Role of Trimetazidine in Ameliorating Endothelial Dysfunction: A Review
Abstract
:1. Introduction
2. Pharmacological Treatment of Endothelial Dysfunction
3. Effects of Trimetazidine on Endothelium-Dependent Vasodilation and Hemodynamic Parameters
4. Effects of Trimetazidine on Glucose Metabolism
5. Effects of Trimetazidine on Atherosclerosis
6. Effects of Trimetazidine on Oxidative Stress and Inflammation
7. Effects of Trimetazidine on Endothelial Cell and Vascular Smooth Muscle Cell Apoptosis and Angiogenesis
8. Limitations
9. Conclusions and Avenues for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Cardiovascular Diseases. 2023. Available online: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1 (accessed on 14 September 2023).
- Fan, J.; Watanabe, T. Atherosclerosis: Known and unknown. Pathol. Int. 2022, 72, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Clyne, A.M. Endothelial response to glucose: Dysfunction, metabolism, and transport. Biochem. Soc. Trans. 2021, 49, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Di, G.; Gao, C.C.; He, G.; Wang, X.; Han, Y.L.; Sun, L.A.; Zhou, M.L.; Jiang, X. FTY720 reduces endothelial cell apoptosis and remodels neurovascular unit after experimental traumatic brain injury. Int. J. Med. Sci. 2021, 18, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Du, Y.; Peng, Q.; Fan, X.; Li, J.; Chen, M. Trimetazidine protects against atherosclerosis by changing energy charge and oxidative stress. Med. Sci. Monit. 2018, 24, 8459–8468. [Google Scholar] [CrossRef] [PubMed]
- Hellenthal, K.E.M.; Brabenec, L.; Wagner, N.M. Regulation and dysregulation of endothelial permeability during systemic inflammation. Cells 2022, 11, 1935. [Google Scholar] [CrossRef] [PubMed]
- Bubnova, M.G.; Aronov, D.M. Efficacy of trimetazidine—An inhibitor of free fatty acids oxidation in the treatment of patients with stable angina pectoris and heart failure. Kardiologiia 2021, 61, 65–76. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Cao, S.; Tong, Z.; Wang, W.; Zhang, Y.; Guo, C. Trimetazidine ameliorates myocardial ischemia-reperfusion injury. Pak. J. Pharm. Sci. 2018, 31, 1691–1696. [Google Scholar] [PubMed]
- Zhang, H.; Niu, H.; Yuan, X.; Chang, J.; Wang, X. Trimetazidine combined with berberine on endothelial function of patients with coronary heart disease combined with primary hypertension. Exp. Ther. Med. 2018, 16, 1318–1322. [Google Scholar] [CrossRef] [PubMed]
- Ramezani-Aliakbari, F.; Badavi, M.; Dianat, M.; Mard, S.A.; Ahangarpour, A. Trimetazidine increases plasma microRNA-24 and microRNA-126 levels and improves dyslipidemia, inflammation and hypotension in diabetic rats. Iran J. Pharm. Res. 2020, 19, 248–257. [Google Scholar]
- Yoon, J.W.; Cho, B.J.; Park, H.S.; Kang, S.M.; Choi, S.H.; Jang, H.C.; Shin, H.; Lee, M.J.; Kim, Y.B.; Park, K.S.; et al. Differential effects of trimetazidine on vascular smooth muscle cell and endothelial cell in response to carotid artery balloon injury in diabetic rats. Int. J. Cardiol. 2013, 167, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Hohensinner, P.J.; Lenz, M.; Haider, P.; Mayer, J.; Richter, M.; Kaun, C.; Goederle, L.; Brekalo, M.; Salzmann, M.; Sharma, S.; et al. Pharmacological inhibition of fatty acid oxidation reduces atherosclerosis progression by suppression of macrophage NLRP3 inflammasome activation. Biochem. Pharmacol. 2021, 190, 114634. [Google Scholar] [CrossRef] [PubMed]
- Chrusciel, P.; Rysz, J.; Banach, M. Defining the role of trimetazidine in the treatment of cardiovascular disorders: Some insights on its role in heart failure and peripheral artery disease. Drugs 2014, 74, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.; Yu, Y.M.; Kim, S.; Jeong, K.H.; Lee, E. Association between trimetazidine and parkinsonism: A population-based study. Neuroepidemiology 2019, 52, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Pintér, D.; Kovács, M.; Harmat, M.; Juhász, A.; Janszky, J.; Kovács, N. Trimetazidine and parkinsonism: A prospective study. Park. Relat. Disord. 2019, 62, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, R.; Ford, I.; Fox, K.; Challeton, J.P.; Correges, A.; Tendera, M.; Widimský, P.; Danchin, N.; ATPCI investigators. Efficacy and safety of trimetazidine after percutaneous coronary intervention (ATPCI): A randomised, double-blind, placebo-controlled trial. Lancet 2020, 396, 830–838. [Google Scholar] [CrossRef] [PubMed]
- Oesterle, A.; Laufs, U.; Liao, J.K. Pleiotropic effects of statins on the cardiovascular system. Circ. Res. 2017, 120, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Ilyas, I.; Little, P.J.; Li, H.; Kamato, D.; Zheng, X.; Luo, S.; Li, Z.; Liu, P.; Han, J.; et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: From mechanism to pharmacotherapies. Pharmacol. Rev. 2021, 73, 924–967. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, R.; Camici, P.G.; Crea, F.; Danchin, N.; Fox, K.; Maggioni, A.P.; Manolis, A.J.; Marzilli, M.; Rosano, G.M.C.; Lopez-Sendon, J.L. Expert consensus document: A ‘diamond’ approach to personalized treatment of angina. Nat. Rev. Cardiol. 2018, 15, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Berkels, R.; Taubert, D.; Rosenkranz, A.; Rösen, R. Vascular protective effects of dihydropyridine calcium antagonists. Involvement of endothelial nitric oxide. Pharmacology 2003, 69, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Ruszkowski, P.; Masajtis-Zagajewska, A.; Nowicki, M. Effects of combined statin and ACE inhibitor therapy on endothelial function and blood pressure in essential hypertension—A randomised double-blind, placebo-controlled crossover study. J. Renin Angiotensin Aldosterone Syst. 2019, 20, 1470320319868890. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.C.D.; Arismendi, M.I.; Machado, L.S.G.; Sato, E.I. Ramipril improves endothelial function and increases the number of endothelial progenitor cells in patients with systemic lupus erythematosus. J. Clin. Rheumatol. 2022, 28, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Ames, M.K.; Atkins, C.E.; Pitt, B. The renin-angiotensin-aldosterone system and its suppression. J. Vet. Intern. Med. 2019, 33, 363–382. [Google Scholar] [CrossRef] [PubMed]
- Oparil, S.; Williams, D.; Chrysant, S.G.; Marbury, T.C.; Neutel, J. Comparative efficacy of olmesartan, losartan, valsartan, and irbesartan in the control of essential hypertension. J. Clin. Hypertens. 2001, 3, 283–318. [Google Scholar] [CrossRef]
- Willenheimer, R.; Helmers, C.; Pantev, E.; Rydberg, E.; Löfdahl, P.; Gordon, A.; Heart Failure Valsartan Exercise Capacity Evaluation Study Group. Safety and efficacy of valsartan versus enalapril in heart failure patients. Int. J. Cardiol. 2002, 85, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Medina-Leyte, D.J.; Zepeda-García, O.; Domínguez-Pérez, M.; González-Garrido, A.; Villarreal-Molina, T.; Jacobo-Albavera, L. Endothelial dysfunction, inflammation and coronary artery disease: Potential biomarkers and promising therapeutical approaches. Int. J. Mol. Sci. 2021, 22, 3850. [Google Scholar] [CrossRef] [PubMed]
- Cooper, S.; Teoh, H.; Campeau, M.A.; Verma, S.; Leask, R.L. Empagliflozin restores the integrity of the endothelial glycocalyx in vitro. Mol. Cell. Biochem. 2019, 459, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Aini, K.; Fukuda, D.; Tanaka, K.; Higashikuni, Y.; Hirata, Y.; Yagi, S.; Kusunose, K.; Yamada, H.; Soeki, T.; Sata, M. Vildagliptin, a DPP-4 Inhibitor, attenuates endothelial dysfunction and atherogenesis in nondiabetic apolipoprotein E-deficient mice. Int. Heart J. 2019, 60, 1421–1429. [Google Scholar] [CrossRef] [PubMed]
- Zoupa, E.; Pitsikas, N. The nitric oxide (NO) donor sodium nitroprusside (SNP) and its potential for the schizophrenia therapy: Lights and shadows. Molecules 2021, 26, 3196. [Google Scholar] [CrossRef] [PubMed]
- Münzel, T.; Daiber, A. Inorganic nitrite and nitrate in cardiovascular therapy: A better alternative to organic nitrates as nitric oxide donors? Vascul. Pharmacol. 2018, 102, 1–10. [Google Scholar] [CrossRef]
- Kamisah, Y.; Zuhair, J.S.F.; Juliana, A.H.; Jaarin, K. Parkia speciosa empty pod prevents hypertension and cardiac damage in rats given N(G)-nitro-l-arginine methyl ester. Biomed. Pharmacother. 2017, 96, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Khodabakhsh, P.; Asgari Taei, A.; Mohseni, M.; Bahrami Zanjanbar, D.; Khalili, H.; Masoumi, K.; Haji Abbas Shirazi, A.; Dargahi, L. Vasoactive peptides: Role in COVID-19 pathogenesis and potential use as biomarkers and therapeutic targets. Arch. Med. Res. 2021, 52, 777–787. [Google Scholar] [CrossRef] [PubMed]
- Belardinelli, R.; Lacalaprice, F.; Faccenda, E.; Volpe, L. Trimetazidine potentiates the effects of exercise training in patients with ischemic cardiomyopathy referred for cardiac rehabilitation. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Belardinelli, R.; Solenghi, M.; Volpe, L.; Purcaro, A. Trimetazidine improves endothelial dysfunction in chronic heart failure: An antioxidant effect. Eur. Heart J. 2007, 28, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
- Park, K.H.; Park, D.W.; Kim, M.K.; Kim, H.S.; Park, W.J.; Cho, G.Y.; Choi, Y.J. Effects of sheath injury and trimetazidine on endothelial dysfunction of radial artery after transradial catheterization. J. Interv. Cardiol. 2012, 25, 411–417. [Google Scholar] [CrossRef]
- Wu, Q.; Qi, B.; Liu, Y.; Cheng, B.; Liu, L.; Li, Y.; Wang, Q. Mechanisms underlying protective effects of trimetazidine on endothelial progenitor cells biological functions against H2O2-induced injury: Involvement of antioxidation and Akt/eNOS signaling pathways. Eur. J. Pharmacol. 2013, 707, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Yong, J.; Wang, Y.; Xing, S.; Bi, Y.; Li, N.; Zhao, S. Efficacy of trimetazidine and plasmin combined with alprostadil in treatment of lower extremity arteriosclerosis obliterans. Exp. Ther. Med. 2019, 17, 4554–4560. [Google Scholar] [CrossRef]
- Shao, S.; Shi, Z.; Tse, G.; Wang, X.; Ni, Y.; Liu, H.; Liu, T.; Li, G. Effects of trimetazidine pretreatment on endothelial dysfunction and myocardial injury in unstable angina patients undergoing percutaneous coronary intervention. Cardiol. Res. Pract. 2019, 2019, 4230948. [Google Scholar] [CrossRef] [PubMed]
- Bobescu, E.; Marceanu, L.G.; Dima, L.; Balan, A.l; Strempel, C.G.; Covaciu, A. Trimetazidine therapy in coronary artery disease: The impact on oxidative stress, inflammation, endothelial dysfunction, and long-term prognosis. Am. J. Ther. 2021, 28, e540–e547. [Google Scholar] [CrossRef] [PubMed]
- Park, K.H.; Park, W.J.; Kim, M.K.; Park, D.W.; Park, J.H.; Kim, H.S.; Cho, G.Y. Effects of trimetazidine on endothelial dysfunction after sheath injury of radial artery. Am. J. Cardiol. 2010, 105, 1723–1727. [Google Scholar] [CrossRef] [PubMed]
- Rehberger-Likozar, A.; Šebeštjen, M. Influence of trimetazidine and ranolazine on endothelial function in patients with ischemic heart disease. Coron. Artery Dis. 2015, 26, 651–656. [Google Scholar] [CrossRef]
- Fragasso, G.; Piatti, P.M.; Monti, L.; Palloshi, A.; Setola, E.; Puccetti, P.; Calori, G.; Lopaschuk, G.D.; Margonato, A. Short- and long-term beneficial effects of trimetazidine in patients with diabetes and ischemic cardiomyopathy. Am. Heart J. 2003, 146, E18. [Google Scholar] [CrossRef] [PubMed]
- Monti, L.D.; Setola, E.; Fragasso, G.; Camisasca, R.P.; Lucotti, P.; Galluccio, E.; Origgi, A.; Margonato, A.; Piatti, P. Metabolic and endothelial effects of trimetazidine on forearm skeletal muscle in patients with type 2 diabetes and ischemic cardiomyopathy. Am. J. Physiol. Endocrinol. Metab. 2006, 290, E54–E59. [Google Scholar] [CrossRef] [PubMed]
- Straub, A.C.; Beuve, A. A primer for measuring cGMP signaling and cGMP-mediated vascular relaxation. Nitric Oxide 2021, 117, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Sureda, A.; Jafari, S.; Memariani, Z.; Tewari, D.; Annunziata, G.; Barrea, L.; Hassan, S.T.S.; Šmejkal, K.; Malaník, M.; et al. Berberine in cardiovascular and metabolic diseases: From mechanisms to therapeutics. Theranostics 2019, 9, 1923–1951. [Google Scholar] [CrossRef] [PubMed]
- Siti, H.N.; Jalil, J.; Asmadi, A.Y.; Kamisah, Y. Rutin modulates MAPK pathway differently from quercetin in angiotensin II-induced H9c2 cardiomyocyte hypertrophy. Int. J. Mol. Sci. 2021, 22, 5063. [Google Scholar] [CrossRef]
- Shi, Y.; Vanhoutte, P.M. Macro- and microvascular endothelial dysfunction in diabetes. J. Diabetes 2017, 9, 434–449. [Google Scholar] [CrossRef]
- Garg, S.S.; Gupta, J. Polyol pathway and redox balance in diabetes. Pharmacol. Res. 2022, 182, 106326. [Google Scholar] [CrossRef] [PubMed]
- Ciulla, T.A.; Amador, A.G.; Zinman, B. Diabetic retinopathy and diabetic macular edema: Pathophysiology, screening, and novel therapies. Diabetes Care 2003, 26, 2653–2664. [Google Scholar] [CrossRef] [PubMed]
- Lopaschuk, G.D.; Barr, R.; Thomas, P.D.; Dyck, J.R. Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzyme a thiolase. Circ. Res. 2003, 93, e33–e37. [Google Scholar] [CrossRef] [PubMed]
- Mitrou, P.; Petsiou, E.; Papakonstantinou, E.; Maratou, E.; Lambadiari, V.; Dimitriadis, P.; Spanoudi, F.; Raptis, S.A.; Dimitriadis, G. Vinegar consumption increases insulin-stimulated glucose uptake by the forearm muscle in humans with type 2 diabetes. J. Diabetes Res. 2015, 2015, 175204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Dun, Y.; You, B.; Qiu, L.; Ripley-Gonzalez, J.W.; Cheng, J.; Fu, S.; Li, C.; Liu, S. Trimetazidine and exercise offer analogous improvements to the skeletal muscle insulin resistance of mice through Nrf2 signaling. BMJ Open Diabetes Res. Care 2022, 10, e002699. [Google Scholar] [CrossRef] [PubMed]
- Luukkonen, P.K.; Dufour, S.; Lyu, K.; Zhang, X.M.; Hakkarainen, A.; Lehtimäki, T.E.; Cline, G.W.; Petersen, K.F.; Shulman, G.I.; Yki-Järvinen, H. Effect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease. Proc. Natl. Acad. Sci. USA 2020, 117, 7347–7354. [Google Scholar] [CrossRef]
- Klonoff, D.C.; Xu, N.Y.; Nguyen, K.T.; Kerr, D.; Mehta, C.; Umpierrez, G.E.; Brooks, G.A. Trimetazidine blocks lipid oxidation-should it be repurposed for prevention and treatment of diabetic ketoacidosis? J. Diabetes Sci. Technol. 2022, 16, 1063–1068. [Google Scholar] [CrossRef] [PubMed]
- Hoshiyama, M.; Li, B.; Yao, J.; Harada, T.; Morioka, T.; Oite, T. Effect of high glucose on nitric oxide production and endothelial nitric oxide synthase protein expression in human glomerular endothelial cells. Nephron. Exp. Nephrol. 2003, 95, e62–e68. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhao, H.; Zhao, M.; Huang, H.; Liu, C.; Huang, F.; Wu, J. Effects of resistance exercise on blood glucose level and pregnancy outcome in patients with gestational diabetes mellitus: A randomized controlled trial. BMJ Open Diabetes Res. Care 2022, 10, e002622. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.D.; Shi, G.; Jiang, Y.; Yao, C.; Zhu, C. A review on the potential of resveratrol in prevention and therapy of diabetes and diabetic complications. Biomed. Pharmacother. 2020, 125, 109767. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Xing, Y.; Ning, X.; Yu, Z.; Bai, X.; Liu, L.; Sun, S. Roles of Twist1 in lipid and glucose metabolism. Cell. Commun. Signal. 2023, 21, 270. [Google Scholar] [CrossRef] [PubMed]
- Nasoni, M.G.; Crinelli, R.; Iuliano, L.; Luchetti, F. When nitrosative stress hits the endoplasmic reticulum: Possible implications in oxLDL/oxysterols-induced endothelial dysfunction. Free Radic. Biol. Med. 2023, 208, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Kattoor, A.J.; Kanuri, S.H.; Mehta, J.L. Role of ox-LDL and LOX-1 in atherogenesis. Curr. Med. Chem. 2019, 26, 1693–1700. [Google Scholar] [CrossRef] [PubMed]
- Bai, T.; Li, M.; Liu, Y.; Qiao, Z.; Wang, Z. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic. Biol. Med. 2020, 160, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers 2019, 5, 56. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. The changing landscape of atherosclerosis. Nature 2021, 592, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Siti, H.N.; Jalil, J.; Asmadi, A.Y.; Kamisah, Y. Parkia speciosa Hassk. Empty pod extract alleviates angiotensin II-induced cardiomyocyte hypertrophy in H9c2 cells by modulating the Ang II/ROS/NO axis and MAPK pathway. Front. Pharmacol. 2021, 12, 741623. [Google Scholar] [CrossRef] [PubMed]
- Sedky, A.; Famurewa, A.C. Anti-ischemic drug trimetazidine blocks mercury nephrotoxicity by suppressing renal redox imbalance, inflammatory stress and caspase-dependent apoptosis in rats. Drug Chem. Toxicol. 2023, 2, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hassan, F.E.; Aboulhoda, B.E.; Ali, I.H.; Elwi, H.M.; Matter, L.M.; Abdallah, H.A.; Khalifa, M.M.; Selmy, A.; Alghamdi, M.A.; Morsy, S.A.; et al. Evaluating the protective role of trimetazidine versus nano-trimetazidine in amelioration of bilateral renal ischemia/reperfusion induced neuro-degeneration: Implications of ERK1/2, JNK and Galectin-3/NF-kappaB/TNF-alpha/HMGB-1 signaling. Tissue Cell 2023, 85, 102241. [Google Scholar] [CrossRef] [PubMed]
- Syamsunarno, M.R.A.; Safitri, R.; Kamisah, Y. Protective effects of Caesalpinia sappan Linn. and its bioactive compounds on cardiovascular organs. Front. Pharmacol. 2021, 12, 725745. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xu, Q.; Li, T.; Shao, S. Trimetazidine ameliorates hindlimb ischaemic damage in type 2 diabetic mice. Ann. Med. 2021, 53, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jiao, X.F.; Wu, C.; Li, X.Q.; Sun, H.X.; Shen, X.Y.; Zhang, K.Z.; Zhao, C.; Liu, L.; Wang, M.; et al. Trimetazidine attenuates dexamethasone-induced muscle atrophy via inhibiting NLRP3/GSDMD pathway-mediated pyroptosis. Cell. Death Discov. 2021, 7, 251. [Google Scholar] [CrossRef] [PubMed]
- Farzaei, M.H.; Ramezani-Aliakbari, F.; Ramezani-Aliakbari, M.; Zarei, M.; Komaki, A.; Shahidi, S.; Sarihi, A.; Salehi, I. Regulatory effects of trimetazidine in cardiac ischemia/reperfusion injury. Naunyn Schmiedebergs Arch. Pharmacol. 2023, 396, 1633–1646. [Google Scholar] [CrossRef] [PubMed]
- Khatana, C.; Saini, N.K.; Chakrabarti, S.; Saini, V.; Sharma, A.; Saini, R.V.; Saini, A.K. Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis. Oxid. Med. Cell. Longev. 2020, 2020, 5245308. [Google Scholar] [CrossRef] [PubMed]
- Kamisah, Y.; Che Hassan, H.H. Therapeutic use and molecular aspects of ivabradine in cardiac remodeling: A review. Int. J. Mol. Sci. 2023, 24, 2801. [Google Scholar] [CrossRef] [PubMed]
- Camaré, C.; Pucelle, M.; Nègre-Salvayre, A.; Salvayre, R. Angiogenesis in the atherosclerotic plaque. Redox Biol. 2017, 12, 18–34. [Google Scholar] [CrossRef] [PubMed]
- Ouarné, M.; Pena, A.; Franco, C.A. From remodeling to quiescence: The transformation of the vascular network. Cells Dev. 2021, 168, 203735. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ma, Z.; Zhai, Y.; Lv, C.; Yuan, P.; Zhu, F.; Wei, L.; Li, Q.; Qi, X. Trimetazidine ameliorates myocardial metabolic remodeling in isoproterenol-induced rats through regulating ketone body metabolism via activating AMPK and PPARα. Front. Pharmacol. 2020, 11, 1255. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Yang, Q.; Yang, Y.; Gao, Z.; Ma, Y.; Zhang, L.; Liang, W.; Ding, G. Sirt6 suppresses high glucose-induced mitochondrial dysfunction and apoptosis in podocytes through AMPK activation. Int. J. Biol. Sci. 2019, 15, 701–713. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wu, P.; Yu, F.; Luo, G.; Qing, L.; Tang, J. HIF-1alpha regulates bone homeostasis and angiogenesis, participating in the occurrence of bone metabolic diseases. Cells 2022, 11, 3552. [Google Scholar] [CrossRef] [PubMed]
- Shu, H.Y.; Peng, Y.Z.; Hang, W.J.; Zhang, M.; Shen, L.; Wang, D.W.; Zhou, N. Trimetazidine enhances myocardial angiogenesis in pressure overload-induced cardiac hypertrophy mice through directly activating Akt and promoting the binding of HSF1 to VEGF-A promoter. Acta Pharmacol. Sin. 2022, 43, 2550–2561. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Li, S.; Zhou, Z.; Yang, X.; Liu, Y.; Hao, K.; Fu, M. Trimetazidine mitigates high glucose-induced retinal endothelial dysfunction by inhibiting PI3K/Akt/mTOR pathway-mediated autophagy. Bioengineered 2022, 13, 7515–7527. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.G.; Sung, J.Y.; Kim, J.R.; Choi, H.C. Quercetin-induced apoptosis ameliorates vascular smooth muscle cell senescence through AMP-activated protein kinase signaling pathway. Korean J. Physiol. Pharmacol. 2020, 24, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.L.; Hu, N.; Zhang, X.Z.; Jiang, M.; Chen, C.; Ma, R.; Ma, Z.G.; Gao, J.L.; Xuan, X.C.; Sun, Z.J.; et al. Niclosamide inhibits vascular smooth muscle cell proliferation and migration and attenuates neointimal hyperplasia in injured rat carotid arteries. Br. J. Pharmacol. 2018, 175, 1707–1718. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Lai, P.; Liu, X.; Liu, F.; Qin, Y.; Tu, P.; Wang, Y. ATF5 promotes malignant T cell survival through the PI3K/AKT/mTOR pathway in cutaneous T cell lymphoma. Front. Immunol. 2023, 14, 1282996. [Google Scholar] [CrossRef]
- Wang, Y.; Su, H.; Yan, M.; Zhang, L.; Tang, J.; Li, Q.; Gu, X.; Gong, Q. Interleukin-33 promotes cell survival via p38 MAPK-mediated interleukin-6 gene expression and release in pediatric AML. Front. Immunol. 2020, 11, 595053. [Google Scholar] [CrossRef]
- Grootaert, M.O.J.; Moulis, M.; Roth, L.; Martinet, W.; Vindis, C.; Bennett, M.R.; De Meyer, G.R.Y. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc. Res. 2018, 114, 622–634. [Google Scholar] [CrossRef]
- Tian, X.; Zhou, N.; Yuan, J.; Lu, L.; Zhang, Q.; Wei, M.; Zou, Y.; Yuan, L. Heat shock transcription factor 1 regulates exercise-induced myocardial angiogenesis after pressure overload via HIF-1alpha/VEGF pathway. J. Cell. Mol. Med. 2020, 24, 2178–2188. [Google Scholar] [CrossRef]
- D’Arcy, M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 2019, 43, 582–592. [Google Scholar] [CrossRef]
- Zhao, X.; Su, L.; He, X.; Zhao, B.; Miao, J. Long noncoding RNA CA7-4 promotes autophagy and apoptosis via sponging MIR877-3P and MIR5680 in high glucose-induced vascular endothelial cells. Autophagy 2020, 16, 70–85. [Google Scholar] [CrossRef]
- Zhang, B.; Wan, S.; Liu, H.; Qiu, Q.; Chen, H.; Chen, Z.; Wang, L.; Liu, X. Naringenin alleviates renal ischemia reperfusion injury by suppressing ER stress-induced pyroptosis and apoptosis through activating Nrf2/HO-1 signaling pathway. Oxid. Med. Cell. Longev. 2022, 2022, 5992436. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, W.Y.; Wang, Z.H.; Tang, M.X.; Wang, F.; Li, Y.; Zhong, M.; Zhang, Y.; Zhang, W. Early administration of trimetazidine attenuates diabetic cardiomyopathy in rats by alleviating fibrosis, reducing apoptosis and enhancing autophagy. J. Transl. Med. 2016, 14, 109. [Google Scholar] [CrossRef]
- Amini, N.; Sarkaki, A.; Dianat, M.; Mard, S.A.; Ahangarpour, A.; Badavi, M. The renoprotective effects of naringin and trimetazidine on renal ischemia/reperfusion injury in rats through inhibition of apoptosis and downregulation of micoRNA-10a. Biomed. Pharmacother. 2019, 112, 108568. [Google Scholar] [CrossRef]
- Mustafa, N.H.; Jalil, J.; Zainalabidin, S.; Saleh, M.S.M.; Asmadi, A.Y.; Kamisah, Y. Molecular mechanisms of sacubitril/valsartan in cardiac remodeling. Front. Pharmacol. 2022, 13, 892460. [Google Scholar] [CrossRef]
- Dézsi, C.A. Trimetazidine in practice: Review of the clinical and experimental evidence. Am. J. Ther. 2016, 23, e871–e879. [Google Scholar] [CrossRef]
- Jackson, P.J.; Brownsill, R.D.; Taylor, A.R.; Resplandy, G.; Walther, B.; Schwietert, H.R. Identification of trimetazidine metabolites in human urine and plasma. Xenobiotica 1996, 26, 221–228. [Google Scholar] [CrossRef]
- Nenchev, N.; Skopek, J.; Arora, D.; Samad, A.; Kaplan, S.; Domahidy, M.; de Voogd, H.; Böhmert, S.; Ramos, R.S.; Jain, S. Effect of age and renal impairment on the pharmacokinetics and safety of trimetazidine: An open-label multiple-dose study. Drug Dev. Res. 2020, 81, 564–572. [Google Scholar] [CrossRef]
- Borowicz-Reutt, K.; Banach, M. Trimetazidine, an anti-ischemic drug, reduces the antielectroshock effects of certain first-generation antiepileptic drugs. Int. J. Mol. Sci. 2022, 23, 11328. [Google Scholar] [CrossRef]
Subjects | Dose of Trimetazidine | Type of Study | Findings | Reference |
---|---|---|---|---|
Patients with CHD and primary hypertension (n = 68) | Combined with berberine. No information on the dose and duration of treatment | ↑ FMD | [9] | |
Alloxan-induced diabetic rats | 10 and 30 mg/kg (p.o.) for 8 weeks | Both doses: ↑ systolic pressure | [10] | |
Patients with IHD and LV dysfunction (n = 116) | 20 mg (p.o., t.i.d.) for 8 weeks | Randomized longitudinal controlled | Without exercise (vs. control): ↑ % EDD ↔ systolic BP ↔ diastolic BP With exercise (vs. TMZ): ↑ % EDD ↑ systolic BP ↑ diastolic BP | [33] |
Patients with CHF secondary to ischemic cardiomyopathy (n = 51) | 20 mg (p.o., t.i.d.) for 4 weeks | Randomized | ↑ ACh-induced vasorelaxation ↔ GTN-induced vasorelaxation ↑ radial artery diameter | [34] |
Patients with endothelial dysfunction after sheath injury of radial artery and PCI (n = 120) | 20 mg (p.o., t.i.d.) for 10 weeks | Randomized | 10 weeks after angiography: ↑ radial artery diameter ↑ FMD | [35] |
Patients with lower extremity arteriosclerosis obliterans (n = 132) | 30 mg (p.o., t.i.d.) combined with alprostadil (0.1 µg/day, i.v.) for 14 days | Retrospective | Compared to baseline: ↓ VPV of superficial femoral artery ↓ VPV of posterior tibial artery ↓ VPV of dorsalis pedis artery ↑ blood flow of superficial femoral artery ↑ blood flow of posterior tibial artery ↑ blood flow of dorsalis pedis artery ↑ left ankle brachial index | [37] |
Patients with CAD (n = 570) | 35 mg (XR, p.o., b.i.d.) for 5 years | Randomized | At 6 months: vs. NSTE-ACS: ↓ FMV ↓ vWF activity vs. CCS: ↔ FMV ↔ vWF activity | [39] |
Patients with endothelial dysfunction after sheath injury of radial artery (n = 60) | 20 mg (p.o., t.i.d.) for 10 weeks | Randomized | 10 weeks after angiography: ↑ radial artery diameter ↑ FMD ↑ NMD | [40] |
Patients with ischemic heart disease (n = 56) | 35 mg (p.o. bi.d.) for 12 weeks | Randomized | ↔ GTN-induced diameter ↔ GTN-induced blood flow ↑ % GTN-induced blood flow ↑ % FMD ↑ FMD/GTN-induced blood flow ↑ hyperemia-induced arterial diameter ↔ hyperemia-induced blood flow ↑ baseline diameter ↑ baseline blood flow | [41] |
Subjects | Dose of Trimetazidine | Type of Study | Findings | Reference |
---|---|---|---|---|
Patients with CHD and primary hypertension (n = 68) | Combined with berberine. No information on the dose and duration of treatment | ↑ plasma NO ↑ eNOS mRNA | [9] | |
H2O2-induced HUVECs | 10 µM | ↑ eNOS protein ↑ eNOS mRNA ↑ NO | [36] | |
Patients with lower extremity arteriosclerosis obliterans (n = 132) | 30 mg (p.o., t.i.d.) combined with alprostadil (0.1 µg/day, i.v.) for 14 days | Retrospective | Compared to baseline: ↔ serum NO | [37] |
Patients with unstable angina in perioperative PCI (n = 97) | 20 mg (p.o., t.i.d.,) 24 h before and after PCI | Randomized | ↔ serum NO | [38] |
Patients with T2DM and hypokinetic cardiomyopathy secondary to IHD (n = 16) | 20 mg (p.o., tid) for 30 days and 12 months | Randomized, double-blind, crossover study | Short-term: ↓ plasma ET-1 Long-term: ↓ plasma ET-1 | [42] |
Patients with T2DM and ischemic cardiomyopathy (n = 15) | 20 mg (p.o., tid) for 15 days | Randomized, double-blind, placebo-controlled, crossover parallel study | With euglycemic clamp: ↓ endothelial ET-1 release ↓ endothelial ET-1 ↑ endothelial cGMP ↑ endothelial cGMP release | [43] |
Subjects | Dose of Trimetazidine | Type of Study | Findings | Reference |
---|---|---|---|---|
Alloxan-induced diabetic rats | 10 and 30 mg/kg (p.o.) for 8 weeks | Both doses: ↓ fasting blood glucose | [10] | |
Carotid injury in diabetic rats | 10 and 20 mg/kg (p.o.) for 2 weeks before and after injury | ↔ fasting glucose ↔ post-load glucose ↔ fasting insulin ↔ HOMA-IR ↓ adiponectin | [11] | |
Patients with IHD and LV dysfunction (n = 116) | 20 mg (p.o., t.i.d.) for 8 weeks | Randomized longitudinal controlled | Without exercise (vs. control): ↓ glucose ↔ HbA1C With exercise (vs. TMZ): ↓ glucose ↓ HbA1C | [33] |
Patients with IHD (n = 56) | 35 mg (p.o. b.i.d.) for 12 weeks | Randomized | ↔ fasting blood glucose (compared to ranolazine-treated group) | [41] |
Patients with T2DM and hypokinetic cardiomyopathy secondary to IHD (n = 16) | 20 mg (p.o., t.i.d.) for 30 days and 12 months | Randomized, double-blind, crossover study | Short-term: ↓ fasting blood glucose ↑ end-clamp forearm glucose uptake ↔ HbA1C ↑ M value Long-term: ↔ fasting blood glucose ↑ end-clamp FGU ↔ HbA1C ↑ M value | [42] |
Patients with T2DM and ischemic cardiomyopathy (n = 15) | 20 mg (p.o., t.i.d.) for 15 days | Randomized, double-blind, placebo-controlled, crossover parallel study | ↑ FGU ↑ forearm glucose oxidation ↔ forearm glucose storage ↓ basal forearm non-glucose glycolysis ↓ fasting blood glucose ↓ fasting blood citrate ↓ fasting blood β-OH-butyrate ↓ fasting insulin | [43] |
High-fat diet mouse insulin resistance model | 10 mg/kg (p.o.) for 8 weeks | ↓ fasting blood glucose ↓ plasma insulin ↓ HOMA-IR | [52] |
Models | Dose of Trimetazidine | Findings | Reference |
---|---|---|---|
High fat/vitamin D-induced atherosclerosis in rats | 30 mg/kg/day (p.o.) for 12 weeks | ↓ atherosclerotic lesion | [5] |
Carotid injury in diabetic rats | 10 and 20 mg/kg (p.o.) 2 weeks before and after injury | ↓ intima–media ratio | [11] |
Rat aortic SMCs exposed to TNF-α | 25–500 µM | 100–500 µM: ↓ cell proliferation 500 µM: ↓ cell migration | [11] |
High-fat-diet-induced atherosclerosis in LDL-R−/− male mice | 15 mg/kg/day via tap water for 8 weeks (post-treatment) | ↓ atherosclerotic plaque area ↓ cholesterol clefts ↑ fibrous cap ↓ elastin fiber breaks | [12] |
H2O2-induced HUVECs | 10 µM | ↓ cell migration ↓ cell adhesion | [36] |
Subjects | Dose of Trimetazidine | Type of Study | Findings | Reference |
---|---|---|---|---|
High fat/vitamin D-induced atherosclerosis in rats | 30 mg/kg/day (p.o.) for 12 weeks | ↔ TG ↔ TC ↔ LDL | [5] | |
Alloxan-induced diabetic rats | 10 and 30 mg/kg (p.o.) for 8 weeks | Both doses: ↓ TC ↓ TG ↔ HDL ↔ LDL ↓ VLDL | [10] | |
Carotid injury in diabetic rats | 10 and 20 mg/kg (p.o.) for 2 weeks before and after injury | ↔ TG ↔ HDL ↔ TC ↔ LDL | [11] | |
Patients with IHD and LV dysfunction (n = 116) | 20 mg (p.o., t.i.d.) for 8 weeks | Randomized longitudinal controlled | Without exercise (vs. control): ↔ HDL ↔ TG With exercise (vs. TMZ): ↑ HDL ↑ TG | [33] |
Patients with IHD (n = 56) | 35 mg (p.o. b.i.d.) for 12 weeks | Randomized | ↔ HDL ↔ LDL ↔ TC ↑ TG | [41] |
Patients with T2DM and ischemic cardiomyopathy (n = 15) | 20 mg (p.o., t.i.d.) for 15 days | Randomized, double-blind, placebo-controlled, crossover parallel study | ↔ HDL ↔ FFA ↔ TG ↔ TC ↔ lactate | [43] |
Subjects | Dose of Trimetazidine | Type of Study | Findings | Reference |
---|---|---|---|---|
High fat/vitamin D-induced atherosclerosis in rats | 30 mg/kg/day (p.o.) for 12 weeks | ↓ aortic ROS | [5] | |
oxLDL-induced proliferation in human aortic smooth muscle cells | 10 µM | ↓ ROS ↑ SOD activity ↓ MDA | [5] | |
H2O2-induced proliferation in human aortic smooth muscle cells | 10 µM | ↓ ROS ↑ SOD activity ↓ MDA | [5] | |
Alloxan-induced diabetic rats | 10 and 30 mg/kg (p.o.) for 8 weeks | Both doses: ↓ plasma MDA ↓ plasma TNFα ↓ plasma IL-6 | [10] | |
Carotid injury in diabetic rats | 10 and 20 mg/kg (p.o.) for 2 weeks before and after injury | ↓ intimal 8-OH-dG ↓ intimal hsCRP ↓ intimal TNFα | [11] | |
Rat aortic smooth muscle cells and HUVECs exposed to lysophosphatidylcholine | 250 and 500 µM | ↓ ROS expression | [11] | |
Rh-IL-1β-stimulated HUVECs | 500 µM (pre-treatment) | ↔ adherent granulocytes ↔ E-selectin ↔ ICAM-1 ↔ VCAM-1 ↔ IL-8 ↔ nuclear p65 | [12] | |
LPS/nigericin-induced macrophages | 500 µM (pre-treatment) | ↓ IL-1β ↓ M1 IL-1β ↔ CD80 mRNA ↔ TNF mRNA ↔ uPAR mRNA | [12] | |
High-fat-diet-induced atherosclerosis in LDL-R−/− male mice | 15 mg/kg/day via tap water for 8 weeks (post-treatment) | ↓ plaque cleaved IL-1β area ↓ plaque neutrophil extracellular traps ↓ serum IL-1β ↓ serum IL-18 | [12] | |
Patients with CHF secondary to ischemic cardiomyopathy (n = 51) | 20 mg (p.o., t.i.d.) for 4 weeks | Randomized | ↓ plasma MDA ↓ plasma LOOH | [34] |
H2O2-induced HUVECs | 10 µM | ↓ MDA ↑ SOD | [36] | |
Patients with lower extremity arteriosclerosis obliterans (n = 132) | 30 mg (p.o., t.i.d.) combined with alprostadil (0.1 µg/day, i.v.) for 14 days | Retrospective | Compared to plasmin+alprostadil: ↔ hs-CRP | [37] |
Patients with CAD (n = 570) | 35 mg (XR, p.o., b.i.d.) for 6 months | Randomized | vs. NSTE-ACS ↑ TAS ↓ oxLDL ↔ MPO ↓ CRP ↓ fibrinogen vs. CCS: ↑ TAS ↔ oxLDL ↔ MPO ↔ CRP ↔ fibrinogen | [39] |
Femoral artery ligation in diabetic mice | 10 mg/kg/day (i.g.) for 2 weeks (post-treatment) | ↓ serum ICAM-1 | [68] |
Models | Dose of Trimetazidine | Findings | Reference |
---|---|---|---|
oxLDL-induced proliferation in human aortic smooth muscle cells | 0.1, 1, and 10 µM | ↓ proliferation | [5] |
Alloxan-induced diabetic rats | 10 and 30 mg/kg (p.o.) for 8 weeks | Both doses: ↑ plasma miR24 protein ↑ plasma miR126 protein | [10] |
Carotid injury in diabetic rats | 10 and 20 mg/kg (p.o.) 2 weeks before and after injury | ↓ muscle proliferation index | [11] |
Rat aortic smooth muscle cells exposed to TNFα | 50, 100, 250, and 500 µM | 250 and 500 µM: ↓ proliferation All concentrations: ↑ caspase activity 500 µM: ↓ migration | [11] |
Rat aortic SMCs exposed to TNF-α | 25–500 µM | ↑ viability ↓ active caspase-3 ↓ apoptotic cells | [11] |
LPS/nigericin-induced macrophages | 500 µM (pre-treatment) | ↓ cleaved caspase-1 | [12] |
High-fat-diet-induced atherosclerosis in LDL-R−/− male mice | 15 mg/kg/day via tap water for 8 weeks (post-treatment) | ↓ aortic plaque cleaved caspase-1 ↓ aortic plaque cell count | [12] |
H2O2-induced HUVECs | 10 µM | ↓ apoptosis ↑ proliferation | [36] |
TAC-induced cardiac hypertrophy mice | 2.8 mg/100 µL (i.g.) | ↑ CD31 ↑ VEGF | [78] |
PE-induced HUVECs | 5 µM | ↑ proliferation ↑ cell migration ↑ tube formation | [78] |
Diabetic retinopathy in human retinal endothelial cells | 1–10 µM | ↓ proliferation ↓ cell migration ↓ VEGF ↓ cell invasion ↓ tube formation ↓ cell permeability | [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamisah, Y.; Che Hassan, H.H. Role of Trimetazidine in Ameliorating Endothelial Dysfunction: A Review. Pharmaceuticals 2024, 17, 464. https://doi.org/10.3390/ph17040464
Kamisah Y, Che Hassan HH. Role of Trimetazidine in Ameliorating Endothelial Dysfunction: A Review. Pharmaceuticals. 2024; 17(4):464. https://doi.org/10.3390/ph17040464
Chicago/Turabian StyleKamisah, Yusof, and Hamat H. Che Hassan. 2024. "Role of Trimetazidine in Ameliorating Endothelial Dysfunction: A Review" Pharmaceuticals 17, no. 4: 464. https://doi.org/10.3390/ph17040464
APA StyleKamisah, Y., & Che Hassan, H. H. (2024). Role of Trimetazidine in Ameliorating Endothelial Dysfunction: A Review. Pharmaceuticals, 17(4), 464. https://doi.org/10.3390/ph17040464