Advances in IL-7 Research on Tumour Therapy
Abstract
:1. Introduction
1.1. IL-7
1.2. IL-7R
1.3. Methods
1.3.1. Search Strategy
1.3.2. Inclusion and Exclusion Criteria
1.3.3. Study Selection and Quality Assessment
1.3.4. Data Extraction and Analysis
2. Biological Functions of IL-7
2.1. Promotion of Pre-B Cell Growth
2.2. Promote T cell Growth and Development
2.2.1. Promotion of Pre-T Cell Growth and Development
2.2.2. Promotion of T Cell Proliferation
2.2.3. Maintenance of Memory T Cells
2.2.4. Treg Cell Development
Function | Cell Types | Activities |
---|---|---|
Development | CLP | “Transcription of Genes Related to the B Cell Lineage” [46] |
Thymocytes | Recombination at the TCR γ,β loci for VDJ [47] | |
Thymocytes | Preventing premature TCR α chain recombination during the selection of the β chain [48] | |
Double positive thymocytes | Silencing CD4 transcription and activating CD8 transcription leads to the conversion of cells to a single positive state [49] | |
B cell progenitors | Recombination of V segments in heavy-chain locus [7] | |
B cell progenitors | Downregulation of IL-7 receptor expression and completion of Ig light gene rearrangement [50] | |
Survival | Thymocytes (DN cells) | Stimulation of Bcl2 expression [51] |
B cell progenitors | Activation of Jak3/Stat5-dependent pathways [52] | |
Naïve T cells | Expression of pro-survival Bcl2 family | |
Memory T cells | members in mitochondria [53] | |
NK cells | Increased expression of Bcl2 [54] | |
Proliferation | B cell progenitors | Jak3/STAT5 [55] |
Thymocytes | Cooperation between IL-7 and Notch signals [56] | |
Activated T cells | Increase in the production of IL-2 and expression of IL-2 receptors [57] | |
Activation | CD8 Effector cells | Expansion of CD8+ cells and increased cytolytic activity [58] |
Memory T cells | Cytokine production [59] | |
Differentiation | Transition of mature effector T cells to memory cells | The hypothesis of a combination of survival signals with epigenetic modifications has not yet been fully defined [60] |
Homeostatic proliferation | Naïve T cells | The downregulation of p27 cyclin-dependent kinase inhibitor activity leads to increased mTor phosphorylation [61] |
NKT cells | Still undefined | |
Memory T cells | Still undefined |
2.3. Promotion of Lymphangiogenesis
2.4. Other Effects
3. Anti-Tumour Mechanism
3.1. Enhancing Adaptive Immunity
3.2. Reversal of Immunosuppression
3.3. Enhancing Immune Cell Recruitment
3.4. Enhancing the Expressions of Inflammatory Factors
4. IL-7 in Tumour Therapy
4.1. Targeted Therapies
4.1.1. IL-7 Recombinant Protein
4.1.2. IL-7 Gene Vaccine
4.1.3. IL-7 Receptor Antagonists and IL-7 Signalling Pathway Blockers
4.2. Combination Therapy
4.2.1. Combination with Other Cytokines
4.2.2. Combined Anti-Cancer Drug Therapy
4.2.3. Combination of Oncolytic Viruses
4.2.4. Combined CAR-T Cells
4.2.5. Other
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hjerrild, K.J.; Jerzy, R.; Clevenger, W.; Gillis, S.; Cosman, D.; Namen, A.E. Human Interleukin 7: Molecular Cloning and Growth Factor Activity on Human and Murine B-Lineage Cells. Proc. Natl. Acad. Sci. USA 1989, 86, 302–306. [Google Scholar] [CrossRef]
- Barata, J.T.; Durum, S.K.; Seddon, B. Flip the Coin: IL-7 and IL-7R in Health and Disease. Nat. Immunol. 2019, 20, 1584–1593. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Li, W.Q.; Aiello, F.B.; Mazzucchelli, R.; Asefa, B.; Khaled, A.R.; Durum, S.K. Cell Biology of IL-7, a Key Lymphotrophin. Cytokine Growth Factor Rev. 2005, 16, 513–533. [Google Scholar] [CrossRef] [PubMed]
- Leilei, Z.; Kewen, Z.; Biao, H.; Fang, H.; Yigang, W. The Role of Chemokine IL-7 in Tumor and Its Potential Antitumor Immunity. J. Interf. Cytokine Res. 2022, 42, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Winer, H.; Rodrigues, G.O.L.; Hixon, J.A.; Aiello, F.B.; Hsu, T.C.; Wachter, B.T.; Li, W.; Durum, S.K. IL-7: Comprehensive Review. Cytokine 2022, 160, 156049. [Google Scholar] [CrossRef] [PubMed]
- Mackall, C.L.; Fry, T.J.; Gress, R.E. Harnessing the Biology of IL-7 for Therapeutic Application. Nat. Rev. Immunol. 2011, 11, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Baizan-Edge, A.; Stubbs, B.A.; Stubbington, M.J.T.; Bolland, D.J.; Tabbada, K.; Andrews, S.; Corcoran, A.E. IL-7R Signaling Activates Widespread VH and DH Gene Usage to Drive Antibody Diversity in Bone Marrow B Cells. Cell Rep. 2021, 36, 109349. [Google Scholar] [CrossRef]
- Fernandez-Botran, R. Soluble Cytokine Receptors: Basic Immunology and Clinical Applications. Crit. Rev. Clin. Lab. Sci. 1999, 36, 165–224. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R Package and Shiny App for Producing PRISMA 2020-compliant Flow Diagrams, with Interactivity for Optimised Digital Transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef]
- Chou, W.-C.; Levy, D.E.; Lee, C.-K. STAT3 Positively Regulates an Early Step in B-Cell Development. Blood 2006, 108, 3005–3011. [Google Scholar] [CrossRef]
- Kikuchi, K.; Lai, A.Y.; Hsu, C.-L.; Kondo, M. IL-7 Receptor Signaling Is Necessary for Stage Transition in Adult B Cell Development through up-Regulation of EBF. J. Exp. Med. 2005, 201, 1197–1203. [Google Scholar] [CrossRef] [PubMed]
- Dittel, B.N.; LeBien, T.W. The Growth Response to IL-7 during Normal Human B Cell Ontogeny Is Restricted to B-Lineage Cells Expressing CD34. J. Immunol. 1995, 154, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Parrish, Y.K.; Baez, I.; Milford, T.-A.; Benitez, A.; Galloway, N.; Rogerio, J.W.; Sahakian, E.; Kagoda, M.; Huang, G.; Hao, Q.-L.; et al. IL-7 Dependence in Human B Lymphopoiesis Increases during Progression of Ontogeny from Cord Blood to Bone Marrow1. J. Immunol. 2009, 182, 4255–4266. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Chen, Y.; Zeng, H.; Zheng, Y.; Fu, G.; Zhu, W.; Broeckel, U.; Aggarwal, P.; Turner, A.; Neale, G.; et al. PLCγ-Dependent mTOR Signalling Controls IL-7-Mediated Early B Cell Development. Nat. Commun. 2017, 8, 1457. [Google Scholar] [CrossRef] [PubMed]
- Schlissel, M.S.; Durum, S.D.; Muegge, K. The Interleukin 7 Receptor Is Required for T Cell Receptor Gamma Locus Accessibility to the V(D)J Recombinase. J. Exp. Med. 2000, 191, 1045–1050. [Google Scholar] [CrossRef] [PubMed]
- Durum, S.K.; Candèias, S.; Nakajima, H.; Leonard, W.J.; Baird, A.M.; Berg, L.J.; Muegge, K. Interleukin 7 Receptor Control of T Cell Receptor Gamma Gene Rearrangement: Role of Receptor-Associated Chains and Locus Accessibility. J. Exp. Med. 1998, 188, 2233–2241. [Google Scholar] [CrossRef] [PubMed]
- Takada, I.; Hidano, S.; Takahashi, S.; Yanaka, K.; Ogawa, H.; Tsuchiya, M.; Yokoyama, A.; Sato, S.; Ochi, H.; Nakagawa, T.; et al. Transcriptional Coregulator Ess2 Controls Survival of Post-Thymic CD4+ T Cells through the Myc and IL-7 Signaling Pathways. J. Biol. Chem. 2022, 298, 102342. [Google Scholar] [CrossRef] [PubMed]
- Duy, C.; Yu, J.J.; Nahar, R.; Swaminathan, S.; Kweon, S.-M.; Polo, J.M.; Valls, E.; Klemm, L.; Shojaee, S.; Cerchietti, L.; et al. BCL6 Is Critical for the Development of a Diverse Primary B Cell Repertoire. J. Exp. Med. 2010, 207, 1209–1221. [Google Scholar] [CrossRef]
- Shenoy, A.R.; Kirschnek, S.; Häcker, G. IL-15 Regulates Bcl-2 Family Members Bim and Mcl-1 through JAK/STAT and PI3K/AKT Pathways in T Cells. Eur. J. Immunol. 2014, 44, 2500–2507. [Google Scholar] [CrossRef]
- Ta, V.B.T.; de Bruijn, M.J.W.; Matheson, L.; Zoller, M.; Bach, M.P.; Wardemann, H.; Jumaa, H.; Corcoran, A.; Hendriks, R.W. Highly Restricted Usage of Ig H Chain VH14 Family Gene Segments in Slp65-Deficient Pre-B Cell Leukemia in Mice. J. Immunol. 2012, 189, 4842–4851. [Google Scholar] [CrossRef]
- Li, W.Q.; Guszczynski, T.; Hixon, J.A.; Durum, S.K. Interleukin-7 Regulates Bim Proapoptotic Activity in Peripheral T-Cell Survival. Mol. Cell. Biol. 2010, 30, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Su, N.; Shi, S.X.; Zhu, X.; Borazanci, A.; Shi, F.-D.; Gan, Y. Interleukin-7 Expression and Its Effect on Natural Killer Cells in Patients with Multiple Sclerosis. J. Neuroimmunol. 2014, 276, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Ezeh, P.C.; Xu, H.; Lauer, F.T.; Liu, K.J.; Hudson, L.G.; Burchiel, S.W. Monomethylarsonous Acid (MMA+3) Inhibits IL-7 Signaling in Mouse Pre-B Cells. Toxicol. Sci. 2016, 149, 289–299. [Google Scholar] [CrossRef] [PubMed]
- García-Peydró, M.; de Yébenes, V.G.; Toribio, M.L. Notch1 and IL-7 Receptor Interplay Maintains Proliferation of Human Thymic Progenitors While Suppressing Non-T Cell Fates. J. Immunol. 2006, 177, 3711–3720. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liang, S.; Li, X.; Wang, L.; Zhang, J.; Xu, J.; Huo, S.; Cao, X.; Zhong, Z.; Zhong, F. Mutual Enhancement of IL-2 and IL-7 on DNA Vaccine Immunogenicity Mainly Involves Regulations on Their Receptor Expression and Receptor-Expressing Lymphocyte Generation. Vaccine 2015, 33, 3480–3487. [Google Scholar] [CrossRef]
- Tang, J.-C.; Shen, G.-B.; Wang, S.-M.; Wan, Y.-S.; Wei, Y.-Q. IL-7 Inhibits Tumor Growth by Promoting T Cell-Mediated Antitumor Immunity in Meth A Model. Immunol. Lett. 2014, 158, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Vladyka, O.; Vrabcova, P.; Reiterova, M.; Parackova, Z.; Haesler, R.; Sediva, A.; Kalina, T.; Klocperk, A. Th1/Interferon-γ Bias in 22q11.2 Deletion Syndrome Is Driven by Memory T Cells and Exacerbated by IL-7. Clin. Immunol. 2023, 256, 109793. [Google Scholar] [CrossRef] [PubMed]
- Brenchley, J.M.; Douek, D.C.; Ambrozak, D.R.; Chatterji, M.; Betts, M.R.; Davis, L.S.; Koup, R.A. Expansion of Activated Human Naïve T-Cells Precedes Effector Function. Clin. Exp. Immunol. 2002, 130, 432–440. [Google Scholar] [CrossRef]
- Min, H.; Valente, L.A.; Xu, L.; O’Neil, S.M.; Begg, L.R.; Kurtzberg, J.; Filiano, A.J. Improving Thymus Implantation for Congenital Athymia with Interleukin-7. Clin. Transl. Immunol. 2023, 12, e1475. [Google Scholar] [CrossRef]
- Drake, A.; Kaur, M.; Iliopoulou, B.P.; Phennicie, R.; Hanson, A.; Chen, J. Interleukins 7 and 15 Maintain Human T Cell Proliferative Capacity through STAT5 Signaling. PLoS ONE 2016, 11, e0166280. [Google Scholar] [CrossRef]
- Kim, H.K.; Waickman, A.T.; Castro, E.; Flomerfelt, F.A.; Hawk, N.V.; Kapoor, V.; Telford, W.G.; Gress, R.E. Distinct IL-7 Signaling in Recent Thymic Emigrants versus Mature Naïve T Cells Controls T-Cell Homeostasis. Eur. J. Immunol. 2016, 46, 1669–1680. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.; Luckey, M.A.; Park, J.-H. Intrathymic IL-7: The Where, When, and Why of IL-7 Signaling during T Cell Development. Semin. Immunol. 2012, 24, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, H.; Ito, M.; Sudo, T.; Hattori, M.; Kano, S.; Katsura, Y.; Minato, N. IL-7 Promotes Thymocyte Proliferation and Maintains Immunocompetent Thymocytes Bearing Alpha Beta or Gamma Delta T-Cell Receptors in Vitro: Synergism with IL-2. J. Immunol. 1989, 143, 2917–2922. [Google Scholar] [CrossRef] [PubMed]
- Conlon, P.; Morrissey, P.; Nordan, R.; Grabstein, K.; Prickett, K.; Reed, S.; Goodwin, R.; Cosman, D.; Namen, A. Murine Thymocytes Proliferate in Direct Response to Interleukin-7. Blood 1989, 74, 1368–1373. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Huang, J.; Li, W.Q.; Cavinato, T.; Keller, J.R.; Durum, S.K. Role of the Intracellular Domain of IL-7 Receptor in T Cell Development1. J. Immunol. 2007, 178, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Trigueros, C.; Hozumi, K.; Silva-Santos, B.; Bruno, L.; Hayday, A.C.; Owen, M.J.; Pennington, D.J. Pre-TCR Signaling Regulates IL-7 Receptor α Expression Promoting Thymocyte Survival at the Transition from the Double-Negative to Double-Positive Stage. Eur. J. Immunol. 2003, 33, 1968–1977. [Google Scholar] [CrossRef] [PubMed]
- Tani-ichi, S.; Shimba, A.; Wagatsuma, K.; Miyachi, H.; Kitano, S.; Imai, K.; Hara, T.; Ikuta, K. Interleukin-7 Receptor Controls Development and Maturation of Late Stages of Thymocyte Subpopulations. Proc. Natl. Acad. Sci. USA 2013, 110, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Gast, C.E.; Silk, A.D.; Zarour, L.; Riegler, L.; Burkhart, J.G.; Gustafson, K.T.; Parappilly, M.S.; Roh-Johnson, M.; Goodman, J.R.; Olson, B.; et al. Cell Fusion Potentiates Tumor Heterogeneity and Reveals Circulating Hybrid Cells That Correlate with Stage and Survival. Sci. Adv. 2018, 4, eaat7828. [Google Scholar] [CrossRef]
- Lu, L.; Chaudhury, P.; Osmond, D.G. Regulation of Cell Survival during B Lymphopoiesis: Apoptosis and Bcl-2/Bax Content of Precursor B Cells in Bone Marrow of Mice with Altered Expression of IL-7 and Recombinase-Activating Gene-21. J. Immunol. 1999, 162, 1931–1940. [Google Scholar] [CrossRef]
- Lali, F.V.; Crawley, J.; McCulloch, D.A.; Foxwell, B.M.J. A Late, Prolonged Activation of the Phosphatidylinositol 3-Kinase Pathway Is Required for T Cell Proliferation1. J. Immunol. 2004, 172, 3527–3534. [Google Scholar] [CrossRef]
- Geiselhart, L.A.; Humphries, C.A.; Gregorio, T.A.; Mou, S.; Subleski, J.; Komschlies, K.L. IL-7 Administration Alters the CD4:CD8 Ratio, Increases T Cell Numbers, and Increases T Cell Function in the Absence of Activation1. J. Immunol. 2001, 166, 3019–3027. [Google Scholar] [CrossRef] [PubMed]
- ElKassar, N.; Gress, R.E. An Overview of IL-7 Biology and Its Use in Immunotherapy. J. Immunotoxicol. 2010, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Grabstein, K.H.; Namen, A.E.; Shanebeck, K.; Voice, R.F.; Reed, S.G.; Widmer, M.B. Regulation of T Cell Proliferation by IL-7. J. Immunol. 1990, 144, 3015–3020. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-B.; Tong, J.; Zhu, S.; Batista, P.J.; Duffy, E.E.; Zhao, J.; Bailis, W.; Cao, G.; Kroehling, L.; Chen, Y.; et al. m6A mRNA Methylation Controls T Cell Homeostasis by Targeting the IL-7/STAT5/SOCS Pathways. Nature 2017, 548, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, D.; Melão, A.; van Boxtel, R.; Santos, C.I.; Silva, A.; Silva, M.C.; Cardoso, B.A.; Coffer, P.J.; Barata, J.T. STAT5 Is Essential for IL-7–Mediated Viability, Growth, and Proliferation of T-Cell Acute Lymphoblastic Leukemia Cells. Blood Adv. 2018, 2, 2199–2213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, B.; Bai, Q.; Wang, P.; Wei, G.; Li, Z.; Hu, L.; Tian, Q.; Zhou, J.; Huang, Q.; et al. The lncRNA Snhg1-Vps13D Vesicle Trafficking System Promotes Memory CD8 T Cell Establishment via Regulating the Dual Effects of IL-7 Signaling. Signal Transduct. Target. Ther. 2021, 6, 126. [Google Scholar] [CrossRef] [PubMed]
- Kaech, S.M.; Tan, J.T.; Wherry, E.J.; Konieczny, B.T.; Surh, C.D.; Ahmed, R. Selective Expression of the Interleukin 7 Receptor Identifies Effector CD8 T Cells That Give Rise to Long-Lived Memory Cells. Nat. Immunol. 2003, 4, 1191–1198. [Google Scholar] [CrossRef]
- Park, J.-H.; Adoro, S.; Guinter, T.; Erman, B.; Alag, A.S.; Catalfamo, M.; Kimura, M.Y.; Cui, Y.; Lucas, P.J.; Gress, R.E.; et al. Signaling by Intrathymic Cytokines, Not T Cell Antigen Receptors, Specifies CD8 Lineage Choice and Promotes the Differentiation of Cytotoxic-Lineage T Cells. Nat. Immunol. 2010, 11, 257–264. [Google Scholar] [CrossRef]
- Armitage, R.J.; Namen, A.E.; Sassenfeld, H.M.; Grabstein, K.H. Regulation of Human T Cell Proliferation by IL-7. J. Immunol. 1990, 144, 938–941. [Google Scholar] [CrossRef]
- Buentke, E.; Mathiot, A.; Tolaini, M.; Di Santo, J.; Zamoyska, R.; Seddon, B. Do CD8 Effector Cells Need IL-7R Expression to Become Resting Memory Cells? Blood 2006, 108, 1949–1956. [Google Scholar] [CrossRef]
- Chazen, G.D.; Pereira, G.M.; LeGros, G.; Gillis, S.; Shevach, E.M. Interleukin 7 Is a T-Cell Growth Factor. Proc. Natl. Acad. Sci. USA 1989, 86, 5923–5927. [Google Scholar] [CrossRef] [PubMed]
- Schluns, K.S.; Kieper, W.C.; Jameson, S.C.; Lefrançois, L. Interleukin-7 Mediates the Homeostasis of Naïve and Memory CD8 T Cells in Vivo. Nat. Immunol. 2000, 1, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Bevington, S.L.; Keane, P.; Soley, J.K.; Tauch, S.; Gajdasik, D.W.; Fiancette, R.; Matei-Rascu, V.; Willis, C.M.; Withers, D.R.; Cockerill, P.N. IL-2/IL-7-inducible Factors Pioneer the Path to T Cell Differentiation in Advance of Lineage-defining Factors. EMBO J. 2020, 39, e105220. [Google Scholar] [CrossRef] [PubMed]
- Yeon, S.; Halim, L.; Chandele, A.; Perry, C.J.; Kim, S.H.; Kim, S.-U.; Byun, Y.; Yuk, S.H.; Kaech, S.M.; Jung, Y.W. IL-7 Plays a Critical Role for the Homeostasis of Allergen-Specific Memory CD4 T Cells in the Lung and Airways. Sci. Rep. 2017, 7, 11155. [Google Scholar] [CrossRef] [PubMed]
- Surh, C.D.; Sprent, J. Regulation of Mature T Cell Homeostasis. Semin. Immunol. 2005, 17, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tu, H.; Yang, Y.; Jiang, X.; Hu, X.; Luo, Q.; Li, J. Bone Marrow–Derived Mesenchymal Stromal Cells Promote Resistance to Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia via the IL-7/JAK1/STAT5 Pathway. J. Biol. Chem. 2019, 294, 12167–12179. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.L.; Albuquerque, A.S.; Serra-Caetano, A.; Foxall, R.B.; Pires, A.R.; Matoso, P.; Fernandes, S.M.; Ferreira, J.; Cheynier, R.; Victorino, R.M.M.; et al. Human Naïve Regulatory T-Cells Feature High Steady-State Turnover and Are Maintained by IL-7. Oncotarget 2016, 7, 12163–12175. [Google Scholar] [CrossRef] [PubMed]
- Le Campion, A.; Pommier, A.; Delpoux, A.; Stouvenel, L.; Auffray, C.; Martin, B.; Lucas, B. IL-2 and IL-7 Determine the Homeostatic Balance between the Regulatory and Conventional CD4+ T Cell Compartments during Peripheral T Cell Reconstitution. J. Immunol. 2012, 189, 3339–3346. [Google Scholar] [CrossRef]
- Fan, M.Y.; Low, J.S.; Tanimine, N.; Finn, K.K.; Priyadharshini, B.; Germana, S.K.; Kaech, S.M.; Turka, L.A. Differential Roles of IL-2 Signaling in Developing versus Mature Tregs. Cell Rep. 2018, 25, 1204–1213.e4. [Google Scholar] [CrossRef]
- Simonetta, F.; Gestermann, N.; Martinet, K.Z.; Boniotto, M.; Tissières, P.; Seddon, B.; Bourgeois, C. Interleukin-7 Influences FOXP3+CD4+ Regulatory T Cells Peripheral Homeostasis. PLoS ONE 2012, 7, e36596. [Google Scholar] [CrossRef]
- Liu, W.; Putnam, A.L.; Xu-yu, Z.; Szot, G.L.; Lee, M.R.; Zhu, S.; Gottlieb, P.A.; Kapranov, P.; Gingeras, T.R.; de St. Groth, B.F.; et al. CD127 Expression Inversely Correlates with FoxP3 and Suppressive Function of Human CD4+ T Reg Cells. J. Exp. Med. 2006, 203, 1701–1711. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.-G.; Xiong, Y.; Chen, F. NFAT Gene Family in Inflammation and Cancer. Curr. Mol. Med. 2013, 13, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Iolyeva, M.; Aebischer, D.; Proulx, S.T.; Willrodt, A.-H.; Ecoiffier, T.; Häner, S.; Bouchaud, G.; Krieg, C.; Onder, L.; Ludewig, B.; et al. Interleukin-7 Is Produced by Afferent Lymphatic Vessels and Supports Lymphatic Drainage. Blood 2013, 122, 2271–2281. [Google Scholar] [CrossRef] [PubMed]
- Nayar, S.; Campos, J.; Chung, M.M.; Navarro-Núñez, L.; Chachlani, M.; Steinthal, N.; Gardner, D.H.; Rankin, P.; Cloake, T.; Caamaño, J.H.; et al. Bimodal Expansion of the Lymphatic Vessels Is Regulated by the Sequential Expression of IL-7 and Lymphotoxin A1β2 in Newly Formed Tertiary Lymphoid Structures. J. Immunol. 2016, 197, 1957–1967. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Cornelissen, F.; Papazian, N.; Reijmers, R.M.; Llorian, M.; Cupedo, T.; Coles, M.; Seddon, B. IL-7–Dependent Maintenance of ILC3s Is Required for Normal Entry of Lymphocytes into Lymph Nodes. J. Exp. Med. 2018, 215, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Chappaz, S.; Finke, D. The IL-7 Signaling Pathway Regulates Lymph Node Development Independent of Peripheral Lymphocytes. J. Immunol. 2010, 184, 3562–3569. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.Y.; Hong, C.; Park, J.-H. Seeing Is Believing: Illuminating the Source of In Vivo Interleukin-7. Immune Netw. 2011, 11, 1. [Google Scholar] [CrossRef]
- Choi, Y.W.; Kang, M.C.; Seo, Y.B.; Namkoong, H.; Park, Y.; Choi, D.-H.; Suh, Y.S.; Lee, S.-W.; Sung, Y.C.; Jin, H.-T. Intravaginal Administration of Fc-Fused IL7 Suppresses the Cervicovaginal Tumor by Recruiting HPV DNA Vaccine-Induced CD8 T Cells. Clin. Cancer Res. 2016, 22, 5898–5908. [Google Scholar] [CrossRef]
- Neitzke, D.J.; Bowers, J.S.; Andrijauskaite, K.; O’Connell, N.S.; Garrett-Mayer, E.; Wrangle, J.; Li, Z.; Paulos, C.M.; Cole, D.J.; Rubinstein, M.P. Murine Th17 Cells Utilize IL-2 Receptor Gamma Chain Cytokines but Are Resistant to Cytokine Withdrawal-Induced Apoptosis. Cancer Immunol. Immunother. 2017, 66, 737–751. [Google Scholar] [CrossRef]
- Amezcua Vesely, M.C.; Pallis, P.; Bielecki, P.; Low, J.S.; Zhao, J.; Harman, C.C.D.; Kroehling, L.; Jackson, R.; Bailis, W.; Licona-Limón, P.; et al. Effector TH17 Cells Give Rise to Long-Lived TRM Cells That Are Essential for an Immediate Response against Bacterial Infection. Cell 2019, 178, 1176–1188.e15. [Google Scholar] [CrossRef]
- Chen, Y.; Chauhan, S.K.; Tan, X.; Dana, R. Interleukin-7 and -15 Maintain Pathogenic Memory Th17 Cells in Autoimmunity. J. Autoimmun. 2017, 77, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Shireman, J.M.; Gonugunta, N.; Zhao, L.; Pattnaik, A.; Distler, E.; Her, S.; Wang, X.; Das, R.; Galipeau, J.; Dey, M. GM-CSF and IL-7 Fusion Cytokine Engineered Tumor Vaccine Generates Long-term Th-17 Memory Cells and Increases Overall Survival in Aged Syngeneic Mouse Models of Glioblastoma. Aging Cell 2023, 22, e13864. [Google Scholar] [CrossRef] [PubMed]
- Saout, C.L.; Hasley, R.B.; Imamichi, H.; Tcheung, L.; Hu, Z.; Luckey, M.A.; Park, J.-H.; Durum, S.K.; Smith, M.; Rupert, A.W.; et al. Chronic Exposure to Type-I IFN under Lymphopenic Conditions Alters CD4 T Cell Homeostasis. PLoS Pathog. 2014, 10, e1003976. [Google Scholar] [CrossRef] [PubMed]
- Maimela, N.R.; Liu, S.; Zhang, Y. Fates of CD8+ T Cells in Tumor Microenvironment. Comput. Struct. Biotechnol. J. 2018, 17, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Shao, X.; Wu, H.; Su, X.; Wang, G.; Zhu, L.; Ji, Z. Prognostic Impact of Aberrantly Expressed Protein-Coding Gene Associated with Gastric Cancer’s Regulatory T Cells, Based on Online Databases. Altern. Ther. Health Med. 2023, 29, 160. [Google Scholar] [PubMed]
- Dwyer, C.J.; Knochelmann, H.M.; Smith, A.S.; Wyatt, M.M.; Rangel Rivera, G.O.; Arhontoulis, D.C.; Bartee, E.; Li, Z.; Rubinstein, M.P.; Paulos, C.M. Fueling Cancer Immunotherapy with Common Gamma Chain Cytokines. Front. Immunol. 2019, 10, 440788. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.Y.; Kim, N.A.; Lim, D.G.; Eun, C.; Choi, D.; Jeong, S.H. Biophysical Stability of hyFc Fusion Protein with Regards to Buffers and Various Excipients. Int. J. Biol. Macromol. 2016, 86, 622–629. [Google Scholar] [CrossRef]
- Heo, M.; Sohn, J.; Lee, M.A.; Shin, E.-C.; Park, S.-H.; Kim, S.J.; Oh, Y.-K.; Jeong, S.; Woo, J.; Sung, Y.C.; et al. Phase 1b Study of GX-I7, a Long-Acting Interleukin-7, Evaluating the Safety, Pharmacokinetics and Pharmacodynamics Profiles in Patients with Advanced Solid Cancers. J. Immunother. Cancer 2019, 7, 1. [Google Scholar]
- Yu, E.M.; Cho, E.; Singh, R.; Kim, S.-H.; Han, C.; Han, S.; Lee, D.G.; Kim, Y.H.; Kwon, B.S.; Choi, B.K. IL7-Fc Enhances the Efficacy of Adoptive T Cell Therapy under Lymphopenic Conditions in a Murine Melanoma Model. Cells 2021, 10, 2018. [Google Scholar] [CrossRef]
- Ahn, S.; Park, J.; Kim, H.; Heo, M.; Sung, Y.C.; Jeun, S. Compassionate Use of Recombinant Human IL-7-hyFc as a Salvage Treatment for Restoring Lymphopenia in Patients with Recurrent Glioblastoma. Cancer Med. 2022, 12, 6778–6787. [Google Scholar] [CrossRef]
- Campian, J.L.; Ghosh, S.; Kapoor, V.; Yan, R.; Thotala, S.; Jash, A.; Hu, T.; Mahadevan, A.; Rifai, K.; Page, L.; et al. Long-Acting Recombinant Human Interleukin-7, NT-I7, Increases Cytotoxic CD8 T Cells and Enhances Survival in Mouse Glioma Models. Clin. Cancer Res. 2022, 28, 1229–1239. [Google Scholar] [CrossRef] [PubMed]
- Neuendorff, N.R.; Khan, A.; Ullrich, F.; Yates, S.; Devarakonda, S.; Lin, R.J.; von Tresckow, B.; Cordoba, R.; Artz, A.; Rosko, A.E. Cellular Therapies in Older Adults with Hematological Malignancies: A Case-Based, State-of-the-Art Review. J. Geriatr. Oncol. 2024, 15, 101734. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Long, Z.; Jia, R.; Wang, M.; Zhu, D.; Liu, M.; Chen, S.; Zhao, X.; Yang, Q.; Wu, Y.; et al. The Broad Immunomodulatory Effects of IL-7 and Its Application in Vaccines. Front. Immunol. 2021, 12, 680442. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, I.H.; Rahman, S.; Afroze, Y.J.; Shovah, S.T. IUPHAR ECR Review: Cancer-Related Anorexia-Cachexia in Cancer Patients: Pathophysiology and Treatment. Pharmacol. Res. 2024, 203, 107129. [Google Scholar] [CrossRef]
- Costa, R.G.F.; Caro, P.L.; de Matos-Neto, E.M.; Lima, J.D.C.C.; Radloff, K.; Alves, M.J.; Camargo, R.G.; Pessoa, A.F.M.; Simoes, E.; Gama, P.; et al. Cancer Cachexia Induces Morphological and Inflammatory Changes in the Intestinal Mucosa. J. Cachexia Sarcopenia Muscle 2019, 10, 1116–1127. [Google Scholar] [CrossRef]
- Zidi, B.; Vincent-Fabert, C.; Pouyet, L.; Seillier, M.; Vandevelde, A.; N’guessan, P.; Poplineau, M.; Guittard, G.; Mancini, S.J.C.; Duprez, E.; et al. TP53INP1 Deficiency Maintains Murine B Lymphopoiesis in Aged Bone Marrow through Redox-Controlled IL-7R/STAT5 Signaling. Proc. Natl. Acad. Sci. USA 2019, 116, 211–216. [Google Scholar] [CrossRef]
- Castro, C.C.M.; Silva, S.P.; Rabelo, L.N.; Queiroz, J.P.G.; Campos, L.D.; Silva, L.C.; Fiuza, F.P. Age, Education Years, and Biochemical Factors Are Associated with Selective Neuronal Changes in the Elderly Hippocampus. Cells 2022, 11, 4033. [Google Scholar] [CrossRef]
- Cao, L.; Coventry, B.; Goreshnik, I.; Huang, B.; Sheffler, W.; Park, J.S.; Jude, K.M.; Marković, I.; Kadam, R.U.; Verschueren, K.H.G.; et al. Design of Protein-Binding Proteins from the Target Structure Alone. Nature 2022, 605, 551–560. [Google Scholar] [CrossRef]
- Williams, J.H.; Udata, C.; Ganguly, B.J.; Bucktrout, S.L.; Joh, T.; Shannon, M.; Wong, G.Y.; Levisetti, M.; Garzone, P.D.; Meng, X. Model-Based Characterization of the Pharmacokinetics, Target Engagement Biomarkers, and Immunomodulatory Activity of PF-06342674, a Humanized mAb Against IL-7 Receptor-α, in Adults with Type 1 Diabetes. AAPS J. 2020, 22, 23. [Google Scholar] [CrossRef]
- Caushi, J.X.; Zhang, J.; Ji, Z.; Vaghasia, A.; Zhang, B.; Hsiue, E.H.-C.; Mog, B.J.; Hou, W.; Justesen, S.; Blosser, R.; et al. Transcriptional Programs of Neoantigen-Specific TIL in Anti-PD-1-Treated Lung Cancers. Nature 2021, 596, 126–132. [Google Scholar] [CrossRef]
- Courtois, L.; Cabannes-Hamy, A.; Kim, R.; Delecourt, M.; Pinton, A.; Charbonnier, G.; Feroul, M.; Smith, C.; Tueur, G.; Pivert, C.; et al. IL-7 Receptor Expression Is Frequent in T-Cell Acute Lymphoblastic Leukemia and Predicts Sensitivity to JAK Inhibition. Blood 2023, 142, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Sereti, I.; Estes, J.D.; Thompson, W.L.; Morcock, D.R.; Fischl, M.A.; Croughs, T.; Beq, S.; Lafaye de Micheaux, S.; Yao, M.D.; Ober, A.; et al. Decreases in Colonic and Systemic Inflammation in Chronic HIV Infection after IL-7 Administration. PLoS Pathog. 2014, 10, e1003890. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.A.; Watson, R.A.; Tong, O.; Ye, W.; Nassiri, I.; Gilchrist, J.J.; de los Aires, A.V.; Sharma, P.K.; Koturan, S.; Cooper, R.A.; et al. IL7 Genetic Variation and Toxicity to Immune Checkpoint Blockade in Patients with Melanoma. Nat. Med. 2022, 28, 2592–2600. [Google Scholar] [CrossRef] [PubMed]
- Tasaki, M.; Yamashita, M.; Arai, Y.; Nakamura, T.; Nakao, S. IL-7 Coupled with IL-12 Increases Intratumoral T Cell Clonality, Leading to Complete Regression of Non-Immunogenic Tumors. Cancer Immunol. Immunother. 2021, 70, 3557–3571. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Liu, Y.; Hu, R.; Su, M.; Rood, D.; Lai, L. In Vivo Antitumor Activity of a Recombinant IL7/IL15 Hybrid Cytokine in Mice. Mol. Cancer Ther. 2016, 15, 2413–2421. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Niu, J.; Wang, L.; Zhang, W.; He, X.; Zhang, X.; Hu, W.; Tang, Y.; Yang, H.; Sun, J.; et al. An Injectable Hydrogel Microsphere-Integrated Training Court to Inspire Tumor-Infiltrating T Lymphocyte Potential. Biomaterials 2024, 306, 122475. [Google Scholar] [CrossRef]
- Ke, B.; Wei, T.; Huang, Y.; Gong, Y.; Wu, G.; Liu, J.; Chen, X.; Shi, L. Interleukin-7 Resensitizes Non-Small-Cell Lung Cancer to Cisplatin via Inhibition of ABCG2. Mediat. Inflamm. 2019, 2019, 7241418. [Google Scholar] [CrossRef]
- Pachynski, R.K.; Morishima, C.; Szmulewitz, R.; Harshman, L.; Appleman, L.; Monk, P.; Bitting, R.L.; Kucuk, O.; Millard, F.; Seigne, J.D.; et al. IL-7 Expands Lymphocyte Populations and Enhances Immune Responses to Sipuleucel-T in Patients with Metastatic Castration-Resistant Prostate Cancer (mCRPC). J. Immunother. Cancer 2021, 9, e002903. [Google Scholar] [CrossRef]
- Gou, H.-F.; Huang, J.; Shi, H.-S.; Chen, X.; Wang, Y.-S. Chemo-Immunotherapy with Oxaliplatin and Interleukin-7 Inhibits Colon Cancer Metastasis in Mice. PLoS ONE 2014, 9, e85789. [Google Scholar] [CrossRef]
- Gastman, B.; Fling, S.; Ansstas, G.; Funchain, P.; Silk, A.W.; Friedlander, P.A.; Curti, B.D.; Xing, Y.; Nguyen, O.; Christensen, A.; et al. A Phase 1b/2a Study of Safety and Efficacy of NT-I7 in Combination with Anti-PD-L1 (Atezolizumab) in Patients with Anti-PD-1/PD-L1 Naïve or Relapsed/Refractory (R/R) High-Risk Skin Cancers: The Phase 1b Report. J. Clin. Oncol. 2022, 40, 9561. [Google Scholar] [CrossRef]
- Burns, C.; Kubicki, S.; Nguyen, Q.-B.; Aboul-Fettouh, N.; Wilmas, K.M.; Chen, O.M.; Doan, H.Q.; Silapunt, S.; Migden, M.R. Advances in Cutaneous Squamous Cell Carcinoma Management. Cancers 2022, 14, 3653. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Kong, L.; Kim, S.; Lee, S.; Oh, S.; Jo, S.; Jang, I.; Kim, T.-D. The Role of IL-7 and IL-7R in Cancer Pathophysiology and Immunotherapy. Int. J. Mol. Sci. 2022, 23, 10412. [Google Scholar] [CrossRef] [PubMed]
- Dower, W.J.; Park, A.I.; Bakker, A.V.; Cwirla, S.E.; Pongtornpipat, P.; Williams, B.M.; Joshi, P.; Baxter, B.A.; Needels, M.C.; Barrett, R.W. A Mechanistically Novel Peptide Agonist of the IL-7 Receptor That Addresses Limitations of IL-7 Cytokine Therapy. PLoS ONE 2023, 18, e0286834. [Google Scholar] [CrossRef] [PubMed]
- Ltd, B.P.G. Correction: Oncolytic Virus Expressing PD-1 Inhibitors Activates a Collaborative Intratumoral Immune Response to Control Tumor and Synergizes with CTLA-4 or TIM-3 Blockade. J. Immunother. Cancer 2024, 12, e004762corr1. [Google Scholar] [CrossRef]
- Shalhout, S.Z.; Miller, D.M.; Emerick, K.S.; Kaufman, H.L. Therapy with Oncolytic Viruses: Progress and Challenges. Nat. Rev. Clin. Oncol. 2023, 20, 160–177. [Google Scholar] [CrossRef]
- Kudling, T.V.; Clubb, J.H.A.; Quixabeira, D.C.A.; Santos, J.M.; Havunen, R.; Kononov, A.; Heiniö, C.; Cervera-Carrascon, V.; Pakola, S.; Basnet, S.; et al. Local Delivery of Interleukin 7 with an Oncolytic Adenovirus Activates Tumor-Infiltrating Lymphocytes and Causes Tumor Regression. Oncoimmunology 2022, 11, 2096572. [Google Scholar] [CrossRef] [PubMed]
- Nakao, S.; Arai, Y.; Tasaki, M.; Yamashita, M.; Murakami, R.; Kawase, T.; Amino, N.; Nakatake, M.; Kurosaki, H.; Mori, M.; et al. Intratumoral Expression of IL-7 and IL-12 Using an Oncolytic Virus Increases Systemic Sensitivity to Immune Checkpoint Blockade. Sci. Transl. Med. 2020, 12, eaax7992. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, S.; Cai, L.; Duan, H.; Li, Y.; Yang, J.; Wang, Y.; Liu, B.; Dong, S.; Fang, Z.; et al. A Novel Cocktail Therapy Based on Quintuplet Combination of Oncolytic Herpes Simplex Virus-2 Vectors Armed with Interleukin-12, Interleukin-15, GM-CSF, PD1v, and IL-7 × CCL19 Results in Enhanced Antitumor Efficacy. Virol. J. 2022, 19, 74. [Google Scholar] [CrossRef]
- Tokunaga, Y.; Sasaki, T.; Goto, S.; Adachi, K.; Sakoda, Y.; Tamada, K. Enhanced Antitumor Responses of Tumor Antigen-Specific TCR T Cells Genetically Engineered to Produce IL7 and CCL19. Mol. Cancer Ther. 2022, 21, 138–148. [Google Scholar] [CrossRef]
- He, C.; Zhou, Y.; Li, Z.; Farooq, M.A.; Ajmal, I.; Zhang, H.; Zhang, L.; Tao, L.; Yao, J.; Du, B.; et al. Co-Expression of IL-7 Improves NKG2D-Based CAR T Cell Therapy on Prostate Cancer by Enhancing the Expansion and Inhibiting the Apoptosis and Exhaustion. Cancers 2020, 12, 1969. [Google Scholar] [CrossRef]
- Goto, S.; Sakoda, Y.; Adachi, K.; Sekido, Y.; Yano, S.; Eto, M.; Tamada, K. Enhanced Anti-Tumor Efficacy of IL-7/CCL19-Producing Human CAR-T Cells in Orthotopic and Patient-Derived Xenograft Tumor Models. Cancer Immunol. Immunother. 2021, 70, 2503–2515. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zheng, M.; Zhang, Z.; Tang, X.; Chen, Y.; Peng, A.; Peng, X.; Tong, A.; Zhou, L. Interleukin-7-Loaded Oncolytic Adenovirus Improves CAR-T Cell Therapy for Glioblastoma. Cancer Immunol. Immunother. 2021, 70, 2453–2465. [Google Scholar] [CrossRef] [PubMed]
- Duan, D.; Wang, K.; Wei, C.; Feng, D.; Liu, Y.; He, Q.; Xu, X.; Wang, C.; Zhao, S.; Lv, L.; et al. The BCMA-Targeted Fourth-Generation CAR-T Cells Secreting IL-7 and CCL19 for Therapy of Refractory/Recurrent Multiple Myeloma. Front. Immunol. 2021, 12, 609421. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, Y.; Liu, W.; Li, X. Engineered IL-7 Receptor Enhances the Therapeutic Effect of AXL-CAR-T Cells on Triple-Negative Breast Cancer. BioMed Res. Int. 2020, 2020, e4795171. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Su, J.; Sun, R.; Sun, Y.; Wang, Y.; Dong, Y.; Shi, B.; Jiang, H.; Li, Z. Coexpression of IL7 and CCL21 Increases Efficacy of CAR-T Cells in Solid Tumors without Requiring Preconditioned Lymphodepletion. Clin. Cancer Res. 2020, 26, 5494–5505. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Xi, J.; Liu, Q.; Wang, C.; Jiang, Z.; Yue, S.-Y.; Shi, L.; Rong, Y. Co-Expression of IL-7 and PH20 Promote Anti-GPC3 CAR-T Tumour Suppressor Activity in Vivo and in Vitro. Liver Int. 2021, 41, 1033–1043. [Google Scholar] [CrossRef] [PubMed]
- Pang, N.; Shi, J.; Qin, L.; Chen, A.; Tang, Y.; Yang, H.; Huang, Y.; Wu, Q.; Li, X.; He, B.; et al. IL-7 and CCL19-Secreting CAR-T Cell Therapy for Tumors with Positive Glypican-3 or Mesothelin. J. Hematol. Oncol. 2021, 14, 118. [Google Scholar] [CrossRef]
- Joedicke, J.J.; Großkinsky, U.; Gerlach, K.; Künkele, A.; Höpken, U.E.; Rehm, A. Accelerating Clinical-Scale Production of BCMA CAR T Cells with Defined Maturation Stages. Mol. Ther.—Methods Clin. Dev. 2022, 24, 181–198. [Google Scholar] [CrossRef]
- Swan, S.L.; Mehta, N.; Ilich, E.; Shen, S.H.; Wilkinson, D.S.; Anderson, A.R.; Segura, T.; Sanchez-Perez, L.; Sampson, J.H.; Bellamkonda, R.V. IL7 and IL7 Flt3L Co-Expressing CAR T Cells Improve Therapeutic Efficacy in Mouse EGFRvIII Heterogeneous Glioblastoma. Front. Immunol. 2023, 14, 1085547. [Google Scholar] [CrossRef]
- Belarif, L.; Mary, C.; Jacquemont, L.; Mai, H.L.; Danger, R.; Hervouet, J.; Minault, D.; Thepenier, V.; Nerrière-Daguin, V.; Nguyen, E.; et al. IL-7 Receptor Blockade Blunts Antigen-Specific Memory T Cell Responses and Chronic Inflammation in Primates. Nat. Commun. 2018, 9, 4483. [Google Scholar] [CrossRef]
- Kann, M.C.; Schneider, E.M.; Almazan, A.J.; Lane, I.C.; Bouffard, A.A.; Supper, V.M.; Takei, H.N.; Tepper, A.; Leick, M.B.; Larson, R.C.; et al. Chemical Genetic Control of Cytokine Signaling in CAR-T Cells Using Lenalidomide-Controlled Membrane-Bound Degradable IL-7. Leukemia 2023, 38, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Liu, H.; Lei, W.; Chen, P.; Zhao, A.; Yuan, X.; Gao, J.; Qian, W. Efficacy and safety of fourth-generation CD19 CAR-T expressing IL7 and CCL19 along with PD-1 monoclonal antibody for relapsed or refractory large B-cell lymphoma. Zhonghua Xue Ye Xue Za Zhi 2023, 44, 820–824. [Google Scholar] [PubMed]
- Wang, S.-Y.; Scurti, G.M.; Dalheim, A.V.; Quinn, S.; Stiff, P.J.; Nishimura, M.I. Nonactivated and IL-7 Cultured CD19-Specific CAR T Cells Are Enriched in Stem Cell Phenotypes and Functionally Superior. Blood Adv. 2023, 8, 324–335. [Google Scholar] [CrossRef]
- Adachi, K.; Kano, Y.; Nagai, T.; Okuyama, N.; Sakoda, Y.; Tamada, K. IL-7 and CCL19 Expression in CAR-T Cells Improves Immune Cell Infiltration and CAR-T Cell Survival in the Tumor. Nat. Biotechnol. 2018, 36, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.-L.; Xiao, S.; Lin, Z.; Bai, J.; Li, W.; Song, Z.; Zhou, Y.; Lu, B.; Wu, W.-Z. GPC3-IL7-CCL19-CAR-T Primes Immune Microenvironment Reconstitution for Hepatocellular Carcinoma Therapy. Cell Biol. Toxicol. 2023, 39, 3101–3119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ye, X.; Wen, J.; Cai, Z.; Li, Y.; Zhang, M.; Shen, L.; Cai, J. Anti-HER2 scFv-CCL19-IL7 Recombinant Protein Inhibited Gastric Tumor Growth in Vivo. Sci. Rep. 2022, 12, 10461. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-Y.; Moore, T.V.; Dalheim, A.V.; Scurti, G.M.; Nishimura, M.I. Melanoma Reactive TCR-Modified T Cells Generated without Activation Retain a Less Differentiated Phenotype and Mediate a Superior in Vivo Response. Sci. Rep. 2021, 11, 13327. [Google Scholar] [CrossRef]
- Luo, M.; Gong, W.; Zhang, Y.; Li, H.; Ma, D.; Wu, K.; Gao, Q.; Fang, Y. New Insights into the Stemness of Adoptively Transferred T Cells by Γc Family Cytokines. Cell Commun. Signal 2023, 21, 347. [Google Scholar] [CrossRef]
- Greenberg, Z.J.; Monlish, D.A.; Bartnett, R.L.; Yang, Y.; Shen, G.; Li, W.; Bednarski, J.J.; Schuettpelz, L.G. The Tetraspanin CD53 Regulates Early B Cell Development by Promoting IL-7R Signaling. J. Immunol. 2020, 204, 58–67. [Google Scholar] [CrossRef]
- Merchant, M.S.; Bernstein, D.; Amoako, M.; Baird, K.; Fleisher, T.A.; Morre, M.; Steinberg, S.M.; Sabatino, M.; Stroncek, D.F.; Venkatasan, A.M.; et al. Adjuvant Immunotherapy to Improve Outcome in High-Risk Pediatric Sarcomas. Clin. Cancer Res. 2016, 22, 3182–3191. [Google Scholar] [CrossRef]
- Volz, B.; Schmidt, M.; Heinrich, K.; Kapp, K.; Schroff, M.; Wittig, B. Design and Characterization of the Tumor Vaccine MGN1601, Allogeneic Fourfold Gene-Modified Vaccine Cells Combined with a TLR-9 Agonist. Mol. Ther. Oncolytics 2016, 3, 15023. [Google Scholar] [CrossRef]
- Van der Sijde, F.; Dik, W.A.; Mustafa, D.A.M.; Vietsch, E.E.; Besselink, M.G.; Debets, R.; Koerkamp, B.G.; Haberkorn, B.C.M.; Homs, M.Y.V.; Janssen, Q.P.; et al. Serum Cytokine Levels Are Associated with Tumor Progression during FOLFIRINOX Chemotherapy and Overall Survival in Pancreatic Cancer Patients. Front. Immunol. 2022, 13, 898498. [Google Scholar] [CrossRef]
Cure | Combination | Cancers | Phases | NCT |
---|---|---|---|---|
IL-7 | Bladder Acute Myeloid Leukaemia | I | NCT04054752 | |
IL-7 | Atezolizumab | Bladder Urothelial Carcinoma | II | NCT03513952 |
NT-I7 | CESC | I | NCT04588038 | |
Pembrolizumab | Solid Tumours | I/II | NCT04332653 | |
Atezolizumab | NLCSC | II | NCT04594811 | |
Nivolumab | Gastro-Oesophageal Junction | I | NCT04594811 | |
Placebo | GBM | I | NCT02659800 | |
Placebo + Temozolomide + Radiation therapy | GBM | I/II | NCT03687957 | |
Atezolizumab | Skin Cancers | I/II | NCT03901573 | |
IL-7-expressing CAR-T cells | CCL19 | Advanced Malignant Solid Tumour | I | NCT03932565 |
CCL19 | Hepatocarcinoma | I | NCT03198546 | |
PD1 antibody | Lymphoma | I | NCT04381741 | |
C7R-CAR-T | Cyclophosphamide | High-Grade Glioma | I | NCT04099797 |
Cyclophosphamide + Fludarabine | Neuroblastoma Uveal Melanoma Breast Cancer | I | NCT03635632 |
Vaccine | Trial ID | Phase | Conditions | Combination Adjuvant | Study Results | Reference |
---|---|---|---|---|---|---|
Sipuleucel-T | NCT01881867 | II | Metastatic castration- resistant prostate cancer | None | Treatment with IL-7 was well tolerated. No improvements were observed in the IL-7 treatment group in terms of PFS or OS. | [98] |
DC vaccination | NCT00923351 | I/II | Paediatric sarcomas | None | No grade 3/4 AEs were reported. No difference in operating system (OS) was observed between subjects treated with or without IL-7. | [130] |
MGN1601 vaccine | NCT00091338 | I | Melanoma | Incomplete Freund’s adjuvant | NA | [131] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, C.; Zhang, X.; Zhang, X.; Wang, D.; Han, S.; Ma, Z. Advances in IL-7 Research on Tumour Therapy. Pharmaceuticals 2024, 17, 415. https://doi.org/10.3390/ph17040415
Fu C, Zhang X, Zhang X, Wang D, Han S, Ma Z. Advances in IL-7 Research on Tumour Therapy. Pharmaceuticals. 2024; 17(4):415. https://doi.org/10.3390/ph17040415
Chicago/Turabian StyleFu, Chunxue, Xinqiang Zhang, Xinyu Zhang, Dan Wang, Shuxin Han, and Zhenghai Ma. 2024. "Advances in IL-7 Research on Tumour Therapy" Pharmaceuticals 17, no. 4: 415. https://doi.org/10.3390/ph17040415
APA StyleFu, C., Zhang, X., Zhang, X., Wang, D., Han, S., & Ma, Z. (2024). Advances in IL-7 Research on Tumour Therapy. Pharmaceuticals, 17(4), 415. https://doi.org/10.3390/ph17040415