siRNA Therapeutics: From Bench Lab. to Clinics
- Regarding biogenesis, siRNAs regulate the genes from which they are expressed, whereas miRNAs are encoded by a gene other than their target gene.
- siRNAs require full complementarity with the target RNA; thus, a single siRNA can induce silencing of a single target RNA, at least theoretically. Meanwhile, a single miRNA can regulate different genes since it does not require full complementarity with the target.
- siRNAs are produced in organisms that lack a cellular immune response; their presence in mammals is currently unknown.
Acknowledgments
Conflicts of Interest
List of Contributions
- Romero-López, C.; Ramos-Lorente, S.E.; Berzal-Herranz, A. In vitro methods to decipher the structure of viral RNA genomes. Pharmaceuticals 2021, 14, 1192. https://doi.org/10.3390/ph14111192.
- de Brito, E.C.D.; Frederico, A.B.T.; Azamor, T.; Melgaco, J.G.; da Costa Neves, P.C.; Bom, A.; Tilli, T.M.; Missailidis, S. Biotechnological evolution of siRNA molecules: from bench tool to the refined drug. Pharmaceuticals 2022, 15, 575. https://doi.org/10.3390/ph15050575.
- Losurdo, P.; de Manzini, N.; Palmisano, S.; Grassi, M.; Parisi, S.; Rizzolio, F.; Tierno, D.; Biasin, A.; Grassi, C.; Truong, N.H.; et al. Potential application of small interfering RNA in gastro-intestinal tumors. Pharmaceuticals 2022, 15, 1295. https://doi.org/10.3390/ph15101295.
- Egorova, A.; Selutin, A.; Maretina, M.; Selkov, S.; Kiselev, A. Peptide-based nanoparticles for alphavbeta3 integrin-targeted DNA delivery to cancer and uterine leiomyoma cells. Molecules 2022, 27, 8363. https://doi.org/10.3390/molecules27238363.
- Veys, C.; Jammes, M.; Redini, F.; Poulain, L.; Denoyelle, C.; Legendre, F.; Galera, P. Tumor suppressive role of miR-342-5p and miR-491-5p in human osteosarcoma cells. Pharmaceuticals 2022, 15, 362. https://doi.org/10.3390/ph15030362.
- Li, S.; Zhang, J.; Feng, G.; Jiang, L.; Chen, Z.; Xin, W.; Zhang, X. The emerging role of extracellular vesicles from mesenchymal stem cells and macrophages in pulmonary fibrosis: insights into miRNA delivery. Pharmaceuticals 2022, 15, 1276. https://doi.org/10.3390/ph15101276.
- Papagiannopoulos, C.I.; Theodoroula, N.F.; Vizirianakis, I.S. miR-16-5p promotes erythroid maturation of erythroleukemia cells by regulating ribosome biogenesis. Pharmaceuticals 2021, 14, 137. https://doi.org/10.3390/ph14020137.
References
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans. Nature 1998, 391, 806–811. [Google Scholar] [CrossRef] [PubMed]
- Ipsaro, J.J.; Joshua-Tor, L. From guide to target: Molecular insights into eukaryotic RNA-interference machinery. Nat. Struct. Mol. Biol. 2015, 22, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.K.; Chow, M.Y.; Zhang, Y.; Leung, S.W. siRNA versus miRNA as therapeutics for gene silencing. Mol. Ther. Nucleic Acids 2015, 4, e252. [Google Scholar] [CrossRef]
- Elbashir, S.M.; Harborth, J.; Lendeckel, W.; Yalcin, A.; Weber, K.; Tuschl, T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001, 411, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Caplen, N.J.; Parrish, S.; Imani, F.; Fire, A.; Morgan, R.A. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. USA 2001, 98, 9742–9747. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, C.; Sharma, A.R.; Sharma, G.; Doss, C.G.P.; Lee, S.S. Therapeutic miRNA and siRNA: Moving from bench to clinic as next generation medicine. Mol. Ther. Nucleic Acids 2017, 8, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Vishnoi, A.; Rani, S. miRNA biogenesis and regulation of diseases: An updated overview. Methods Mol. Biol. 2023, 2595, 1–12. [Google Scholar] [PubMed]
- Zhao, Y.; Shu, R.; Liu, J. The development and improvement of ribonucleic acid therapy strategies. Mol. Ther. Nucleic Acids 2021, 26, 997–1013. [Google Scholar] [CrossRef] [PubMed]
- Zogg, H.; Singh, R.; Ro, S. Current advances in RNA therapeutics for human diseases. Int. J. Mol. Sci. 2022, 23, 2736. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Zhong, L.; Weng, Y.; Peng, L.; Huang, Y.; Zhao, Y.; Liang, X.J. Therapeutic siRNA: State of the art. Signal Transduct. Target Ther. 2020, 5, 101. [Google Scholar] [CrossRef] [PubMed]
- Ali Zaidi, S.S.; Fatima, F.; Ali Zaidi, S.A.; Zhou, D.; Deng, W.; Liu, S. Engineering siRNA therapeutics: Challenges and strategies. J. Nanobiotechnol. 2023, 21, 381. [Google Scholar] [CrossRef] [PubMed]
- Moazzam, M.; Zhang, M.; Hussain, A.; Yu, X.; Huang, J.; Huang, Y. The landscape of nanoparticle-based siRNA delivery and therapeutic development. Mol. Ther. 2024, 32, 284–312. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.M. Triple-negative breast cancer: From none to multiple therapeutic targets in two decades. Front. Oncol. 2023, 13, 1244781. [Google Scholar] [CrossRef] [PubMed]
- Egorova, A.; Shubina, A.; Sokolov, D.; Selkov, S.; Baranov, V.; Kiselev, A. CXCR4-targeted modular peptide carriers for efficient anti-vegf siRNA delivery. Int. J. Pharm. 2016, 515, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Egorova, A.; Petrosyan, M.; Maretina, M.; Balashova, N.; Polyanskih, L.; Baranov, V.; Kiselev, A. Anti-angiogenic treatment of endometriosis via anti-VEGFa siRNA delivery by means of peptide-based carrier in a rat subcutaneous model. Gene Ther. 2018, 25, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.C.; Xu, H.; Wang, X.; Wang, T.; Wu, J. miR-34a increases cisplatin sensitivity of osteosarcoma cells in vitro through up-regulation of c-myc and bim signal. Cancer Biomark 2017, 21, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Veys, C.; Benmoussa, A.; Contentin, R.; Duchemin, A.; Brotin, E.; Lafont, J.E.; Saintigny, Y.; Poulain, L.; Denoyelle, C.; Demoor, M.; et al. Tumor suppressive role of miR-342-5p in human chondrosarcoma cells and 3d organoids. Int. J. Mol. Sci. 2021, 22, 5590. [Google Scholar] [CrossRef]
- El Andaloussi, S.; Lakhal, S.; Mager, I.; Wood, M.J. Exosomes for targeted siRNA delivery across biological barriers. Adv. Drug Deliv. Rev. 2013, 65, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Bauer, K.M.; Round, J.L.; O’Connell, R.M. No small matter: Emerging roles for exosomal miRNAs in the immune system. FEBS J. 2022, 289, 4021–4037. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Liu, H.; Lv, X.; Liu, Y.; Wang, X.; Zhang, M.; Zhang, X.; Li, Y.; Lou, Q.; Li, S.; et al. microRNA-16-5p overexpression suppresses proliferation and invasion as well as triggers apoptosis by targeting VEGFa expression in breast carcinoma. Oncotarget 2017, 8, 72400–72410. [Google Scholar] [CrossRef] [PubMed]
- Haghi, M.; Taha, M.F.; Javeri, A. Suppressive effect of exogenous mmiR-16 and miR-34a on tumorigenesis of breast cancer cells. J. Cell Biochem. 2019, 120, 13342–13353. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-López, C.; Berzal-Herranz, A. siRNA Therapeutics: From Bench Lab. to Clinics. Pharmaceuticals 2024, 17, 416. https://doi.org/10.3390/ph17040416
Romero-López C, Berzal-Herranz A. siRNA Therapeutics: From Bench Lab. to Clinics. Pharmaceuticals. 2024; 17(4):416. https://doi.org/10.3390/ph17040416
Chicago/Turabian StyleRomero-López, Cristina, and Alfredo Berzal-Herranz. 2024. "siRNA Therapeutics: From Bench Lab. to Clinics" Pharmaceuticals 17, no. 4: 416. https://doi.org/10.3390/ph17040416
APA StyleRomero-López, C., & Berzal-Herranz, A. (2024). siRNA Therapeutics: From Bench Lab. to Clinics. Pharmaceuticals, 17(4), 416. https://doi.org/10.3390/ph17040416