Synthesis, Docking, and DFT Studies on Novel Schiff Base Sulfonamide Analogues as Selective COX-1 Inhibitors with Anti-Platelet Aggregation Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Activity
2.2.1. Cyclooxygenase Inhibition Assays
2.2.2. The Anti-Platelet Aggregation Assay
2.3. In Silico Studies
2.3.1. Molecular Docking
2.3.2. Bioinformatics Study
2.3.3. Density Functional Theory Study
3. Materials and Methods
3.1. Chemistry
“Stuart melting point apparatus SMP10 was used for melting points determination (China). Melting points were uncorrected. Bruker Vector 22 Infrared spectrophotometer (υmax in cm−1) (Burladingen, Germany) was used to measure infrared (IR) spectra. Nuclear Magnetic Resonance spectra were recorded on Bruker spectrometer (400 MHz) (Burladingen, Germany). Electron impact mass spectra (EI-MS) were recorded on a Finnigan MAT 312 mass spectrometer (Burladingen, Germany). Sonication was performed by Daihan (Wiseclean, D-40 kHz) sonicator (China). Microwave assisted reactions were accomplished using Milestone Startsynth lab station microwave (Via Fatebenefratelli 1/5-24010 Sorisole (BG), Italy)”.
- N-(4-(N-Pyrimidin-2-ylsulfamoyl)phenyl)acetamide 4 and N-(4-(N-quinoxalin-2-ylsulfamoyl) phenyl)acetamide 5
- 4-Amino-N-(pyrimidin-2-yl)benzenesulfonamide 6 and N-(4-(N-pyrimidin-2-ylsulfamoyl) phenyl)acetamid 7
- Method A: Conventional method—The appropriate aldehyde 8 or 9 (0.002 moL) was added to an equimolar amount of benzene sulfonamide derivatives 6 or 7 (0.5 gm, 0.002 moL) in 10 mL 95% ethanol. The reaction mixture was stirred and refluxed until completion. The reaction mixture was poured on ice for precipitation [31]. The final product was re-crystallized from ethanol to yield the target compounds as listed in Table 5.
- Method B: Sonicated Reaction—Benzene sulfonamide derivatives 6 or 7 (0.5 gm, 0.002 moL) and the appropriate aldehyde 8 or 9 (0.002 moL) were suspended in 5 mL of absolute ethanol. The mixture was subjected to ultrasound irradiation at 60–65 °C for suitable time until the starting material was no longer detectable via TLC. Upon completion, the reaction mixture was poured on ice [32]. The formed precipitate was filtered and re-crystallized from ethanol to yield the target compounds as listed in Table 5.
- Method C: Microwave-assisted reaction—An equimolar mixture of benzene sulfonamide derivatives 6 or 7 (0.5 gm, 0.002 moL) and the appropriate aldehyde 8 or 9 (0.002 moL) in 5 mL 95% ethanol was irradiated by the microwave reactor at 850 watts and 100 °C until completion. The mixture was cooled and poured on ice and the separated precipitate was filtered and washed with cold absolute ethanol [33]. The resulting product was then re-crystallized from absolute ethanol to yield the target compounds as listed in Table 5.
- (E)-4-(Furan-2-ylmethyleneamino)-N-(pyrimidin-2-yl)benzenesulfonamide 10
- (E)-4-(2-Hydroxybenzylideneamino)-N-(pyrimidin-2-yl)benzenesulfonamide 11
- (E)-4-(Furan-2-ylmethyleneamino)-N-(quinoxalin-2-yl)benzenesulfonamide 12
- (E)-4-(2-Hydroxybenzylideneamino)-N-(quinoxalin-2-yl)benzenesulfonamide 13
3.2. Biological Evaluation
3.2.1. Cyclooxygenase Inhibition Assays
3.2.2. The Anti-Platelet Aggregation Assays
3.3. In Silico Studies
3.3.1. Molecular Docking
3.3.2. Bioinformatics Study
3.3.3. Density Functional Theory Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fitzpatrick, F.A. Cyclooxygenase enzymes: Regulation and function. Curr. Pharm. Des. 2004, 10, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Patrignani, P.; Maenthaisong, R.; Tacconelli, S. Cyclooxygenase-2: Biology of Prostanoid Biosynthesis and Metabolism. eLS 2012. [Google Scholar] [CrossRef]
- Vane, J.; Bakhle, Y.; Botting, R. CYCLOOXYGENASES 1 AND 2. Annu. Rev. Pharmacol. Toxicol. 1998, 38, 97–120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tighe, S.; Zhu, Y.-T. COX-2 Signaling in the Tumor Microenvironment. In Tumor Microenvironment: Molecular Players—Part B; Birbrair, A., Ed.; Springer International Publishing: Cham, Germany, 2020; pp. 87–104. [Google Scholar]
- Gómez-Valenzuela, F.; Escobar, E.; Pérez-Tomás, R.; Montecinos, V.P. The Inflammatory Profile of the Tumor Microenvironment, Orchestrated by Cyclooxygenase-2, Promotes Epithelial-Mesenchymal Transition. Front. Oncol. 2021, 11, 686792. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.A.; Kirkby, N.S.; Ahmetaj-Shala, B.; Armstrong, P.C.; Crescente, M.; Ferreira, P.; Pires, M.E.L.; Vaja, R.; Warner, T.D. Cyclooxygenases and the cardiovascular system. Pharmacol. Ther. 2021, 217, 107624. [Google Scholar] [CrossRef] [PubMed]
- Geraldo, R.B.; Sathler, P.C.; Lourenço, A.L.; Saito, M.S.; Cabral, L.M.; Rampelotto, P.H.; Castro, H.C. Platelets: Still a therapeutical target for haemostatic disorders. Int. J. Mol. Sci. 2014, 15, 17901–17919. [Google Scholar] [CrossRef] [PubMed]
- Bruno, A.; Tacconelli, S.; Contursi, A.; Ballerini, P.; Patrignani, P. Chapter Three—Cyclooxygenases and platelet functions. In Advances in Pharmacology; Zeldin, D.C., Seubert, J.M., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 133–165. [Google Scholar]
- Maria, I.T. Therapeutic Uses of Aspirin. In Pain Management; Theodoros, A., Christos, N., Eds.; IntechOpen: Rijeka, Croatia, 2023; p. 13. [Google Scholar]
- Ahrens, I.; Schwarz, M.; Peter, K.; Bode, C. Therapeutic Inhibitors of Platelet Aggregation–from Aspirin to Integrin Blockersf. Transfus. Med. Hemotherapy 2007, 34, 44–54. [Google Scholar] [CrossRef]
- Gladding, P.A.; Webster, M.W.; Farrell, H.B.; Zeng, I.S.; Park, R.; Ruijne, N. The antiplatelet effect of six non-steroidal anti-inflammatory drugs and their pharmacodynamic interaction with aspirin in healthy volunteers. Am. J. Cardiol. 2008, 101, 1060–1063. [Google Scholar] [CrossRef] [PubMed]
- Patrono, C.; Rocca, B. Aspirin and other COX-1 inhibitors. Antiplatelet Agents 2012, 210, 137–164. [Google Scholar]
- Perrone, M.G.; Scilimati, A.; Simone, L.; Vitale, P. Selective COX-1 inhibition: A therapeutic target to be reconsidered. Curr. Med. Chem. 2010, 17, 3769–3805. [Google Scholar] [CrossRef]
- Taha, M.O. Mixing pharmacophore modeling and classical QSAR analysis as powerful tool for lead discovery. Virtual Screen. 2012, 1. [Google Scholar] [CrossRef]
- ur Rashid, H.; Martines, M.A.U.; Duarte, A.P.; Jorge, J.; Rasool, S.; Muhammad, R.; Ahmad, N.; Umar, M.N. Research developments in the syntheses, anti-inflammatory activities and structure–activity relationships of pyrimidines. RSC Adv. 2021, 11, 6060–6098. [Google Scholar] [CrossRef] [PubMed]
- Orjales, A.; Mosquera, R.; Lopez, B.; Olivera, R.; Labeaga, L.; Núñez, M.T. Novel 2-(4-methylsulfonylphenyl) pyrimidine derivatives as highly potent and specific COX-2 inhibitors. Bioorg. Med. Chem. 2008, 16, 2183–2199. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Saibaba, V.; Ravikumar, V.; Rudrawar, S.V.; Daga, P.; Rao, C.S.; Akhila, V.; Hegde, P.; Rao, Y.K. Synthesis and biological evaluation of 2, 3-diarylpyrazines and quinoxalines as selective COX-2 inhibitors. Bioorg. Med. Chem. 2004, 12, 1881–1893. [Google Scholar] [CrossRef] [PubMed]
- Caturla, F.; Jiménez, J.-M.; Godessart, N.; Amat, M.; Cárdenas, A.; Soca, L.; Beleta, J.; Ryder, H.; Crespo, M.I. Synthesis and biological evaluation of 2-phenylpyran-4-ones: A new class of orally active cyclooxygenase-2 inhibitors. J. Med. Chem. 2004, 47, 3874–3886. [Google Scholar] [CrossRef] [PubMed]
- Almansa, C.; de Arriba, A.F.; Cavalcanti, F.L.; Gómez, L.A.; Miralles, A.; Merlos, M.; García-Rafanell, J.; Forn, J. Synthesis and SAR of a new series of COX-2-selective inhibitors: Pyrazolo [1, 5-a] pyrimidines. J. Med. Chem. 2001, 44, 350–361. [Google Scholar] [CrossRef] [PubMed]
- Ghorab, M.M.; SA El-Gaby, M.; S Alsaid, M.; AMM Elshaier, Y.; M Soliman, A.; F El-Senduny, F.; A Badria, F.; YA Sherif, A. Novel thiourea derivatives bearing sulfonamide moiety as anticancer agents through COX-2 inhibition. Curr. Med. Chem. Anticancer. Agents 2017, 17, 1411–1425. [Google Scholar] [CrossRef]
- Vitale, P.; Perrone, M.G.; Malerba, P.; Lavecchia, A.; Scilimati, A. Selective COX-1 inhibition as a target of theranostic novel diarylisoxazoles. Eur. J. Med. Chem. 2014, 74, 606–618. [Google Scholar] [CrossRef] [PubMed]
- Perrone, M.G.; Vitale, P.; Malerba, P.; Altomare, A.; Rizzi, R.; Lavecchia, A.; Di Giovanni, C.; Novellino, E.; Scilimati, A. Diarylheterocycle Core Ring Features Effect in Selective COX-1 Inhibition. ChemMedChem 2012, 7, 629–641. [Google Scholar] [CrossRef]
- Ye, Y.; Wu, W.; Shin, V.; Bruce, I.; Wong, B.; Cho, C. Dual inhibition of 5-LOX and COX-2 suppresses colon cancer formation promoted by cigarette smoke. Carcinogenesis 2005, 26, 827–834. [Google Scholar] [CrossRef]
- Houk, K.; Liu, F. Holy grails for computational organic chemistry and biochemistry. Acc. Chem. Res. 2017, 50, 539–543. [Google Scholar] [CrossRef]
- Atlam, F.M.; Awad, M.K.; El-Bastawissy, E.A. Computational simulation of the effect of quantum chemical parameters on the molecular docking of HMG-CoA reductase drugs. J. Mol. Struct. 2014, 1075, 311–326. [Google Scholar] [CrossRef]
- Awad, M.; Masoud, M.; Shaker, M.A.; Ali, A.E.; El-Tahawy, M. MP2 and DFT theoretical studies of the geometry, vibrational and electronic absorption spectra of 2-aminopyrimidine. Res. Chem. Intermediat. 2013, 39, 2741–2761. [Google Scholar] [CrossRef]
- Kabanda, M.M.; Murulana, L.C.; Ozcan, M.; Karadag, F.; Dehri, I.; Obot, I.; Ebenso, E.E. Quantum chemical studies on the corrosion inhibition of mild steel by some triazoles and benzimidazole derivatives in acidic medium. Int. J. Electrochem. Sci. 2012, 7, 5035–5056. [Google Scholar] [CrossRef]
- Udhayakala, P.; Jayanthi, A.; Rajendiran, T. Adsorption and quantum chemical studies on the inhibition potentials of some formazan derivatives. Pharma Chem. 2011, 3, 528–539. [Google Scholar]
- Weng, Q.; Yi, J.; Chen, X.; Luo, D.; Wang, Y.; Sun, W.; Kang, J.; Han, Z. Controllable synthesis and biological application of schiff bases from D-glucosamine and terephthalaldehyde. ACS Omega 2020, 5, 24864–24870. [Google Scholar] [CrossRef] [PubMed]
- Borges, Á.D.L.; Ponte, G.D.; Federman Neto, A.; Carvalho, I. Síntese de sulfadiazina e sulfadiazina de prata em escala semi-micro: Prática experimental em síntese de fármacos. Quim. Nova. 2005, 28, 727–731. [Google Scholar] [CrossRef]
- Sinha, D.; Tiwari, A.K.; Singh, S.; Shukla, G.; Mishra, P.; Chandra, H.; Mishra, A.K. Synthesis, characterization and biological activity of Schiff base analogues of indole-3-carboxaldehyde. Eur. J. Med. Chem. 2008, 43, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Alfooty, K.; Khalifah, S. An efficient sonochemical synthesis of novel Schiff’s bases, thiazolidine, and pyrazolidine incorporating 1, 8-naphthyridine moiety and their cytotoxic activity against HePG2 cell lines. Sci. World J. 2014, 2014, 587059. [Google Scholar] [CrossRef]
- Naglah, A.M.; Awad, H.M.; Bhat, M.A.; Al-Omar, M.A.; Amr, A.E.-G.E. Microwave-assisted synthesis and antimicrobial activity of some novel isatin schiff bases linked to nicotinic acid via certain amino acid bridge. J. Chem. 2015, 2015, 364841. [Google Scholar] [CrossRef]
- Kassab, S.E.; Khedr, M.A.; Ali, H.I.; Abdalla, M.M. Discovery of new indomethacin-based analogs with potentially selective cyclooxygenase-2 inhibition and observed diminishing to PGE2 activities. Eur. J. Med. Chem. 2017, 141, 306–321. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A. Lead-and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.E.; Pickett, S.D. Computational methods for the prediction of ‘drug-likeness’. Drug Discov. Today 2000, 5, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Molinspiration Cheminformatics Software. 2018. Available online: https://www.molinspiration.com/ (accessed on 26 May 2024).
- Molsoft Molecules In Silico. Available online: https://www.molsoft.com/ (accessed on 26 May 2024).
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. II. The effect of the Perdew–Wang generalized-gradient correlation correction. J. Chem. Phys. 1992, 97, 9173–9177. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. GAUSSIAN 09; Revision A02; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Dennington, R., II; Keith, T.; Millam, J. (Eds.) GaussView; Version 4.1; Semichem Inc.: Shawnee Mission, KS, USA, 2007. [Google Scholar]
- Roschek Jr, B.; Fink, R.C.; Li, D.; McMichael, M.; Tower, C.M.; Smith, R.D.; Alberte, R.S. Pro-inflammatory enzymes, cyclooxygenase 1, cyclooxygenase 2, and 5-lipooxygenase, inhibited by stabilized rice bran extracts. J. Med. Food 2009, 12, 615–623. [Google Scholar] [CrossRef]
- Xie, Z.; Zhao, L.; Ding, X.; Kong, Y.; Li, Z. Design, synthesis and evaluation of 1, 4-benzodioxine derivatives as novel platelet aggregation inhibitors. Future Med. Chem. 2018, 10, 367–378. [Google Scholar] [CrossRef]
- Rimon, G.; Sidhu, R.S.; Lauver, D.A.; Lee, J.Y.; Sharma, N.P.; Yuan, C.; Frieler, R.A.; Trievel, R.C.; Lucchesi, B.R.; Smith, W.L. Coxibs interfere with the action of aspirin by binding tightly to one monomer of cyclooxygenase-1. Proc. Natl. Acad. Sci. USA 2010, 107, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Limburg, D.; Graneto, M.J.; Springer, J.; Hamper, J.R.B.; Liao, S.; Pawlitz, J.L.; Kurumbail, R.G.; Maziasz, T.; Talley, J.J. The novel benzopyran class of selective cyclooxygenase-2 inhibitors. Part 2: The second clinical candidate having a shorter and favorable human half-life. Bioorg. Med. Chem. Lett. 2010, 20, 7159–7163. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Awad, M.K.; Abdel-Aal, M.F.; Atlam, F.M.; Hekal, H.A. Design, synthesis, molecular modeling, and biological evaluation of novel α-aminophosphonates based quinazolinone moiety as potential anticancer agents: DFT, NBO and vibrational studies. J. Mol. Struct. 2018, 1173, 128–141. [Google Scholar] [CrossRef]
Comp. | IC50 (μM) | COX1 Selectivity Index | |
---|---|---|---|
COX-1 | COX-2 | ||
10 | 1.92 | 11.26 | 5.86 |
11 | 4.82 | 15.24 | 3.16 |
12 | 0.71 | 13.27 | 18.69 |
13 | 3.22 | 9.26 | 2.87 |
Celecoxib | 14.20 | 0.42 | 0.02 |
Indomethacin [34] | 0.26 | 2.63 | 10.11 |
Benzene sulfonamide derivative (I) [13] | 12 | ˃100 | ≤100 |
Stilbene derivative (II) [13] | 15 | ˃200 | ≤200 |
Comp. | ADP | Collagen | ||
---|---|---|---|---|
Inhibition Rate (%) ± SD * | IC50 (μM) | Inhibition Rate (%) ± SD * | IC50 (μM) | |
10 | 78.36 ± 1.36 | 0.37 | 89.36 ± 1.23 | 0.62 |
11 | 84.36 ± 1.64 | 0.25 | 76.35 ± 1.34 | 1.03 |
12 | 98.1 ± 1.68 | 0.11 | 95.9 ± 1.39 | 0.12 |
13 | 46.32 ± 1.32 | NA | 45.36 ± 1.56 | NA |
Aspirin | 92.36 ± 1.5 | 0.49 | 64.3 ± 1.38 | 0.51 |
Comp. | COX-1 | COX-2 | ||
---|---|---|---|---|
Binding Energy (Kcal/mol) | Binding Interactions | Binding Energy (Kcal/mol) | Binding Interactions | |
Celecoxib | −16.91 | 4 HB with Gln 192, His 90, Ser 353 and Ser 516 | −14.45 | 3 HB with Leu 338, Gln 178, and Ser 339 |
10 | −16.44 | −9.87 | 1 HB with Ser 516 | |
11 | −17.25 | −8.94 | Arg 499 and His 75 | |
12 | −20.70 | −5.89 | 1 HB and Arene-cation with Arg 4991 HB with His 75 | |
13 | −19.98 | −8.84 | 2 HB with Arg 106 and Gln 178 |
Comp. | Molinspiration 2018.10 [38] | MolSoft [39] | SwissADME [40] | |||||||
---|---|---|---|---|---|---|---|---|---|---|
MWt (D) | MV (A3) | PSA (A2) | Log P | Nrotb | Nviolations | HBA | HBD | Solubility (mg/L) | Drug-Likeness (Lipinski–Pfizer Filter) | |
10 | 328.35 | 267.21 | 97.46 | 1.67 | 5 | 0 | 6 | 1 | 683.14 | “Yes, drug like” MW ≤ 500, Log P ≤ 4.15, HBA ≤ 10 and HBD ≤ 5 |
11 | 354.39 | 293.66 | 104.55 | 2.35 | 5 | 0 | 6 | 2 | 574.55 | |
12 | 378.41 | 311.20 | 97.46 | 3.41 | 5 | 0 | 6 | 1 | 102.89 | |
13 | 404.45 | 337.65 | 104.55 | 4.10 | 5 | 0 | 6 | 2 | 116.32 |
Comp. | Method | Reaction Time | Yield% |
---|---|---|---|
10 | Method A: Conventional method | 2 h | 75% |
Method B: Sonicated reaction | 10 min | 80% | |
Method C: Microwave-assisted reaction | 5.5 min | 89% | |
11 | Method A: Conventional method | 2 h | 74% |
Method B: Sonicated reaction | 10 min | 83% | |
Method C: Microwave-assisted reaction | 5.5 min | 88% | |
12 | Method A: Conventional method | 3 h | 77% |
Method B: Sonicated reaction | 15 min | 85% | |
Method C: Microwave-assisted reaction | 8.5 min | 92% | |
13 | Method A: Conventional method | 3 h | 75% |
Method B: Sonicated reaction | 15 min | 84% | |
Method C: Microwave-assisted reaction | 8.5 min | 90% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aziz, Y.M.A.; Nafie, M.S.; Hanna, P.A.; Ramadan, S.; Barakat, A.; Elewa, M. Synthesis, Docking, and DFT Studies on Novel Schiff Base Sulfonamide Analogues as Selective COX-1 Inhibitors with Anti-Platelet Aggregation Activity. Pharmaceuticals 2024, 17, 710. https://doi.org/10.3390/ph17060710
Aziz YMA, Nafie MS, Hanna PA, Ramadan S, Barakat A, Elewa M. Synthesis, Docking, and DFT Studies on Novel Schiff Base Sulfonamide Analogues as Selective COX-1 Inhibitors with Anti-Platelet Aggregation Activity. Pharmaceuticals. 2024; 17(6):710. https://doi.org/10.3390/ph17060710
Chicago/Turabian StyleAziz, Yasmine M. Abdel, Mohamed S. Nafie, Pierre A. Hanna, Sherif Ramadan, Assem Barakat, and Marwa Elewa. 2024. "Synthesis, Docking, and DFT Studies on Novel Schiff Base Sulfonamide Analogues as Selective COX-1 Inhibitors with Anti-Platelet Aggregation Activity" Pharmaceuticals 17, no. 6: 710. https://doi.org/10.3390/ph17060710
APA StyleAziz, Y. M. A., Nafie, M. S., Hanna, P. A., Ramadan, S., Barakat, A., & Elewa, M. (2024). Synthesis, Docking, and DFT Studies on Novel Schiff Base Sulfonamide Analogues as Selective COX-1 Inhibitors with Anti-Platelet Aggregation Activity. Pharmaceuticals, 17(6), 710. https://doi.org/10.3390/ph17060710