Synthesis, In Vitro Biological Evaluation and Molecular Modeling of Benzimidazole-Based Pyrrole/Piperidine Hybrids Derivatives as Potential Anti-Alzheimer Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
- (1)
- Substrate (III) was put in ethanol and triethylamine, followed by the addition of 1H-pyrrole-3-carbaldehyde. The reaction mixture was refluxed and stirred for 7 h to obtain targeted benzimidazole-based pyrrole derivatives (1–13).
- (2)
- Further, the intermediate (III) was reacted with piperidine-1-carbaldehyde in ethanol along with a catalytic amount of triethylamine, and the resulting solid residue was heated over a sand bath for 8 h to afford targeted benzimidazole-based piperidine derivatives (14–26) (Scheme 1).
2.2. In Vitro Acetylcholinesterase and Butyrylcholinesterase Activities
Structure–Activity Relationship (SAR) Studies for Acetylcholinesterase and Butyrylcholinesterase Activities
2.3. In Silico Molecular Docking Approach
2.3.1. Docking Study for Benzimidazole-Based Pyrrole Analogs
2.3.2. Docking Study for Benzimidazole-Based Piperidine Analogs
2.4. ADME Analysis
3. Material and Methods
3.1. General Information
3.2. General Procedure for the Synthesis of Benzimidazole-Based Pyrrole/Piperidine Derivatives
3.3. Spectral Analysis (1–26)
3.3.1. 2-(((E)-2-(((E)-(1H-pyrrol-3-yl)methylene)hydrazono)-2-(p-tolyl)ethyl)thio)-5-methoxy-1H-benzo[d]imidazole (1)
3.3.2. 2-(((E)-2-(((E)-(1H-pyrrol-3-yl)methylene)hydrazono)-2-(4-methoxyphenyl)ethyl)thio)-5-methoxy-1H-benzo[d]imidazole (2)
3.3.3. 2-(((E)-2-(((E)-(1H-pyrrol-3-yl)methylene)hydrazono)-2-([1,1′-biphenyl]-4-yl)ethyl)thio)-5-methoxy-1H-benzo[d]imidazole (3)
3.3.4. 2-(((E)-2-(((E)-(1H-pyrrol-3-yl)methylene)hydrazono)-2-(2-methoxyphenyl)ethyl)thio)-5-methoxy-1H-benzo[d]imidazole (4)
3.3.5. 2-(((E)-2-(((E)-(1H-pyrrol-3-yl)methylene)hydrazono)-2-([1,1′-biphenyl]-4-yl)ethyl)thio)-1H-benzo[d]imidazole (5)
3.3.6. 2-(((E)-2-(((E)-(1H-pyrrol-3-yl)methylene)hydrazono)-2-(3-nitrophenyl)ethyl)thio)-1H-benzo[d]imidazole (6)
3.3.7. 2-(((E)-2-(((E)-(1H-pyrrol-3-yl)methylene)hydrazono)-2-(p-tolyl)ethyl)thio)-1H-benzo[d]imidazole (7)
3.3.8. 2-(((E)-2-(((E)-(1H-pyrrol-3-yl)methylene)hydrazono)-2-(2-methoxyphenyl)ethyl)thio)-1H-benzo[d]imidazole (8)
3.3.9. 2-(((E)-2-(((E)-(1H-pyrrol-3-yl)methylene)hydrazono)-2-(4-methoxyphenyl)ethyl)thio)-1H-benzo[d]imidazole (9)
3.3.10. 2-(((E)-2-(((E)-(1H-pyrrol-3-yl)methylene)hydrazono)-2-(3-nitrophenyl)ethyl)thio)-5-nitro-1H-benzo[d]imidazole (10)
3.3.11. 2-(((E)-2-(((E)-(1H-pyrrol-3-yl)methylene)hydrazono)-2-([1,1′-biphenyl]-4-yl)ethyl)thio)-5-nitro-1H-benzo[d]imidazole (11)
3.3.12. 2-(((E)-2-(((E)-(1H-pyrrol-3-yl)methylene)hydrazono)-2-(p-tolyl)ethyl)thio)-5-methoxy-1H-benzo[d]imidazole (12)
3.3.13. 2-(((E)-2-(((E)-(1H-pyrrol-3-yl)methylene)hydrazono)-2-(p-tolyl)ethyl)thio)-5-nitro-1H-benzo[d]imidazole (13)
3.3.14. 2-(((E)-2-([1,1′-biphenyl]-4-yl)-2-(((E)-piperidin-1-ylmethylene)hydrazono)ethyl)thio)-5-methoxy-1H-benzo[d]imidazole (14)
3.3.15. 5-methoxy-2-(((E)-2-(2-methoxyphenyl)-2-(((E)-piperidin-1-ylmethylene)hydrazono) ethyl)thio)-1H-benzo[d]imidazole (15)
3.3.16. 5-methoxy-2-(((E)-2-(4-methoxyphenyl)-2-(((E)-piperidin-1ylmethylene) hydrazono)ethyl)thio)-1H-benzo[d]imidazole (16)
3.3.17. 5-methoxy-2-(((E)-2-(3-nitrophenyl)-2-(((E)-piperidin-1-ylmethylene)hydrazono)ethyl) thio)-1H-benzo[d]imidazole (17)
3.3.18. 5-methoxy-2-(((E)-2-(((E)-piperidin-1-ylmethylene)hydrazono)-2-(p-tolyl)ethyl)thio)-1H-benzo[d]imidazole (18)
3.3.19. 2-(((E)-2-(((E)-piperidin-1-ylmethylene)hydrazono)-2-(p-tolyl)ethyl)thio)-1H-benzo[d]imidazole (19)
3.3.20. 2-(((E)-2-(3-nitrophenyl)-2-(((E)-piperidin-1-ylmethylene)hydrazono)ethyl)thio)-1H-benzo[d]imidazole (20)
3.3.21. 2-(((E)-2-(2-methoxyphenyl)-2-(((E)-piperidin-1-ylmethylene)hydrazono)ethyl)thio)-1H-benzo[d]imidazole (21)
3.3.22. 2-(((E)-2-(4-methoxyphenyl)-2-(((E)-piperidin-1-ylmethylene)hydrazono)ethyl)thio)-1H-benzo[d]imidazole (22)
3.3.23. 2-(((E)-2-([1,1′-biphenyl]-3-yl)-2-(((E)-piperidin-1-ylmethylene)hydrazono)ethyl)thio)-5-nitro-1H-benzo[d]imidazole (23)
3.3.24. 2-(((E)-2-(4-methoxyphenyl)-2-(((E)-piperidin-1-ylmethylene)hydrazono)ethyl)thio)-5-nitro-1H-benzo[d]imidazole (24)
3.3.25. 5-nitro-2-(((E)-2-(((E)-piperidin-1-ylmethylene)hydrazono)-2-(p-tolyl)ethyl)thio)-1H-benzo[d]imidazole (25)
3.3.26. 5-nitro-2-(((E)-2-(2-nitrophenyl)-2-(((E)-piperidin-1-ylmethylene)hydrazono)ethyl)thio)-1H-benzo[d]imidazole (26)
3.4. Acetylcholinesterase and Butyrylcholinesterase Inhibition Assays
3.5. Assay Protocol for Molecular Docking Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jann, M.W. Preclinical pharmacology of metrifonate. Pharmacotherapy 1998, 18, 55–67. [Google Scholar] [CrossRef]
- Adams, R.L.; Craig, P.L.; Parsons, O.A. Neuropsychology of dementia. Neurol. Clin. 1986, 4, 387–404. [Google Scholar] [CrossRef]
- Aisen, P.S.; Davis, K.L. The search for disease-modifying treatment for Alzheimer’s disease. Neurology 1997, 48 (Suppl. 6), 35S–41S. [Google Scholar] [CrossRef]
- Bachman, D.L.; Wolf, P.A.; Linn, R.; Knoefel, J.E.; Cobbs, J.; Belanger, A.; D’agostino, R.B.; White, L.R. Prevalence of dementia and probable senile dementia of the Alzheimer type in the Framingham Study. Neurology 1992, 42, 115. [Google Scholar] [CrossRef] [PubMed]
- Terry, R.D.; Katzman, R.K. Senile dementia of the Alzheimer type. Ann. Neurol. 1983, 14, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Hebert, L.E.; Scherr, P.A.; Beckett, L.A.; Albert, M.S.; Pilgrim, D.M.; Chown, M.J.; Funkenstein, H.H.; Evans, D.A. Age-specific incidence of Alzheimer’s disease in a community population. JAMA 1995, 273, 1354–1359. [Google Scholar] [CrossRef] [PubMed]
- Beard, C.M.; Kokmen, E.; O’brien, P.C.; Kurland, L.T. The prevalence of dementia is changing over time in Rochester, Minnesota. Neurology 1995, 45, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Arnold, S.E.; Kumar, A. Reversible dementias. Med. Clin. North Am. 1993, 77, 215–230. [Google Scholar] [CrossRef] [PubMed]
- Schneider, L.S. Treatment of Alzheimer’s disease with cholinesterase inhibitors. Clin. Geriatr. Med. 2001, 17, 337–358. [Google Scholar] [CrossRef] [PubMed]
- Francis, P.T.; Nordberg, A.; Arnold, S.E. A preclinical view of cholinesterase inhibitors in neuroprotection: Do they provide more than symptomatic benefits in Alzheimer’s disease? Trends Pharmacol. Sci. 2005, 26, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Sethy, S.; Mandal, S.K.; Ewies, E.F.; Dhiman, N.; Garg, A. Synthesis, Characterization and Biological Evaluation of Benzimidazole and Benzindazole Derivatives as Anti-hypertensive Agents. Egypt J. Chem. 2021, 64, 3659–3664. [Google Scholar] [CrossRef]
- Wu, Z.; Xia, M.B.; Bertsetseg, D.; Wang, Y.H.; Bao, X.L.; Zhu, W.B.; Chen, P.R.; Tang, H.S.; Yan, Y.J.; Chen, Z.L. Design, synthesis and biological evaluation of novel fluoro-substituted benzimidazole derivatives with anti-hypertension activities. Bioorg. Chem. 2020, 101, 104042. [Google Scholar] [CrossRef]
- Hussain, R.; Rahim, F.; Ullah, H.; Khan, S.; Sarfraz, M.; Iqbal, R.; Suleman, F.; Al-Sadoon, M.K. Design, Synthesis, In Vitro Biological Evaluation and In Silico Molecular Docking Study of Benzimidazole-Based Oxazole Analogues: A Promising Acetylcholinesterase and Butyrylcholinesterase Inhibitors. Molecules 2023, 28, 7015. [Google Scholar] [CrossRef] [PubMed]
- Marinescu, M. Benzimidazole-Triazole Hybrids as Antimicrobial and Antiviral Agents: A Systematic Review. Antibiotics 2023, 12, 1220. [Google Scholar] [CrossRef]
- Patagar, D.N.; Batakurki, S.R.; Kusanur, R.; Patra, S.M.; Saravanakumar, S.; Ghate, M. Synthesis, antioxidant and anti-diabetic potential of novel benzimidazole substituted coumarin-3-carboxamides. J. Mol. Struct. 2023, 1274, 134589. [Google Scholar] [CrossRef]
- Hayat, S.; Ullah, H.; Rahim, F.; Ullah, I.; Taha, M.; Iqbal, N.; Khan, F.; Khan, M.S.; Shah, S.A.A.; Wadood, A.; et al. Synthesis, biological evaluation and molecular docking study of benzimidazole derivatives as α-glucosidase inhibitors and anti-diabetes candidates. J. Mol. Struct. 2023, 1276, 134774. [Google Scholar] [CrossRef]
- Rashid, M. Design, synthesis and ADMET prediction of bis-benzimidazole as anticancer agent. Bioorg. Chem. 2020, 96, 103576. [Google Scholar] [CrossRef] [PubMed]
- Bansal, Y.; Silakari, O.; Lapinsky, D.J.; Kusayanagi, T.; Tsukuda, S.; Shimura, S.; Manita, D.; Iwakiri, K.; Kamisuki, S.; Takakusagi, Y.; et al. The therapeutic journey of benzimidazoles: A review. Bioorg. Med. Chem. 2012, 20, 6199–6236. [Google Scholar] [CrossRef]
- Carvalho, R.C.; Martins, W.A.; Silva, T.P.; Kaiser, C.R.; Bastos, M.M.; Pinheiro, L.C.; Krettli, A.U.; Boechat, N. New pentasubstituted pyrrole hybrid atorvastatin–quinoline derivatives with antiplasmodial activity. Bioorg Med. Chem. Lett. 2016, 26, 1881–1884. [Google Scholar] [CrossRef]
- Ramadan, A.A.; Elbakry, A.M.; Esmaeil, A.H.; Khaleel, S.A. Pharmaceutical and pharmacokinetic evaluation of novel rectal mucoadhesive hydrogels containing tolmetin sodium. J. Pharm. Investig. 2018, 48, 673–683. [Google Scholar] [CrossRef]
- Wang, Z.; Li, B.; Zhou, L.; Yu, S.; Su, Z.; Song, J.; Sun, Q.; Sha, O.; Wang, X.; Jiang, W.; et al. Prodigiosin inhibits Wnt/β-catenin signaling and exerts anticancer activity in breast cancer cells. Proc. Natl. Acad. Sci. USA 2016, 113, 13150–13155. [Google Scholar] [CrossRef]
- Vardanyan, R. Classes of Piperidine-Based Drugs. In Piperidine-Based Drug Discovery; Elsevier: Amsterdam, The Netherlands, 2017; pp. 299–332. [Google Scholar]
- Goel, P.; Alam, O.; Naim, M.J.; Nawaz, F.; Iqbal, M.; Alam, M.I. Recent advancement of piperidine moiety in treatment of cancer- A review. Eur. J. Med. Chem. 2018, 157, 480–502. [Google Scholar] [CrossRef]
- Martens, U.M. (Ed.) Small Molecules in Hematology; Springer: Berlin/Heidelberg, Germany, 2018; p. 1. [Google Scholar]
- Milling, R.V.; Grimm, D.; Krüger, M.; Grosse, J.; Kopp, S.; Bauer, J.; Infanger, M.; Wehland, M. Pazopanib, Cabozantinib, and Vandetanib in the Treatment of Progressive Medullary Thyroid Cancer with a Special Focus on the Adverse Effects on Hypertension. Int. J. Mol. Sci. 2018, 19, 3258. [Google Scholar] [CrossRef]
- Coricello, A.; Mesiti, F.; Lupia, A.; Maruca, A.; Alcaro, S. Inside Perspective of the Synthetic and Computational Toolbox of JAK Inhibitors: Recent Updates. Molecules 2020, 25, 3321. [Google Scholar] [CrossRef]
- Shaw, V.; Srivastava, S.; Srivastava, S.K. Repurposing antipsychotics of the diphenylbutylpiperidine class for cancer therapy. Semin. Cancer Biol. 2021, 68, 75–83. [Google Scholar] [CrossRef]
- Ezelarab, H.A.A.; Abbas, S.H.; Hassan, H.A.; Abuo-Rahma, G.E.-D.A. Recent updates of fluoroquinolones as antibacterial agents. Arch. Pharm. 2018, 351, 1800141. [Google Scholar] [CrossRef] [PubMed]
- Ye, N.; Qin, W.; Tian, S.; Xu, Q.; Wold, E.A.; Zhou, J.; Zhen, X.-C. Small Molecules Selectively Targeting Sigma-1 Receptor for the Treatment of Neurological Diseases. J. Med. Chem. 2020, 63, 15187–15217. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.H. Pharmacological interventions for psychosis in Parkinson’s disease patients. Expert Opin. Pharmacother. 2018, 19, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Kantrowitz, J.T. Targeting Serotonin 5-HT2A Receptors to Better Treat Schizophrenia: Rationale and Current Approaches. CNS Drugs 2020, 34, 947–959. [Google Scholar] [CrossRef] [PubMed]
- Rk, M.; Begum, S.; Begum, A.; Koganti, B. Antioxidant potential of piperidine containing compounds—A short review. Asian J. Pharm. Clin. Res. 2018, 11, 66. [Google Scholar]
- Khan, S.; Ullah, H.; Taha, M.; Rahim, F.; Sarfraz, M.; Iqbal, R.; Iqbal, N.; Hussain, R.; Ali Shah, S.A.; Ayub, K.; et al. Synthesis, DFT Studies, molecular docking and biological activity evaluation of thiazole-sulfonamide derivatives as potent Alzheimer’s inhibitors. Molecules 2023, 28, 559. [Google Scholar] [CrossRef]
- Khan, S.; Ullah, H.; Rahim, F.; Nawaz, M.; Hussain, R.; Rasheed, L. Synthesis, in vitro α-amylase, α-glucosidase activities and molecular docking study of new benzimidazole bearing thiazolidinone derivatives. J. Mol. Struct. 2022, 1269, 133812. [Google Scholar] [CrossRef]
- Khan, S.; Ullah, H.; Hussain, R.; Khan, Y.; Khan, M.U.; Khan, M.; Sattar, A.; Khan, M.S. Synthesis, in vitro bio-evaluation, and molecular docking study of thiosemicarbazone-based isatin/bis-Schiff base hybrid analogues as effective cholinesterase inhibitors. J. Mol. Struct. 2023, 1284, 135351. [Google Scholar] [CrossRef]
- Rahim, F.; Ullah, H.; Taha, M.; Hussain, R.; Sarfraz, M.; Iqbal, R.; Iqbal, N.; Khan, S.; Ali Shah, S.A.; Albalawi, M.A.; et al. Synthesis of new triazole-based thiosemicarbazone derivatives as anti-Alzheimer’s disease candidates: Evidence-based in vitro study. Molecules 2022, 28, 21. [Google Scholar] [CrossRef] [PubMed]
- Kshatriya, R.; Kambale, D.; Mali, S.; Jejurkar, V.P.; Lokhande, P.; Chaudhari, H.K.; Saha, S. Brønsted acid catalyzed domino synthesis of functionalized 4H-chromens and their ADMET, molecular docking and antibacterial studies. Chem. Select. 2019, 4, 7943–7948. [Google Scholar] [CrossRef]
- Jejurkar, V.P.; Mali, S.N.; Kshatriya, R.; Chaudhari, H.K.; Saha, S. Synthesis, antimicrobial screening and in silico appraisal of iminocarbazole derivatives. Chem. Select. 2019, 4, 9470–9475. [Google Scholar] [CrossRef]
- Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Qureshi, S.I.; Chaudhari, H.K.; Sekar, N. Design, synthesis, antimicrobial activity and computational studies of novel azo linked substituted benzimidazole, benzoxazole and benzothiazole derivatives. Comput. Biol. Chem. 2019, 78, 330–337. [Google Scholar] [CrossRef] [PubMed]
S. No. | R1 | R2 | AChE Inhibition IC50 ± SEM (µM) | BuChE Inhibition IC50 ± SEM (µM) |
1 | 5-OCH3 | 4-CH3 | 27.11 ± 0.02 | 31.03 ± 0.11 |
2 | 5-OCH3 | 4-OCH3 | 20.04 ± 0.15 | 23.22 ± 0.15 |
3 | 5-OCH3 | 4-Ph | 30.11 ± 0.23 | 34.06 ± 0.14 |
4 | 5-OCH3 | 2-OCH3 | 26.22 ± 0.41 | 29.23 ± 0.80 |
5 | H | 4-Ph | 34.16 ± 0.03 | 37.21 ± 0.23 |
6 | H | 3-NO2 | 28.12 ± 0.09 | 32.14 ± 0.21 |
7 | H | 4-CH3 | 36.05 ± 0.41 | 39.55 ± 0.03 |
8 | H | 2-OCH3 | 21.03 ± 0.11 | 25.12 ± 0.44 |
9 | H | 4-OCH3 | 24.16 ± 0.21 | 28.01 ± 0.13 |
10 | 5-NO2 | 3-NO2 | 19.44 ± 0.60 | 21.57 ± 0.61 |
11 | 5-NO2 | 4-Ph | 32.13 ± 0.18 | 37.76 ± 0.08 |
12 | 5-NO2 | 4-OCH3 | 23.11 ± 0.35 | 27.35 ± 0.06 |
13 | 5-NO2 | 4-CH3 | 27.08 ± 0.25 | 33.27 ± 0.42 |
Standard allanzanthane a drug | 16.11 ± 0.33 | 18.14 ± 0.05 µM | ||
Standard galanthamine b drug | 19.34 ± 0.62 | 21.45 ± 0.21 µM | ||
S. No. | R1 | R2 | AChE Inhibition IC50 ± SEM (µM) | BuChE Inhibition IC50 ± SEM (µM) |
14 | 5-OCH3 | 4-Ph | 42.01 ± 0.02 | 47.03 ± 0.15 |
15 | 5-OCH3 | 2-OCH3 | 26.03 ± 0.15 | 29.11 ± 0.14 |
16 | 5-OCH3 | 4-OCH3 | 28.13 ± 0.23 | 30.01 ± 0.23 |
17 | 5-OCH3 | 3-NO2 | 23.09 ± 0.41 | 27.30 ± 0.50 |
18 | 5-OCH3 | 4-CH3 | 36.15 ± 0.03 | 39.11 ± 0.13 |
19 | H | 4-CH3 | 33.19 ± 0.09 | 36.22 ± 0.11 |
20 | H | 3-NO2 | 29.04 ± 0.22 | 31.25 ± 0.03 |
21 | H | 2-OCH3 | 30.07 ± 0.41 | 38.02 ± 0.04 |
22 | H | 4-OCH3 | 34.02 ± 0.11 | 34.31 ± 0.12 |
23 | 5-NO2 | 4-Ph | 38.24 ± 0.40 | 42.27 ± 0.41 |
24 | 5-NO2 | 4-OCH3 | 32.05 ± 0.14 | 39.66 ± 0.24 |
25 | 5-NO2 | 4-CH3 | 35.01 ± 0.25 | 32.25 ± 0.12 |
26 | 5-NO2 | 3-NO2 | 22.07 ± 0.13 | 26.32 ± 0.13 |
Standard allanzanthane a drug | 20.01 ± 0.12 µM | 22.12 ± 0.04 µM | ||
Standard galanthamine b drug | 18.05 ± 0.31 µM | 24.25 ± 0.11 µM |
Active Analogs | Receptor | Types of Interactions | Distance (A°) | Docking Score |
---|---|---|---|---|
Analog (2) in AChE complex | GLN-A-63 TRP-A-59 TRP-A-59 TRP-A-62 HIS-A-201 ILE-A-235 LYS-A-200 LEU-A-162 HIS-A-299 | H–B Pi–pi stacked Pi–pi stacked Pi–R Pi–S Pi–sigma Pi–R Pi–R Pi–S | 5.88 4.31 5.51 4.37 5.58 5.31 5.65 5.81 6.81 | −10.50 |
Analog (2) in BChE complex | SER-A-505 LYS-A-506 LYS-A-506 TYR-A-243 ALA-A-243 ALA-A-243 ASP-A-568 ASP-A-568 PHE-A-601 TRP-A-329 ILE-A-233 | HB Pi–cation Pi–cation Unfavorable A–A HB HB HB C–H Pi–alkyl Pi–alkyl Pi–alkyl | 4.67 6.07 4.75 6.09 3.65 6.15 5.48 5.58 6.57 5.08 5.32 | −8.97 |
Analog (10) in AChE complex | PHE-A-476 PHE-A-476 ALA-A-602 ALA-A-628 ASP-A-630 PHE-A-601 PHE-A-601 ASP-A-568 ASP-A-469 TRP-A-329 | Pi–pi T-shaped Pi–pi T-shaped Pi–alkyl Pi–alkyl C–H Pi–pi T-shaped Pi–pi T-shaped C–H C–H Pi–pi T-shaped | 5.10 4.27 6.96 7.61 5.35 7.15 7.00 5.55 5.91 6.17 | −7.73 |
Analog (10) in BChE complex | LEU-A-162 HIS-A-299 TRP-A-58 TRP-A-59 GLY-A-306 HIS-A-305 | Pi–alkyl Pi–sulfur Pi–sulfur Pi–pi stacked HB HB | 5.80 6.68 6.33 5.56 3.87 3.75 | −8.20 |
Active Analogs | Receptor | Types of Interactions | Distance (A°) | Docking Score |
---|---|---|---|---|
Analog (4) in AchE complex | ILE-A-235 LYS-A-200 HIS-A-201 LEU-A-162 HIS-A-305 GLY-A-306 HIS-A-299 GLN-A-63 TRP-A-59 TRP-A-59 | Pi–R Pi–R Pi–R Pi–R H–B H–B Pi–S H–B Pi–pi stacked Pi–pi stacked | 5.59 6.01 5.78 5.83 3.68 4.05 6.87 5.89 4.34 5.36 | −9.3 |
Analog (4) in BuChE complex | PHE-A-476 PHE-A-476 PHE-A-476 TRP-A-329 PHE-A-601 PHE-A-601 ASP-A-568 ALA-A-602 | Pi–pi stacked Pi–pi stacked C–H Pi–R Pi–R Pi–pi stacked Pi–anion Pi–R | 5.11 3.97 4.90 5.32 6.68 7.48 5.39 7.05 | −8.2 |
Analog (13) in AchE complex | TRP-A-59 HIS-A-305 HIS-A-299 GLY-A-306 LEU-A-162 HIS-A-201 ILE-A-235 LYS-A-200 GLU-A-233 TRP-A-58 TYR-A-62 | Pi–R Pi–pi stacked H–B Pi–anion H–B Pi–R Pi–R Pi–R C–H Pi–anion Pi–R | 5.76 3.80 6.38 3.46 5.82 5.13 4.55 4.41 5.76 6.30 5.92 | −7.8 |
Analog (13) in BuChE complex | TRP-A-329 PHE-A-601 ASP-A-568 ASP-A-568 ALA-A-234 ALA-A-234 TYR-A-243 LYS-A-506 LYS-A-506 SER-A-505 ILE-A-233 | Pi–R Pi–R C–H Pi–anion H–B Unacceptable D–D Pi–anion Pi–anion H–B Pi–R | 5.08 6.57 5.58 5.48 6.15 3.65 6.02 6.07 4.75 4.67 5.32 | −7.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tariq, S.; Rahim, F.; Ullah, H.; Sarfraz, M.; Hussain, R.; Khan, S.; Khan, M.U.; Rehman, W.; Hussain, A.; Bhat, M.A.; et al. Synthesis, In Vitro Biological Evaluation and Molecular Modeling of Benzimidazole-Based Pyrrole/Piperidine Hybrids Derivatives as Potential Anti-Alzheimer Agents. Pharmaceuticals 2024, 17, 410. https://doi.org/10.3390/ph17040410
Tariq S, Rahim F, Ullah H, Sarfraz M, Hussain R, Khan S, Khan MU, Rehman W, Hussain A, Bhat MA, et al. Synthesis, In Vitro Biological Evaluation and Molecular Modeling of Benzimidazole-Based Pyrrole/Piperidine Hybrids Derivatives as Potential Anti-Alzheimer Agents. Pharmaceuticals. 2024; 17(4):410. https://doi.org/10.3390/ph17040410
Chicago/Turabian StyleTariq, Sundas, Fazal Rahim, Hayat Ullah, Maliha Sarfraz, Rafaqat Hussain, Shoaib Khan, Misbah Ullah Khan, Wajid Rehman, Amjad Hussain, Mashooq Ahmad Bhat, and et al. 2024. "Synthesis, In Vitro Biological Evaluation and Molecular Modeling of Benzimidazole-Based Pyrrole/Piperidine Hybrids Derivatives as Potential Anti-Alzheimer Agents" Pharmaceuticals 17, no. 4: 410. https://doi.org/10.3390/ph17040410
APA StyleTariq, S., Rahim, F., Ullah, H., Sarfraz, M., Hussain, R., Khan, S., Khan, M. U., Rehman, W., Hussain, A., Bhat, M. A., Farooqi, M. K., Shah, S. A. A., & Iqbal, N. (2024). Synthesis, In Vitro Biological Evaluation and Molecular Modeling of Benzimidazole-Based Pyrrole/Piperidine Hybrids Derivatives as Potential Anti-Alzheimer Agents. Pharmaceuticals, 17(4), 410. https://doi.org/10.3390/ph17040410