Unraveling the Potential of Saccharum officinarum and Chlorella vulgaris towards 5-Fluorouracil-Induced Nephrotoxicity in Rats
Abstract
:1. Introduction
2. Results
2.1. Body Weight and Relative Organ Weight
2.2. Blood Measurements
2.3. Kidney Function
2.4. Kidney Oxidant and Antioxidant Parameters
2.5. Gene Expression
2.6. Histopathological Examination
3. Discussion
4. Materials and Methods
4.1. Studied Materials
4.1.1. 5-Fluorouracil
4.1.2. Saccharum officinarum L. (SOL) and Chlorella vulgaris (VL)
4.2. Rats and Trial Design
4.3. Sampling
4.4. Absolute and Relative Body and Organ Weights
4.5. Hematological Analysis
4.6. Biochemical Assay
4.7. Oxidant/Antioxidant Biomarkers in Tissue Homogenate
4.8. Inflammation and Kidney Injury Marker Genes (Quantitative RT-PCR)
4.9. Histopathological Examination
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adikwu, E.; Ebinyo, N.; Amgbare, B. Protective activity of selenium against 5-fluorouracil-induced nephrotoxicity in rats. Cancer Trans. Med. 2019, 5, 50–55. [Google Scholar] [CrossRef]
- Vodenkova, S.; Buchler, T.; Cervena, K.; Veskrnova, V.; Vodička, P.; Vymetalkova, V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol. Ther. 2020, 206, 107447. [Google Scholar] [CrossRef] [PubMed]
- Azwar, S.; Seow, H.F.; Abdullah, M.; Jabar, M.F.; Mohtarrudin, N. Recent updates on mechanisms of resistance to 5-fluorouracil and reversal strategies in colon cancer treatment. Biology 2021, 10, 854. [Google Scholar] [CrossRef] [PubMed]
- Casale, J.; Patel, P. Fluorouracil. National Library of Medicine. 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK549808/ (accessed on 20 September 2022).
- Chang, C.W.; Liu, C.Y.; Lee, H.C.; Huang, Y.H.; Li, L.H.; Chiau, J.C.; Wang, T.E.; Chu, C.H.; Shih, S.C.; Tsai, T.H.; et al. Lactobacillus casei Variety rhamnosus Probiotic preventively attenuates 5-fluorouracil/oxaliplatin-induced intestinal injury in a syngeneic colorectal cancer model. Front. Microbiol. 2018, 9, 342342. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, M.; Ishii, M.; Yamamoto, S.; Mori, Y.; Shimizu, S. Possible involvement of TRPM2 activation in 5-fluorouracil-induced myelosuppression in mice. Eur. J. Pharmacol. 2021, 891, 173671. [Google Scholar] [CrossRef] [PubMed]
- De Silva, M.C.; Fabiano, L.C.; Salomão, K.C.D. A Rodent Model of Human-Dose-Equivalent 5-Fluorouracil: Toxicity in the Liver, Kidneys, and Lungs. Antioxidants 2023, 12, 1005. [Google Scholar] [CrossRef]
- Sun, J.; He, X.M.; Zhao, M.M.; Li, L.; Li, C.B.; Dong, Y. Antioxidant and nitrite-scavenging capacities of phenolic compounds from sugarcane (Saccharum officinarum L.) tops. Molecules 2014, 19, 13147–13160. [Google Scholar] [CrossRef]
- Ali, S.E.; El Gedaily, R.A.; Mocan, A.; Farag, M.A.; El-Seedi, H.R. Profiling metabolites and biological activities of sugarcane (Saccharum officinarum Linn.) juice and its product molasses via a multiplex metabolomics approach. Molecules 2019, 24, 934. [Google Scholar] [CrossRef]
- Gomes, A.K.C.; Morgado, C.S.; Kuster, R.M.; Gomes, A.C.C.; Simas, N.K. Evaluation of phytotoxic activity, antioxidant and phytochemical study of Saccharum officinarum L. J. Biol. Pharm. Agric. Manag. 2021, 17, 223:250. [Google Scholar]
- Bauer, L.M.; Costa, J.A.V.; da Rosa, A.P.C.; Santos, L.O. Growth stimulation and synthesis of lipids, pigments, and antioxidants with magnetic fields in Chlorella kessleri cultivations. Bioresour. Technol. 2017, 244, 1425–1432. [Google Scholar] [CrossRef]
- Bengwayan, P.T.; Laygo, J.C.; Pacio, A.E.; Poyaoan, J.L.Z.; Rebugio, J.F.; Yuson, A.L.L. A comparative study on the antioxidant property of Chlorella (Chlorella sp.) tablet and glutathione tablet. E-Int. Sci. Res. J. 2010, 2, 25–35. [Google Scholar]
- Ru, I.T.K.; Sung, Y.K.; Jusoh, M.; Abdul Wahid, M.E.; Nagappan, T. Chlorella vulgaris: A perspective on its potential for combining high biomass with high-value bioproducts. Appl. Phycol. 2020, 1, 2–11. [Google Scholar] [CrossRef]
- Abd El Latif, A.; Assar, D.H.; Elkaw, E.M.; Hamza, H.A.; Alkhalifah, D.H.M.; Hozzein, W.N.; Hamouda, R.A. Protective role of Chlorella vulgaris with Thiamine against Paracetamol induced toxic effects on hematological, biochemical, oxidative stress parameters and histopathological changes in Wistar rats. Sci. Rep. 2021, 11, 3911. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.R.; Alagawany, M.; Mahdy, E.A.A.; El-Hady, E.; Abou-Zeid, S.M.; Mawed, S.A.; Azzam, M.M.; Crescenzo, G.; Abo-Elmaaty, A.M.A. Benefits of Chlorella vulgaris against Cadmium Chloride-Induced Hepatic and Renal Toxicities via Restoring the Cellular Redox Homeostasis and Modulating Nrf2 and NF-KB Pathways in Male Rats. Biomedicines 2023, 11, 2414. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, S.; Abd-Ellah, M.F.; Attia, S.M. Protective effect of captopril against cisplatin-induced nephrotoxicity in rats. Pak. J. Pharm. Sci. 2008, 21, 255–261. [Google Scholar] [PubMed]
- Rashid, S.; Ali, N.; Nafees, S.; Hasan, S.K.; Sultana, S. Mitigation of 5-Fluorouracil induced renal toxicity by chrysin via targeting oxidative stress and apoptosis in Wistar rats. Food Chem. Toxicol. 2014, 66, 185–193. [Google Scholar] [CrossRef] [PubMed]
- VanderVeen, B.N.; Cardaci, T.D.; McDonald, S.J.; Madero, S.S.; Unger, C.A.; Bullard, B.M.; Enos, R.T.; Velázquez, K.T.; Kubinak, J.L.; Fan, D.; et al. Obesity reduced survival with 5-fluorouracil and did not protect against chemotherapy-induced cachexia or immune cell cytotoxicity in mice. Cancer Biol. Ther. 2022, 23, 1–15. [Google Scholar] [CrossRef]
- Safarpour, S.; Safarpour, S.; Pirzadeh, M.; Moghadamnia, A.A.; Ebrahimpour, A.; Shirafkan, F.; Mansoori, R.; Kazemi, R.; Hosseini, M. Colchicine Ameliorates5-Fluorouracil-Induced Cardiotoxicity in Rats. Oxid. Med. Cell. Longev. 2022, 2022, 6194532. [Google Scholar] [CrossRef]
- Swinburn, B.A.; Caterson, I.; Seidell, J.C.; James, W.P. Diet, nutrition, and the prevention of excess weight gain and obesity. Public Health Nutr. 2004, 7, 123–146. [Google Scholar]
- Ogunwole, E.; Kunle-Alabi, O.T.; Akindele, O.O.; Raji, Y. Saccharum officinarum molasses adversely alters reproductive functions in male Wistar rats. Toxicol. Rep. 2020, 7, 345–352. [Google Scholar] [CrossRef]
- Flavel, M.; Ellis, T.P.; Stahi, L.; Begg, D.; Smythe, J.; Ilag, L.L.; Welsinger, R.S.; Kitchen, B.; Jois, M. Polyphenol-rich sugarcane extract reduces body weight in c57/bl6j mice fed a high fat, high carbohydrate diet. App. Sci. 2021, 11, 5163. [Google Scholar] [CrossRef]
- Kang, H.K.; Salim, H.M.; Akter, N.; Kim, D.W.; Kim, J.H.; Bang, H.T.; Kim, M.J.; Na, J.C.; Hwangbo, J.; Choi, H.C.; et al. Effect of various forms of dietary Chlorella supplementation on growth performance, immune characteristics, and intestinal microflora population of broiler chickens. J. Appl. Poult. Res. 2013, 22, 100–108. [Google Scholar] [CrossRef]
- Alfaia, C.; Rodrigues, M.; Coelho, D.; Aires, M.; Ribeiro, D.; Major, V.; Martins, C.; Santos, H.; Lopes, P.; Lemos, J.; et al. Influence of dietary Chlorella vulgaris and carbohydrate-active enzymes on growth performance, meat quality and lipid composition of broiler chickens. Poult. Sci. 2021, 100, 926–937. [Google Scholar] [CrossRef] [PubMed]
- Yahya, R.A.M.; Azab, A.E.; Attia, A.M.; Yehia, M.A.; Shkal, K.E. 5-Fluorouracil Ameliorates the Hematotoxicity Induced by Cyclophosphamide in Male Albino Rats. Univers. J. Pharm. Pharmacol. 2022, 1, 50–60. [Google Scholar] [CrossRef]
- Abbasi, B.; Hayat, A.; Lyons, M.; Gupta, A.; Gupta, S. Serum protein and electrolyte imbalances are associated with chemotherapy-induced neutropenia. Heliyon 2022, 8, e09949. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Chorawala, M.R.; Rawal, R.M.; Shrivastava, N. Integrated blood and organ profile analysis to evaluate ameliorative effects of kaempferol on 5 fluorouracil induced toxicity. Sci. Rep. 2024, 14, 2363. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, V.S.; Prado, R.D.; Vasconcelos, R.D.; Campos, C.N. Iron concentrations in sugar cane (Saccharum Officinarum L.) cultivated in nutrient solution. Agrociencia 2016, 50, 867–875. [Google Scholar]
- Xu, W.; Gao, Z.; Qi, Z.; Qiu, M.; Peng, J.Q.; Shao, R. Effect of dietary Chlorella on the growth performance and physiological parameters of Gibel carp, Carassius auratus gibelio. Turk. J. Fish. Aqua. Sci. 2014, 14, 53–57. [Google Scholar]
- Magnadottir, B. Innate immunity of fish (overview). Fish Shellfish Immunol. 2006, 20, 137–151. [Google Scholar] [CrossRef]
- Khani, M.; Soltani, M.; Mehrjan, M.S.; Foroudi, F.; Ghaeni, M. The effect of Chlorella vulgaris (Chlorophyta, Volvocales) microalga on some hematological and immune system parameters of Koi carp (Cyprinus carpio). Iran. J. Ichthyol. 2017, 4, 62–68. [Google Scholar]
- Ali, H.W.; Ahmed, Z.A.; Aziz, T.A. Effect of telmisartan and quercetin in 5 fluorouracil-induced renal toxicity in rats. J. Inflamm. Res. 2022, 15, 6113–6124. [Google Scholar] [CrossRef] [PubMed]
- Hussein, A.Y.A.; El-Shafey, R.S. The possible protective effects of Saccharum officinarum L. (sugar cane) juice co-supplementation on gentamicin-induced acute renal toxicity in adult albino rats. Int. J. Pharmacol. Toxicol. 2019, 7, 29. [Google Scholar] [CrossRef]
- Ansari, M.A.; Shahid, M.; Ahmad, S.F.; Ahmad, A.; Alanazi, A.; Malik, A.; Jardan, Y.A.B.; Attia, S.M.; Bakheet, S.A.; Raish, M. Sinapic acid alleviates 5-fluorouracil-induced nephrotoxicity in rats via Nrf2/HO-1 signaling. Saudi Pharm. J. 2023, 31, 1351–1359. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Kim, Y.H.; Lee, Y.W. Chlorella vulgaris extract ameliorates carbon tetrachloride-induced acute hepatic injury in mice. Exp. Toxicol. Pathol. 2013, 65, 73–80. [Google Scholar] [CrossRef]
- Ko, S.C.; Kim, D.; Jeon, Y.J. Protective effect of a novel antioxidative peptide purified from a marine Chlorella ellipsoidea protein against free radical-induced oxidative stress. Food Chem. Toxicol. 2012, 50, 2294–2302. [Google Scholar] [CrossRef]
- Molina-Cortés, A.; Quimbaya, M.; Toro-Gomez, M.; Tobar-Tosse, F. Bioactive compounds as an alternative for the sugarcane industry: Towards an integrative approach. Heliyon 2023, 9, e13276. [Google Scholar] [CrossRef]
- Fukuno, S.; Nagai, K.; Yoshida, S.; Suzuki, H.; Konishi, H. Taurine as a protective agent for 5-fluorouracil-induced hepatic damage related to oxidative stress. Pharmazie 2016, 71, 530–532. [Google Scholar]
- Refaie, M.M.M.; Abdel-Gaber, S.A.; Rahman, S.A.A.E.; Hafez, S.M.N.A.; Khalaf, H.M. Cardioprotective effects of bosentan in 5-fluorouracil-induced cardiotoxicity. Toxicology 2022, 465, 153042. [Google Scholar] [CrossRef] [PubMed]
- Cordiano, R.; Gioacchino, M.D.; Mangifesta, R.; Panzera, C.; Gangemi, S.; Minciullo, P.L. Malondialdehyde as a potential oxidative stress marker for allergy-oriented diseases: An Update. Molecules 2023, 28, 5979. [Google Scholar] [CrossRef]
- Mahmoud, A.M.; Al Dera, H.S. β-Glycyrrhetinic acid exerts protective effects against cyclophosphamide-induced hepatotoxicity: Potential role of PPAR and Nrf2 upregulation. Genes Nutr. 2015, 10, 41. [Google Scholar] [CrossRef]
- Mohammed, K.A.; Soliman, N.A.; El Dahmy, S.I.; Shalaby, A.A. Assessment of the possible protective effect of Sugarcane (Saccharum officinarum) peels extract for experimentally induced hepatotoxicity and renal disorders of adult male Sprague Dawley rats. Int. J. Vet. Sci. 2021, 10, 177–184. [Google Scholar]
- Yu, H.; Ge, X.; Huang, D.; Xue, C.; Ren, M.; Liang, H. Dietary supplementation of Chlorella vulgaris effectively enhanced the intestinal antioxidant capacity and immune status of Micropterus salmoides. Antioxidants 2023, 12, 1565. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.W.; Tahir, M.; Lone, K.P.; Munir, B.; Latif, W. Protective Effect of Saccharum officinarum l. (sugar cane) juice on isoniazid induced hepatotoxicity in male albino mice. J. Ayub Med. Coll. Abbottabad 2015, 27, 346–350. [Google Scholar] [PubMed]
- Abu-Serie, M.M.; Habashy, N.H.; Attia, W.E. In vitro evaluation of the synergistic antioxidant and anti-inflammatory activities of the combined extracts from Malaysian Ganoderma lucidum and Egyptian Chlorella vulgaris. BMC Complement. Altern. Med. 2018, 18, 154. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Shukla, R. Protective effect of Saccharum officinarum Linn juice in Paracetamol Induced Acute Hepato-toxicity in Albino Rats. Asian J. Pharm. Res. 2021, 11, 17–22. [Google Scholar] [CrossRef]
- Abdeen, A.; Elsabagh, R.; Elbasuni, S.S.; Said, A.M.; Abdelkader, A.; El-Far, A.H.; Ibrahim, S.F.; Mihaela, O.; Fericean, L.; Abdelfattah, A.M.; et al. Microalgae (Chlorella vulgaris) attenuates aflatoxin-associated renal injury. Front. Pharmacol. 2023, 14, 1291965. [Google Scholar] [CrossRef] [PubMed]
- El-Tahan, R.R.; Ghoneim, A.M.; El-Mashad, N. TNF-α gene polymorphisms and expression. Springerplus 2016, 5, 1508. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, F.M.; Elshopakey, G.E.; Aziza, A.E. Ameliorative effects of dietary Chlorella vulgaris and β-glucan against diazinon-induced toxicity in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2020, 96, 213–222. [Google Scholar] [CrossRef]
- Brilland, B.; Boud’hors, C.; Wacrenier, S.; Blanchard, S.; Cayon, J.; Blanchet, O.; Piccoli, G.B.; Henry, N.; Djema, A.; Coindre, J.P.; et al. Kidney injury molecule 1 (KIM-1): A potential biomarker of acute kidney injury and tubulointerstitial injury in patients with ANCA-glomerulonephritis. Clin. Kidney J. 2023, 16, 1521–1533. [Google Scholar] [CrossRef]
- Ichimura, T.; Bonventre, J.V.; Bailly, V.; Wei, H.; Hession, C.A.; Cate, R.L.; Sanicola, M. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is upregulated in renal cells after injury. J. Biol. Chem. 1998, 273, 4135–4142. [Google Scholar] [CrossRef]
- Al Jaberi, S.; Cohen, A.; D’Souza, C.; Abdulrazzaq, Y.M.; Ojha, S.; Bastaki, S.; Adeghate, E.A. Lipocalin-2: Structure, function, distribution, and role in metabolic disorders. Biomed. Pharmacother. 2021, 142, 112002. [Google Scholar] [CrossRef]
- Sethy, C.; Kundu, C.N. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomed. Pharmacother. 2021, 137, 111285. [Google Scholar] [CrossRef] [PubMed]
- El-Sherbiny, M.; Fahmy, E.K.; Eisa, N.H.; Said, E.; Elkattawy, H.A.; Ebrahim, H.A.; Elsherbiny, N.M.; Ghoneim, F.M. Nanogold particles suppresses 5-flurouracil-induced renal injury: An insight into the modulation of Nrf-2 and its downstream targets, HO-1 and γ-GCS. Molecules 2021, 26, 7684. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Oliveira, V.; Foresto-Neto, O.; Watanabe, I.K.M.; Zatz, R.; Câmara, N.O.S. Inflammation in renal diseases: New and old players. Front. Pharmacol. 2019, 10, 1192. [Google Scholar] [CrossRef] [PubMed]
- Ruth, S.; Jansman, F.G.A.; Sanders, C.J. Total body topical 5-fluorouracil for extensive non-melanoma skin cancer. Pharm. World Sci. 2006, 28, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Blas-Valdivia, V.; Ortiz-Butrón, R.; Pineda-Reynoso, M.; HernándezGarcia, A.; Cano-Europa, E. Chlorella vulgaris administration prevents HgCl2 caused oxidative stress and cellular damage in the kidney. J. Appl. Phycol. 2011, 23, 53–58. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Alasalvar, C.; Morris, A.; Baron, M.; Shahidi, F. Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J. Agric. Food Chem. 2005, 53, 7592–7599. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Lin, Y.L.; Chen, Y.L.; Liang, Y.C.; Lin, J.K. Composition of polyphenols in fresh tea leaves and associations of their oxygen radical absorbing capacity with antiproliferative actions in fibroblast cells. J. Agri. Food Chem. 1996, 44, 1387–1394. [Google Scholar] [CrossRef]
- Kuntic, V.; Pejic, N.; Ivkovic, B. Isocratic RP-HPLC method for rutin determination in solid oral dosage forms. J. Pharm. Biomed. Anal. 2007, 43, 718–721. [Google Scholar] [CrossRef]
- Al-Asmari, A.K.; Khan, A.Q.; Al-Masri, N. Mitigation of 5-fluorouracil–induced liver damage in rats by vitamin C via targeting redox-sensitive transcription factors. Hum. Exp. Toxicol. 2017, 35, 1203–1213. [Google Scholar] [CrossRef] [PubMed]
- Sikiru, A.B.; Arangasamy, A.; Alemede, I.C.; Guvvala, P.R.; Egena, S.S.A.; Ippala, J.R.; Bhatta, R. Chlorella vulgaris supplementation effects on performances, oxidative stress and antioxidant genes expression in liver and ovaries of New Zealand White rabbits. Heliyon 2019, 5, e02470. [Google Scholar] [CrossRef]
- Aniagu, S.O.; Nwinyi, F.C.; Akumka, D.D.; Ajoku, G.A.; Dzarma, S.; Izebe, K.S.; Ditse, M.; Nwaneri, P.E.C.; Wambebe, C.; Gamanie, K. Toxicity studies in rats fed nature cure bitters. Afr. J. Biotechnol. 2005, 4, 72–78. [Google Scholar]
- Buttarello, M. Quality specification in hematology: The automated blood cell count. Clin. Chim. Acta. 2004, 346, 45–54. [Google Scholar] [CrossRef]
- Henry, R.J.; Canmon, D.C.; Winkelman, J.W. Determination of calcium by atomic absorption spectrophotometry. In Clinical Chemistry, Principles and Techniques, 2nd ed.; Henry, R.J., Cannon, D.C., Winkelman, J.W., Eds.; Harper and Row: Hagerstown, MD, USA, 1974; p. 657. [Google Scholar]
- Larsen, K. Creatinine assay by a reaction-kinetic principle. Clin. Chim. Acta 1972, 41, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Barham, D.; Trinder, P. Enzymatic colorimetric method for determination of uric acid in serum plasma and urine. Analyst 1972, 97, 142–146. [Google Scholar] [CrossRef]
- Coulombe, J.J.; Favreau, L.A. New simple semi-micro method for colorimetric determination of urea. Clin. Chem. 1963, 9, 102. [Google Scholar] [CrossRef]
- Kageyama, N.A. A direct colorimetric determination of uric acid in serum and urine with the uricase-catalase system. Clin. Chim. Acta 1971, 31, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, H.A.C.; Dymock, J.F. The determination of nitrate in water. Analyst 1961, 86, 414–416. [Google Scholar]
- Beutler, E.; Duron, O.; Kelly, B.M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 1963, 61, 882–888. [Google Scholar]
- Nishikimi, M.; Roa, N.A.; Yogi, K. The Occurrence of Superoxide Anion in the Reaction of Reduced Phenazine Methosulfate and Molecular Oxygen. Biochem. Biophys. Res. Commun. 1972, 46, 849–854. [Google Scholar] [CrossRef]
- Sinha, A.K. Colorimetric Assay of catalase. Anal. Biochem. 1972, 47, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Esterbauer, H.K.; Cheeseman, H.; Dianzani, M.U.; Poli, G.; Slater, T.F. Separation and characterization of the aldehydic products of lipid peroxidation stimulated by ADP-Fe2+ in rat liver microsomes. Biochem. J. 1982, 208, 129–140. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Ramesh, G.; Reeves, W.B. Salicylate reduces cisplatin nephrotoxicity by inhibition of tumor necrosis factor-α. Kidney Int. 2004, 65, 490–498. [Google Scholar] [CrossRef]
- Yndestad, A.; Landrø, I.; Ueland, T.; Dahl, C.; Flo, T.; Vinge, I.; Espevik, T.; Frøland, S.; Husberg, C.; Christensen, G.; et al. Increased systemic and myocardial expression of neutrophil gelatinase-associated lipocalin in clinical and experimental heart failure. Eur. Heart J. 2009, 30, 1229–1236. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, N.A.; Hassan, M.H.; Saleem, T.H.; Mohamed, S.A.; El-Zeftawy, M.; Ahmed, E.A.; Mostafa, N.A.; Hetta, H.F.; Hasan, A.S.; Abdallah, A.A. KIM-1 and GADDI-153 gene expression in paracetamol-induced acute kidney injury: Effects of N-acetylcysteine, N-acetylmethionine, and N-acetylglucosamine. Turk. J. Biochem. 2021, 47, 409–416. [Google Scholar] [CrossRef]
- Antar, S.A.; Abdo, W.; Taha, R.S.; Farage, A.E.; El-Moselhy, I.E.; Amer, M.E.; Abdel Monsef, A.S.; Abdel Hamid, A.M.; Kamel, E.M.; Ahmeda, A.F.; et al. Telmisartan attenuates diabetic nephropathy by mitigating oxidative stress and inflammation and upregulating Nrf2/HO-1 signaling in diabetic rats. Life Sci. 2022, 291, 120260. [Google Scholar] [CrossRef]
- Bancroft, J.D.; Layton, C. The hematoxylins and eosin. In Bancroft’s Theory and Practice of Histological Techniques, 7th ed.; Churchill Livingstone of El Sevier: London, UK, 2013; pp. 173–186. [Google Scholar]
- Sendecor, G.W.; Cochran, W.G. The comparison of two samples. In Statistical Methods, 4th ed.; Iowa State University Press: Ames, IA, USA, 1987; pp. 91–110. [Google Scholar]
Treatment | |||||||
---|---|---|---|---|---|---|---|
Items | Control | 5-FU | SOL | VL | 5-FU+SOL | 5-FU+VL | p-Value |
Initial BW, g | 120 ± 1.91 b | 120 ± 4.76 b | 135 ± 2.92 a | 125 ± 4.04 ab | 117 ± 4.13 b | 122.5 ± 4.74 ab | 0.86 |
Final BW, g | 156 ± 3.12 ab | 150 ± 4.37 b | 175 ±7.47 a | 174 ± 7.46 a | 154 ± 5.44 ab | 164 ± 12.19 ab | 0.04 |
Feed intake, g | 148 ± 0.11 d | 151 ± 0.010 c | 156 ± 0.02 b | 179 ± 0.1 a | 135 ± 0.03 e | 151 ± 0.01 c | 0.001 |
Body gain, g | 36.00 ±1.76 b | 30.00 ± 0.55 c | 40.00 ±4.78 ab | 49.00 ± 4.24 a | 37.00 ± 2.67 b | 42.5 ± 7.95 ab | 0.009 |
Feed conversion | 4.11 ± 0.29 b | 5.03 ± 0.06 c | 3.9 ± 0.64 ab | 3.65 ± 0.30 a | 3.64 ± 0.55 a | 3.55 ± 1.20 a | 0.04 |
Treatment | |||||||
---|---|---|---|---|---|---|---|
Parameters | Control | 5-FU | SOL | VL | 5-FU+SOL | 5-FU+VL | p-Value |
Absolute kidney weight (g) | 1.24 ± 0.09 | 1.31 ± 0.11 | 1.43 ± 0.05 | 1.28 ± 0.07 | 1.28 ± 0.01 | 1.48 ± 0.08 | 0.068 |
Relative kidney weight (g) | 0.79 ± 0.05 | 0.83 ± 0.06 | 0.79 ± 0.04 | 0.76 ± 0.03 | 0.89 ± 0.03 | 0.90 ± 0.05 | 0.083 |
Treatment | |||||||
---|---|---|---|---|---|---|---|
Items | Control | 5-FU | SOL | VL | 5-FU+SOL | 5-FU+VL | p-Value |
RBCs (106/μL) | 6.22 ± 0.49 bc | 5.33 ± 0.27 d | 6.96 ± 0.04 ab | 7.61 ± 0.18 a | 6.31 ± 0.20 bc | 6.01 ± 0.11 c | <0.001 |
Hb(g/dL) | 12.77 ± 0.45 b | 10.00 ± 0.26 d | 14.00 ± 0.22 a | 14.64 ± 0.42 a | 12.44 ± 0.32 bc | 11.66 ± 0.10 bc | <0.001 |
PCV (%) | 37.54 ± 1.19 c | 31.36 ± 0.51 e | 40.54 ± 0.47 b | 44.86 ± 1.21 a | 38.38 ± 0.77 bc | 34.65 ± 0.63 cd | <0.001 |
MCV (fl) | 63.84 ± 1.00 a | 56.52 ± 1.01 b | 55.92 ± 0.72 b | 57.96 ± 0.89 b | 58.02 ± 2.10 b | 58.18 ± 0.09 b | 0.001 |
MCH (pg) | 21.32 ± 0.66 a | 19.54 ± 0.17 b | 19.40 ± 0.13 b | 19.24 ± 0.15 b | 19.50 ± 0.16 b | 19.3 ± 0.19 b | 0.001 |
MCHC (g/dL) | 34.14 ± 0.54 ab | 34.08 ± 0.32 ab | 34.56 ± 0.21 a | 32.94 ± 0.04 b | 32.62 ± 0.24 b | 33.44 ± 0.33 bc | 0.002 |
RDW (%) | 15.92 ± 0.97 c | 20.80 ± 0.30 a | 18.08 ± 0.16 b | 18.72 ± 0.34 b | 19.28 ± 0.19 ab | 19.86 ± 0.36 ab | <0.001 |
WBCs (103/μL) | 12.91 ± 0.84 ab | 6.56 ± 0.87 d | 16.37 ± 1.81 a | 14.58 ± 1.19 a | 14.17 ± 1.55 ab | 9.62 ± 2.17 bc | 0.001 |
Neutrophil (%) | 3.00 ± 0.01 b | 14.60 ± 1.16 a | 6.60 ± 1.02 b | 8.40 ± 1.36 ab | 8.60 ± 2.80 ab | 4.40 ± 0.40 b | 0.04 |
Lymphocyte (%) | 94.00 ± 0.01 a | 80.00 ± 2.25 c | 84.80 ± 1.59 b | 84.60 ± 2.20 b | 83.80 ± 3.91 bc | 88.60 ± 0.67 ab | 0.01 |
Monocyte (%) | 1.00 ± 0.01 c | 3.40 ± 0.67 b | 6.20 ± 0.48 a | 5.40 ± 0.67 ab | 5.00 ± 0.89 ab | 4.00 ± 0.31 ab | <0.001 |
Eosinophil (%) | 1.00 ± 0.00 b | 1.00 ± 0.44 b | 2.40 ± 0.24 a | 2.00 ± 0.31 a | 1.60 ± 0.24 ab | 2.00 ± 0.00 a | 0.004 |
Basophil (%) | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 0.88 |
N/L ratio | 0.03 ± 0.01 c | 0.18 ± 1.23 a | 0.08 ± 1.33 c | 0.1 ± 1.89 b | 0.1 ± 3.23 b | 0.05 ± 0.60 c | 0.02 |
Treatment | |||||||
---|---|---|---|---|---|---|---|
Items | Control | 5-FU | SOL | VL | 5-FU+SOL | 5-FU+VL | p-Value |
Creatinine (mg/dL) | 0.93 ± 0.05 b | 1.32 ± 0.16 a | 1.14 ± 0.09 ab | 0.84 ± 0.11 b | 1.18 ± 0.14 ab | 0.96 ± 0.06 b | 0.04 |
Uric acid (mg/dL) | 3.22 ± 0.28 bc | 4.38 ± 0.35 a | 3.52 ± 0.43 abc | 2.63 ± 0.18 c | 3.78 ± 0.29 ab | 3.17 ± 0.21 bc | 0.01 |
Urea (mg/dL) | 44.42 ± 2.38 b | 53.40 ± 3.94 a | 46.80 ± 4.96 b | 45.94 ± 4.08 b | 47.10 ± 2.46 b | 38.14 ± 3.45 c | 0.04 |
Total protein (mg/dL) | 7.64 ± 0.17 | 7.5 ± 0.28 | 7.68 ± 0.21 | 8.21 ± 0.21 | 8.90 ± 0.90 | 8.32 ± 0.15 | 0.50 |
Albumin (mg/dL) | 3.62 ± 0.06 | 3.23 ± 0.03 | 3.45 ± 0.04 | 3.75 ± 0.08 | 3.35 ± 0.20 | 3.45 ± 0.09 | 0.38 |
Treatment | |||||||
---|---|---|---|---|---|---|---|
Items | Control | 5-FU | SOL | VL | 5-FU+SOL | 5-FU+VL | p-Value |
MDA (nmol/g) | 3.26 ± 0.30 c | 11.05 ± 0.20 a | 2.87 ± 0.10 cd | 2.37 ± 0.21 d | 5.54 ± 0.21 b | 5.23 ± 0.35 b | < 0.001 |
CAT (U/g) | 128 ± 3.80 b | 47.14 ± 3.03 d | 151 ± 3.66 a | 159 ± 0.02 a | 102 ± 4.13 c | 121 ± 2.03 b | <0.001 |
SOD (U/g) | 27.83 ± 2.27 c | 11.24 ± 1.05 d | 35.69 ± 2.15 b | 44.46 ± 2.333 a | 24.78 ± 0.84 c | 28.38 ± 1.55 c | <0.001 |
GSH (mg/g) | 49.24 ± 2.33 bc | 18.08 ± 1.38 e | 51.23 ± 1.28 b | 57.93 ± 1.66 a | 38.63 ± 2.50 d | 45.36 ± 1.87 c | <0001 |
NO (μmol/g) | 3.73 ± 0.22 c | 11.77 ± 0.89 a | 4.18 ± 0.55 c | 3.43 ± 0.37 c | 6.44 ± 0.40 b | 4.15 ± 0.56 c | <0.001 |
Histopathology | Control | 5-FU | SOL | VL | SOL+5-FU | VL+5-FU |
---|---|---|---|---|---|---|
Congestion | - | *** | - | - | * | ** |
Edema | - | ** | - | - | - | - |
Inflammation | - | ** | - | - | - | - |
Vacuolation | - | * | - | - | - | - |
Items | Concentration |
---|---|
Total phenolics | 0.95 mg gallic acid equivalent/g |
Phenols | µg/g |
Catechol | 8.43 |
Syringenic | 7.56 |
p-coumaric | 14.56 |
Caffeic | 12.21 |
Gallic | 6.5 |
Ferulic | 12.22 |
Total flavonoids | 0.70 mg quercetin equivalent/g |
Flavonoids | µg/g |
Quercetin | 18.72 |
Kaempferol | 16.60 |
Luteolin | 8.27 |
Apigenin | 13.41 |
Catechin | 8.65 |
Item | Concentration |
---|---|
Total phenolics | 38.34 mg gallic acid equivalent/g |
Phenols | µg/g |
Resorcinol | 4.20 |
Chlorogenic | 3.80 |
p-coumaric | 14.49 |
Caffeic | 13.65 |
Gallic | 4.8 |
Ferulic | 14.02 |
Total flavonoids | 22.78 mg quercetin equivalent/g |
Flavonoids | µg/g |
Quercetin | 12.50 |
Kaempferol | 13.46 |
Rutin | 3.46 |
Apigenin | 10.6 |
Catechin | 2.43 |
Hesperetin | 12.64 |
Days of Experiment | Days of Sacrifice 16th Day | ||
---|---|---|---|
Treatment Groups | On 1st to 7th day of the experiment | On the 8th day of the experiment | On 9th to 15th day of the experiment |
Control | Distilled water 1 mL | Normal saline 1 mL | Distilled water 1 mL |
5-FU | --------------- | 5-FU (150 mg/kg b.wt.) | --------------- |
SOL | SOL 15 mL | Normal saline | SOL 15 mL |
VL | VL 400 mg/kg b.wt. | Normal saline | VL 400 mg/kg b.wt. |
5-FU+SOL | SOL 15 mL | 5-FU (150 mg/kg b.wt.) | SOL 15 mL |
5-FU+VL | VL 400 mg/kg b.wt. | 5-FU (150 mg/kg b.wt.) | VL 400 mg/kg b.wt. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Gendy, H.F.; El-Bahrawy, A.; Mansour, D.A.; Sheraiba, N.I.; Abdel-Megeid, N.S.; Selim, S.; Alhotan, R.A.; Ayyoub, A.; El Hanbally, S. Unraveling the Potential of Saccharum officinarum and Chlorella vulgaris towards 5-Fluorouracil-Induced Nephrotoxicity in Rats. Pharmaceuticals 2024, 17, 885. https://doi.org/10.3390/ph17070885
El-Gendy HF, El-Bahrawy A, Mansour DA, Sheraiba NI, Abdel-Megeid NS, Selim S, Alhotan RA, Ayyoub A, El Hanbally S. Unraveling the Potential of Saccharum officinarum and Chlorella vulgaris towards 5-Fluorouracil-Induced Nephrotoxicity in Rats. Pharmaceuticals. 2024; 17(7):885. https://doi.org/10.3390/ph17070885
Chicago/Turabian StyleEl-Gendy, Hanem F., Amanallah El-Bahrawy, Doaa A. Mansour, Nagwa I. Sheraiba, Nazema S. Abdel-Megeid, Shaimaa Selim, Rashed A. Alhotan, Anam Ayyoub, and Saber El Hanbally. 2024. "Unraveling the Potential of Saccharum officinarum and Chlorella vulgaris towards 5-Fluorouracil-Induced Nephrotoxicity in Rats" Pharmaceuticals 17, no. 7: 885. https://doi.org/10.3390/ph17070885
APA StyleEl-Gendy, H. F., El-Bahrawy, A., Mansour, D. A., Sheraiba, N. I., Abdel-Megeid, N. S., Selim, S., Alhotan, R. A., Ayyoub, A., & El Hanbally, S. (2024). Unraveling the Potential of Saccharum officinarum and Chlorella vulgaris towards 5-Fluorouracil-Induced Nephrotoxicity in Rats. Pharmaceuticals, 17(7), 885. https://doi.org/10.3390/ph17070885