---|
Sex (N, %) | p = 0.366 | |||
male | 43 | 31 | 74 (40.0%) | |
female | 57 | 54 | 111 (60.0%) | |
Age groups (N, %) | p = 0.417 | |||
<20 | 1 | 1 | 2 (1.1%) | |
20–29 | 3 | 3 | 6 (3.2%) | |
30–39 | 7 | 6 | 13 (7.0%) | |
40–49 | 19 | 13 | 32 (17.3%) | |
50–59 | 33 | 16 | 49 (26.5%) | |
60–69 | 23 | 27 | 50 (27.0%) | |
70–79 | 13 | 17 | 30 (16.2%) | |
≥80 | 1 | 2 | 3 (1.6%) | |
Clinic | p < 0.001 | |||
Dermatology | 31 | 0 | 31 (16.8%) | |
Rheumatology and immunology | 69 | 85 | 154 (83.2%) | |
Smoker (N, %) | 25 (25%) | 19 (22.4%) | 44 (23.8%) | p = 0.673 |
Medicinal products used (mean ± SD, range) | ||||
Prescribed medications | 6.02 ± 4.28 (0–22) | 6.86 ± 4.89 (1–23) | 6.41 ± 4.59 (0–23) | |
OTC medicines | 1.40 ± 1.35 (0–5) | 0.99 ± 0.96 (0–4) | 1.21 ± 1.22 (0–5) | |
Supplementary products | 0.52 ± 1.04 (0–6) | 2.41 ± 1.42 (0–7) | 1.39 ± 1.54 (0–7) | |
Polypharmacy (N, %) | 57 (57.0%) | 69 (81.2%) | 126 (68.1%) | p < 0.001 |
Diagnosis (n) | p < 0.001 | |||
Rheumatoid arthritis | 39 | 48 | 87 (47.0%) | |
Psoriasis vulgaris | 28 | 0 | 28 (15.1%) | |
Ankylosing spondylitis | 21 | 17 | 38 (20.5%) | |
Psoriatic arthritis | 6 | 14 | 20 (10.8%) | |
Other | 6 | 6 | 12 (6.5%) | |
Therapeutic change in the targeted therapy (%) | 40% | 65.9% | ||
Immunization (N, %) | ||||
Influenza vaccine | 28 (28%) | 34 (44.7%) | 62 (33.5%) | p = 0.085 |
Pneumococcus vaccine | 0 (0%) | 8 (9.4%) | 8 (4.3%) | p < 0.001 |
COVID-19 vaccine | N/A | 75 (88.2%) | N/A | - |
2018–2019 | Name | Frequency (n = 164) | 2022 | Name | Frequency (n = 198) | ||
---|---|---|---|---|---|---|---|
1 | Vitamin D | 33 | 20.1% | 1 | Vitamin D | 61 | 30.8% |
2 | Vitamin D with calcium | 17 | 10.4% | 2 | Vitamin C | 38 | 19.2% |
3 | Vitamin C | 17 | 10.4% | 3 | Calcium | 25 | 12.6% |
4 | Calcium | 12 | 7.3% | 4 | Magnesium and vitamin B6 | 11 | 5.6% |
5 | Magnesium | 10 | 6.1% | 5 | Multivitamin | 10 | 5.1% |
6 | Multivitamin | 10 | 6.1% | 6 | Magnesium | 7 | 3.5% |
7 | Magnesium and vitamin B6 | 7 | 4.3% | 7 | Nettle | 6 | 3.0% |
8 | Matricaria chamomilla | 5 | 3.1% | 8 | Fish oil | 5 | 2.5% |
9 | Fish oil | 5 | 3.1% | 9 | Vitamin B complex | 4 | 2.0% |
10 | Vitamin B complex | 4 | 2.4% | 10 | Milk thistle | 3 | 1.5% |
11 | Aloe vera | 2 | 1.2% | 11 | Vitamin D with calcium | 3 | 1.5% |
12 | Vitamin B1 | 2 | 1.2% | 12 | Béres drops | 2 | 1.0% |
13 | Vitamin B6 | 2 | 1.2% | 13 | Collagen | 2 | 1.0% |
14 | Milk thistle | 2 | 1.2% | 14 | Iron | 2 | 1.0% |
15 | Mentha sp. | 2 | 1.2% | 15 | Vitamin B12 | 2 | 1.0% |
16 | Lemon balm | 2 | 1.2% | 16 | Vitamin E | 2 | 1.0% |
17 | Nettle | 2 | 1.2% | 17 | Calcium and magnesium | 1 | 0.5% |
18 | Probiotics | 2 | 1.2% | 18 | Coenzyme Q10 | 1 | 0.5% |
19 | Vitamin A | 1 | 0.6% | 19 | Cranberry | 1 | 0.5% |
20 | Béres drops | 1 | 0.6% | 20 | Curcuma | 1 | 0.5% |
21 | Cabbage | 1 | 0.6% | 21 | Echinacea sp. | 1 | 0.5% |
22 | Willowherb | 1 | 0.6% | 22 | Enteral nutrition | 1 | 0.5% |
23 | Chlorophyll | 1 | 0.6% | 23 | Ginger | 1 | 0.5% |
24 | Bearberry | 1 | 0.6% | 24 | Green tea | 1 | 0.5% |
25 | Sea thorn | 1 | 0.6% | 25 | Iodine | 1 | 0.5% |
26 | Common yarrow | 1 | 0.6% | 26 | Laxative species | 1 | 0.5% |
27 | Rosehip | 1 | 0.6% | 27 | Oenothera biennis oil | 1 | 0.5% |
28 | Common walnut leaves | 1 | 0.6% | 28 | Vitamin B1 | 1 | 0.5% |
29 | Folic acid | 1 | 0.6% | 29 | Vitamin B6 | 1 | 0.5% |
30 | Garlic | 1 | 0.6% | 30 | Vitamin D with vitamin C | 1 | 0.5% |
31 | Ginger | 1 | 0.6% | ||||
32 | Gingko biloba | 1 | 0.6% | ||||
33 | Curcuma | 1 | 0.6% | ||||
34 | Iron | 1 | 0.6% | ||||
35 | Green tea | 1 | 0.6% | ||||
36 | Sage | 1 | 0.6% | ||||
37 | Hypericum perforatum | 1 | 0.6% |
Outcome (Effect/Dependent Variable) | Measured Parameter (Cause/Independent Variable) | Odd Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|---|
Severe pDDI | Elderly (>60 years) | 1.901 | 1.022–3.537 | 0.041 |
Gender (female) | 3.129 | 1.674–5.849 | <0.001 | |
Polypharmacy | 10.500 | 5.122–21.532 | <0.001 | |
Dietary supplement use | 1.532 | 0.835–2.810 | 0.167 | |
Dietary supplement interaction | Elderly (>60 years) | 3.173 | 1.732–5.813 | <0.001 |
Gender (female) | 2.651 | 1.444–4.865 | <0.001 | |
Polypharmacy | 11.518 | 5.167–25.674 | <0.001 | |
Dietary supplement use | 5.175 | 2.746–9.752 | <0.001 | |
Targeted drug interaction | Elderly (>60 years) | 2.062 | 1.121–3.794 | 0.019 |
Gender (female) | 3.387 | 1.823–6.292 | <0.001 | |
Polypharmacy | 5.276 | 2.717–10.284 | <0.001 | |
Dietary supplement use | 1.251 | 0.690–2.266 | 0.460 |
Outcome (Effect/Dependent Variable) | Measured Parameter (Cause/Independent Variable) | Odd Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|---|
Severe pDDI | Elderly (>60 years) | 1419 | 0.691–2.912 | 0.339 |
Gender (female) | 2.777 | 1.340–5.757 | 0.005 | |
Polypharmacy | 6.291 | 2.719–14.554 | <0.001 | |
Dietary supplement use | 1.545 | 0.757–3.156 | 0.231 | |
Dietary supplement interaction | Elderly (>60 years) | 2.467 | 1.277–4.766 | 0.007 |
Gender (female) | 2.267 | 1.163–4.420 | 0.015 | |
Polypharmacy | 21.368 | 6.129–74.502 | <0.001 | |
Dietary supplement use | 5.294 | 2.642–10.607 | <0.001 | |
Targeted drug interaction | Elderly (>60 years) | 1.642 | 0.815–3.304 | 0.163 |
Gender (female) | 3.035 | 1.491–6.178 | 0.002 | |
Polypharmacy | 2.482 | 1.112–3.674 | 0.024 | |
Dietary supplement use | 1.310 | 0.656–2.641 | 0.444 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajj, R.; Schaadt, N.; Bezsila, K.; Balázs, O.; Jancsó, M.B.; Auer, M.; Kiss, D.B.; Fittler, A.; Somogyi-Végh, A.; Télessy, I.G.; et al. Survey of Potential Drug Interactions, Use of Non-Medical Health Products, and Immunization Status among Patients Receiving Targeted Therapies. Pharmaceuticals 2024, 17, 942. https://doi.org/10.3390/ph17070942
Rajj R, Schaadt N, Bezsila K, Balázs O, Jancsó MB, Auer M, Kiss DB, Fittler A, Somogyi-Végh A, Télessy IG, et al. Survey of Potential Drug Interactions, Use of Non-Medical Health Products, and Immunization Status among Patients Receiving Targeted Therapies. Pharmaceuticals. 2024; 17(7):942. https://doi.org/10.3390/ph17070942
Chicago/Turabian StyleRajj, Réka, Nóra Schaadt, Katalin Bezsila, Orsolya Balázs, Marcell B. Jancsó, Milán Auer, Dániel B. Kiss, András Fittler, Anna Somogyi-Végh, István G. Télessy, and et al. 2024. "Survey of Potential Drug Interactions, Use of Non-Medical Health Products, and Immunization Status among Patients Receiving Targeted Therapies" Pharmaceuticals 17, no. 7: 942. https://doi.org/10.3390/ph17070942
APA StyleRajj, R., Schaadt, N., Bezsila, K., Balázs, O., Jancsó, M. B., Auer, M., Kiss, D. B., Fittler, A., Somogyi-Végh, A., Télessy, I. G., Botz, L., & Vida, R. G. (2024). Survey of Potential Drug Interactions, Use of Non-Medical Health Products, and Immunization Status among Patients Receiving Targeted Therapies. Pharmaceuticals, 17(7), 942. https://doi.org/10.3390/ph17070942