Pre- and Post-COVID-19 Antimicrobial Resistance Pattern of Pathogens in an Intensive Care Unit
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 28 December 2021).
- ECDC. Antimicrobial Resistance in the EU/EEA: A One Health Response; ECDC: Stockholm, Sweden, 2021. [Google Scholar]
- Perez Jorge, G.; Rodrigues Dos Santos Goes, I.C.; Gontijo, M.T.P. Les miserables: A Parallel Between Antimicrobial Resistance and COVID-19 in Underdeveloped and Developing Countries. Curr. Infect. Dis. Rep. 2022, 24, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Pidot, S.J.; Gao, W.; Buultjens, A.H.; Monk, I.R.; Guerillot, R.; Carter, G.P.; Lee, J.Y.H.; Lam, M.M.C.; Grayson, M.L.; Ballard, S.A.; et al. Increasing tolerance of hospital Enterococcus faecium to handwash alcohols. Sci. Transl. Med. 2018, 10, eaar6115. [Google Scholar] [CrossRef] [PubMed]
- Subramanya, S.H.; Czyz, D.M.; Acharya, K.P.; Humphreys, H. The potential impact of the COVID-19 pandemic on antimicrobial resistance and antibiotic stewardship. VirusDisease 2021, 32, 330–337. [Google Scholar] [CrossRef] [PubMed]
- ECDC. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2022; ECDC: Stockholm, Sweden, 2023. [Google Scholar]
- INSP-CNSCBT. Analysis of the Evolution of Communicable Diseases under Surveillance—Report for 2020 and 2021; Institutul National de Sanatate Publica: Bucuresti, Romania, 2022; pp. 2394–2537. [Google Scholar]
- Rehman, S. A parallel and silent emerging pandemic: Antimicrobial resistance (AMR) amid COVID-19 pandemic. J. Infect. Public Health 2023, 16, 611–617. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Action Plan on Antimicrobial Resistance; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Chedid, M.; Waked, R.; Haddad, E.; Chetata, N.; Saliba, G.; Choucair, J. Antibiotics in treatment of COVID-19 complications: A review of frequency, indications, and efficacy. J. Infect. Public Health 2021, 14, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Granata, G.; Schiavone, F.; Pipitone, G.; Taglietti, F.; Petrosillo, N. Antibiotics Use in COVID-19 Patients: A Systematic Literature Review. J. Clin. Med. 2022, 11, 7207. [Google Scholar] [CrossRef]
- Greco, R.; Panetta, V.; Della Rocca, M.T.; Durante, A.; Di Caprio, G.; Maggi, P. Profile of Co-Infection Prevalence and Antibiotics Use among COVID-19 Patients. Pathogens 2022, 11, 1250. [Google Scholar] [CrossRef]
- Malik, S.S.; Mundra, S. Increasing Consumption of Antibiotics during the COVID-19 Pandemic: Implications for Patient Health and Emerging Anti-Microbial Resistance. Antibiotics 2022, 12, 45. [Google Scholar] [CrossRef]
- Hosseini, M.; Ahmed Hamad, M.; Mohseni, G.; Salamy, S.; Dehghan Tarzjani, S.; Taati Moghadam, M. Prediction of tsunami of resistance to some antibiotics is not far-fetched which used during COVID-19 pandemic. J. Clin. Lab. Anal. 2023, 37, e24959. [Google Scholar] [CrossRef]
- INSP. CARMIAAM-ROM 2020 (Consumul de Antibiotice, Rezistența Microbiană și Infecții Asociate Asistenței Medicale în România—2020; INSP: Bucuresti, Romania, 2020. [Google Scholar]
- Mares, C.; Petca, R.C.; Petca, A.; Popescu, R.I.; Jinga, V. Does the COVID Pandemic Modify the Antibiotic Resistance of Uropathogens in Female Patients? A New Storm? Antibiotics 2022, 11, 376. [Google Scholar] [CrossRef]
- Mares, C.; Petca, R.C.; Popescu, R.I.; Petca, A.; Geavlete, B.F.; Jinga, V. Uropathogens’ Antibiotic Resistance Evolution in a Female Population: A Sequential Multi-Year Comparative Analysis. Antibiotics 2023, 12, 948. [Google Scholar] [CrossRef] [PubMed]
- Golli, A.-L.; Nițu, F.M.; Bălășoiu, M.; Rascu, S.; Lungu, M.A.; Dinescu, S.N.; Ciobanu-Mitrache, L.; Glodeanu, A.; Văcaru, M.; Olteanu, M. Microbiological profile and antibiotic resistance pattern of bacterial uropathogens among hospitalized patients. Farmacia 2019, 67, 167–173. [Google Scholar] [CrossRef]
- Das, S.; Gladston, J.; Silvanose, C. The Silent Pandemic by Super Pathogens during the COVID-19 Pandemic. Preprint 2023. [Google Scholar] [CrossRef]
- Kishk, R.M.; Abu Bakr, N.M.; Anani, M.; Nemr, N.; Salama, B.M.; Samahy, M.; Kishk, S.M.; Salem, N.E.; Mohamed, H.A. Pattern of antimicrobial resistance in the pre and during COVID-19 era: An observational study. Microbes Infect. Dis. 2023, 4, 1100–1113. [Google Scholar] [CrossRef]
- Hurtado, I.C.; Valencia, S.; Pinzon, E.M.; Lesmes, M.C.; Sanchez, M.; Rodriguez, J.; Ochoa, B.; Shewade, H.D.; Edwards, J.K.; Hann, K.; et al. Antibiotic resistance and consumption before and during the COVID-19 pandemic in Valle del Cauca, Colombia. Rev. Panam. Salud Publica 2023, 47, e10. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Hussain, S.S. Impact of COVID-19 Pandemic on Antimicrobial Resistance Pattern; Transition from Resistivity to Susceptibility. Glob. J. Med. Pharm. Biomed. Update 2022, 17, 5–6. [Google Scholar] [CrossRef]
- Taleb, M.H.; Elmanama, A.A.; Taleb, A.H.; Tawfick, M.M. Pre- and post-COVID-19 antimicrobial resistance profile of bacterial pathogens, a comparative study in a tertiary hospital. J. Infect. Dev. Ctries. 2023, 17, 597–609. [Google Scholar] [CrossRef]
- Parisini, A.; Boni, S.; Vacca, E.B.; Bobbio, N.; Puente, F.D.; Feasi, M.; Prinapori, R.; Lattuada, M.; Sartini, M.; Cristina, M.L.; et al. Impact of the COVID-19 Pandemic on Epidemiology of Antibiotic Resistance in an Intensive Care Unit (ICU): The Experience of a North-West Italian Center. Antibiotics 2023, 12, 1278. [Google Scholar] [CrossRef]
- Raoofi, R.; Namavari, N.; Rahmanian, V.; Dousthaghi, M.H. Evaluation of antibiotics resistance in Southern Iran in light of COVID-19 pandemic: A retrospective observational study. Health Sci. Rep. 2023, 6, e1153. [Google Scholar] [CrossRef]
- Khaznadar, O.; Khaznadar, F.; Petrovic, A.; Kuna, L.; Loncar, A.; Omanovic Kolaric, T.; Mihaljevic, V.; Tabll, A.A.; Smolic, R.; Smolic, M. Antimicrobial Resistance and Antimicrobial Stewardship: Before, during and after the COVID-19 Pandemic. Microbiol. Res. 2023, 14, 727–740. [Google Scholar] [CrossRef]
- Petrakis, V.; Panopoulou, M.; Rafailidis, P.; Lemonakis, N.; Lazaridis, G.; Terzi, I.; Papazoglou, D.; Panagopoulos, P. The Impact of the COVID-19 Pandemic on Antimicrobial Resistance and Management of Bloodstream Infections. Pathogens 2023, 12, 780. [Google Scholar] [CrossRef]
- Golli, A.L.; Nitu, F.M.; Balasoiu, M.; Lungu, M.A.; Dragomirescu, C.C.; Olteanu, M.; Nemes, R.M.; Tantu, M.M.; Olteanu, M. The Characterization of Antibiotic Resistance of Bacterial Isolates from Intensive Care Unit Patient Samples in a University Affiliated Hospital in Romania. Rev. Chim. 2019, 70, 1778–1783. [Google Scholar] [CrossRef]
- Golli, A.L.; Nitu, F.M.; Balasoiu, M.; Lungu, M.A.; Olteanu, M.; Nemes, R.M.; Fortofoiu, M.; Rusu, E.; Olteanu, M. Antibiotic Resistance Pattern of Bacterial Pathogens in Elderly Patients Admitted in the Intensive Care Unit. Rev. Chim. 2018, 69, 3433–3438. [Google Scholar] [CrossRef]
- Golli, A.L.; Nitu, F.M.; Balasoiu, M.; Nemes, R.M.; Tudorache, S.I.; Mahler Boca, B.; Olteanu, M. Bacterial Isolates from Endotracheal Aspirates and their Antimicrobial Resistance Pattern in Patients from Intensive Care Unit. Rev. Chim. 2019, 70, 3299–3304. [Google Scholar] [CrossRef]
- Golli, A.L.; Cristea, O.M.; Zlatian, O.; Glodeanu, A.D.; Balasoiu, A.T.; Ionescu, M.; Popa, S. Prevalence of Multidrug-Resistant Pathogens Causing Bloodstream Infections in an Intensive Care Unit. Infect. Drug Resist. 2022, 15, 5981–5992. [Google Scholar] [CrossRef]
- Catalano, A.; Iacopetta, D.; Ceramella, J.; Pellegrino, M.; Giuzio, F.; Marra, M.; Rosano, C.; Saturnino, C.; Sinicropi, M.S.; Aquaro, S. Antibiotic-Resistant ESKAPE Pathogens and COVID-19: The Pandemic beyond the Pandemic. Viruses 2023, 15, 1843. [Google Scholar] [CrossRef] [PubMed]
- Meschiari, M.; Onorato, L.; Bacca, E.; Orlando, G.; Menozzi, M.; Franceschini, E.; Bedini, A.; Cervo, A.; Santoro, A.; Sarti, M.; et al. Long-Term Impact of the COVID-19 Pandemic on In-Hospital Antibiotic Consumption and Antibiotic Resistance: A Time Series Analysis (2015–2021). Antibiotics 2022, 11, 826. [Google Scholar] [CrossRef] [PubMed]
- Khoshbakht, R.; Kabiri, M.; Neshani, A.; Khaksari, M.N.; Sadrzadeh, S.M.; Mousavi, S.M.; Ghazvini, K.; Ghavidel, M. Assessment of antibiotic resistance changes during the COVID-19 pandemic in northeast of Iran during 2020-2022: An epidemiological study. Antimicrob. Resist. Infect. Control. 2022, 11, 121. [Google Scholar] [CrossRef] [PubMed]
- Cogliati Dezza, F.; Arcari, G.; Alessi, F.; Valeri, S.; Curtolo, A.; Sacco, F.; Ceccarelli, G.; Raponi, G.; Alessandri, F.; Mastroianni, C.M.; et al. Clinical Impact of COVID-19 on Multi-Drug-Resistant Gram-Negative Bacilli Bloodstream Infections in an Intensive Care Unit Setting: Two Pandemics Compared. Antibiotics 2022, 11, 926. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- INSP-CNSCBT. Sentinel Surveillance Methodology for Healthcare Associated Infections and Antimicrobial Resistance; Institutul National de Sanatate Publica: Bucuresti, Romania, 2018. [Google Scholar]
- Zlatian, O.; Balasoiu, A.T.; Balasoiu, M.; Cristea, O.; Docea, A.O.; Mitrut, R.; Spandidos, D.A.; Tsatsakis, A.M.; Bancescu, G.; Calina, D. Antimicrobial resistance in bacterial pathogens among hospitalised patients with severe invasive infections. Exp. Ther. Med. 2018, 16, 4499–4510. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement, M100; Clinical & Laboratory Standards Institute: Berwyn, PA, USA, 2020. [Google Scholar]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. BMJ 2007, 335, 806–808. [Google Scholar] [CrossRef] [PubMed]
Patients | Pre-COVID-19 (No = 1267) | Post-COVID-19 (No = 1354) | |
---|---|---|---|
Gender | Male | 797 (62.90%) | 841 (62.11%) |
Female | 470 (37.10%) | 513 (37.89%) | |
Age (Mean ± SD) | 64 ± 18.60 | 64 ± 17.51 |
Sample | Species | ||||||
---|---|---|---|---|---|---|---|
Total | Acinetobacter spp. | E. coli | Klebsiella spp. | Proteus spp. | Pseudomonas spp. | ||
Blood | Pre-COVID-19 | 154 | 6 (3.90%) | 17 (11.04%) | 4 (2.59%) | 7 (4.54%) | 85 (55.2%) |
Post-COVID-19 | 613 | 29 (4.73%) | 35 (5.71%) | 5 (0.81%) | 9 (1.47%) | 246 (40.13%) | |
Tracheal aspirate/Sputum | Pre-COVID-19 | 1355 | 40 (2.95%) | 234 (17.27%) | 90 (6.64%) | 58 (4.28%) | 27 (1.99%) |
Post-COVID-19 | 1294 | 72 (5.56%) | 226 (17.47%) | 90 (6.96%) | 94 (7.26%) | 2 (0.15%) | |
Pus/wound swabs | Pre-COVID-19 | 215 | 23 (10.70%) | 32 (14.88%) | 27 (12.56%) | 19 (8.84%) | 10 (4.65%) |
Post-COVID-19 | 124 | 13 (10.48%) | 25 (20.16%) | 16 (12.91%) | 10 (8.06%) | 6 (4.84%) | |
Urine | Pre-COVID-19 | 108 | 31 (28.70%) | 33 (30.56%) | 4 (3.70%) | 2 (1.85%) | 0 (0%) |
Post-COVID-19 | 115 | 38 (33.04%) | 16 (13.92%) | 10 (8.69%) | 5 (4.35%) | 0 (0%) | |
Catheters | Pre-COVID-19 | 10 | 0 (0%) | 1 (10%) | 0 (0%) | 1 (10%) | 0 (0%) |
Post-COVID-19 | 29 | 1 (3.44%) | 5 (17.24%) | 5 (17.24%) | 2 (6.90%) | 0 (0%) | |
Other | Pre-COVID-19 | 98 | 9 (9.18%) | 26 (26.53%) | 8 (8.17%) | 6 (6.12%) | 6 (6.12%) |
Post-COVID-19 | 106 | 15 (14.15%) | 19 (17.93%) | 12 (11.32%) | 13 (12.27%) | 2 (1.88%) | |
Total | Pre-COVID-19 | 1940 | 109 (5.62%) | 343 (17.68%) | 133 (6.86%) | 93 (4.80%) | 128 (6.59%) |
Post-COVID-19 | 2281 | 283 (12.41%) | 168 (7.36%) | 326 (14.92%) | 138 (6.05%) | 133 (5.83%) | |
Sample | Species | ||||||
CoNS | S. aureus | Streptococcus spp. | Enterococcus spp. | Other Species | |||
Blood | Pre-COVID-19 | 85 (55.2%) | 9 (5.85%) | 10 (6.5%) | 5 (3.25%) | 4 (2.59%) | |
Post-COVID-19 | 246 (40.13%) | 31 (5.05%) | 12 (1.96%) | 46 (7.5%) | 150 (24.47%) | ||
Tracheal aspirate/Sputum | Pre-COVID-19 | 27 (1.99%) | 407 (30.04%) | 263 (19.41%) | 0 (0%) | 62 (4.58%) | |
Post-COVID-19 | 2 (0.15%) | 364 (28.13%) | 173 (13.3%) | 38 (2.94%) | 34 (2.63%) | ||
Pus/wound swabs | Pre-COVID-19 | 10 (4.65%) | 49 (22.79%) | 4 (1.86%) | 8 (3.72%) | 21 (9.77%) | |
Post-COVID-19 | 6 (4.84%) | 16 (12.91%) | 5 (4.03%) | 5 (4.03%) | 12 (9.67%) | ||
Urine | Pre-COVID-19 | 0 (0%) | 1 (0.93%) | 1 (0.93%) | 26 (24.07%) | 9 (8.33%) | |
Post-COVID-19 | 0 (0%) | 0 (0%) | 0 (0%) | 34 (29.56%) | 12 (10.44%) | ||
Catheters | Pre-COVID-19 | 0 (0%) | 5 (50%) | 0 (0%) | 0 (0%) | 2 (20%) | |
Post-COVID-19 | 0 (0%) | 8 (27.59%) | 0 (0%) | 2 (6.90%) | 2 (6.90%) | ||
Other | Pre-COVID-19 | 6 (6.12%) | 22 (22.54%) | 3 (3.06%) | 6 (6.12%) | 4 (4.08%) | |
Post-COVID-19 | 2 (1.88%) | 21 (19.81%) | 2 (1.88%) | 3 (2.83%) | 7 (6.61%) | ||
Total | Pre-COVID-19 | 128 (6.59%) | 493 (25.41%) | 281 (14.48%) | 45 (2.32%) | 102 (5.26%) | |
Post-COVID-19 | 256 (11.22%) | 440 (19.29%) | 192 (8.42%) | 128 (5.61%) | 217 (9.52%) |
Klebsiella spp. | Escherichia coli | Pseudomonas spp. | |||||||
---|---|---|---|---|---|---|---|---|---|
Antimicrobial Agent | Pre-COVID-19 (n = 343) | Post-COVID-19 (n = 326) | p Value | Pre-COVID-19 (n = 109) | Post-COVID-19 (n = 168) | p Value | Pre-COVID-19 (n = 93) | Post-COVID-19 (n = 133) | p Value |
Amoxicillin/ clavulanic acid | 217 (66.36%) | 194 (62.98%) | 0.15 | 31 (29.52%) | 60 (36.58%) | 0.23 | 18 (100%) | 7 (87.5%) | 0.12 |
Ceftazidime | 209 (65.31%) | 223 (69.68%) | 0.23 | 32 (31.68%) | 64 (38.55%) | 0.25 | 53 (60.92%) | 86 (67.72%) | 0.30 |
Ceftriaxone | 213 (65.34%) | 212 (67.30%) | 0.59 | 37 (35.58%) | 55 (33.95%) | 0.78 | 14 (82.35%) | 7 (70%) | 0.45 |
Cefotaxime | 99 (65.56%) | 137 (65.55%) | <0.001 * | 7 (26.92%) | 40 33.78% | 0.31 | 9 (75%) | 9 (81.82%) | 0.69 |
Cefazolin | 152 (77.16%) | 211 (79.32%) | 0.57 | 32 (57.14%) | 62 (51.24%) | 0.46 | 5 (100%) | 6 (100%) | - |
Cefepime | 132 (61.68%) | 172 (55.30%) | 0.14 | 21 (33.33%) | 40 (25.97%) | 0.27 | 52 (76.47%) | 55 (58.51%) | 0.01 * |
Imipenem | 108 (40.60%) | 113 (45.56%) | 0.25 | 16 (16.49%) | 7 (6.14%) | 0.01 * | 45 (58.44%) | 35 (47.30%) | 0.17 |
Meropenem | 111 (45.68%) | 106 (44.35%) | 0.76 | 2 (2.60%) | 9 (9.57%) | 0.06 | 52 (65%) | 47 (57.32%) | 0.31 |
Ciprofloxacin | 199 (59.76%) | 179 (61.30%) | 0.69 | 43 (39.82%) | 64 (43.54%) | 0.74 | 49 (55.68%) | 76 (62.29%) | 0.33 |
Levofloxacin | 40 (55.56%) | 82 (59%) | 0.63 | 13 (52%) | 21 (28.76%) | 0.03 | 31 (60.78%) | 49 (56.98%) | 0.21 |
Piperacillin/tazobactam | 35 (71.43%) | 119 (61.34%) | 0.19 | 0 (0%) | 24 (24%) | 0.14 | 28 (36.84%) | 39 (47.56%) | 0.36 |
Colistin | 1 (0.38%) | 40 (20.51%) | <0.001 * | 3 (4.69%) | 25 (32.46%) | <0.001 * | 0 (0%) | 4 (4.88%) | 0.03 |
Gentamicin | 112 (44.62%) | 203 (64.85%) | <0.001 * | 21 (36.94%) | 60 (37.73%) | 0.90 | 38 (61.29%) | 77 (60.63%) | 0.93 |
Aztreonam | 182 (56.35%) | 180 (73.60%) | <0.001 * | 27 (27%) | 31 (27.43%) | 0.94 | 39 (50%) | 34 (39.08%) | 0.15 |
Acinetobacter spp. | Proteus spp. | ||||||||
Antimicrobial Agent | Pre-COVID-19 (n = 213) | Post-COVID-19 (n = 283) | p Value | Pre-COVID-19 (n = 133) | Post-COVID-19 (n = 138) | p Value | |||
Amoxicillin/ clavulanic acid | 87 (94.57%) | 47 (100%) | 0.10 | 100 (78.13%) | 96 (73.85%) | 0.42 | |||
Ceftazidime | 165 (93.75%) | 265 (96.01%) | 0.27 | 89 (72.95%) | 100 (73.53%) | 0.91 | |||
Ceftriaxone | 189 (97.73%) | 270 (97.12%) | 0.84 | 99 (76.15%) | 91 (67.41%) | 0.11 | |||
Cefotaxime | 159 (95.78%) | 230 (95.43%) | 0.86 | 45 (80.36%) | 71 (72.45%) | 0.27 | |||
Cefazolin | 52 (100%) | 49 (100%) | - | 80 (94.12%) | 103 (84.43%) | 0.03 * | |||
Cefepime | 132 (95.65%) | 141 (84.43%) | <0.001 * | 40 (54.80%) | 28 (21.37%) | <0.001 * | |||
Imipenem | 77 (90.58%) | 156 (90.17%) | 0.91 | 49 (46.67%) | 33 (36.67%) | 0.15 | |||
Meropenem | 150 (88.76%) | 192 (88.48%) | 0.93 | 19 (19.79%) | 10 (22.73%) | 0.69 | |||
Ciprofloxacin | 190 (92.23%) | 165 (94.83%) | 0.30 | 82 (68.33%) | 93 (75%) | 0.24 | |||
Levofloxacin | 47 (88.68%) | 104 (88.88%) | 0.96 | 20 (86.96%) | 41 (75.93%) | 0.27 | |||
Piperacillin/ tazobactam | 118 (86.76%) | 186 (91.62%) | 0.14 | 0 (0%) | 20 (26.32%) | 0.06 | |||
Colistin | 7 (3.37%) | 36 (18.09%) | <0.001 * | 95 (100%) | 56 (100%) | - | |||
Gentamicin | 70 (86.42%) | 236 (85.19%) | 0.78 | 72 (76.59%) | 75 (55.97%) | 0.001 * | |||
Aztreonam | 77 (96.25%) | 47 (81.03%) | 0.003 * | 34 (27.2%) | 24 (26.97%) | 0.96 |
Staphylococcus aureus | CoNS | |||||
---|---|---|---|---|---|---|
Antimicrobial Agent | Pre- COVID-19 (n = 493) | Post-COVID-19 (n = 440) | p Value | Pre-COVID-19 (n = 128) | Post-COVID-19 (n = 256) | p Value |
Ciprofloxacin | 296 (61.67%) | 259 (59.27%) | 0.45 | 90 (70.87%) | 149 (59.36%) | 0.18 |
Clindamycin | 366 (76.25%) | 259 (77.72%) | 0.59 | 85 (66.93%) | 163 (68.20%) | 0.80 |
Clarithromycin | 219 (56.74%) | 243 (60.90%) | 0.23 | 73 (67.60%) | 54 (73.97%) | 0.35 |
Doxycycline | 190 (40.08%) | 135 (51.72%) | 0.002 * | 52 (54.74%) | 7 (43.75%) | 0.41 |
Erythromycin | 359 (74.17%) | 239 (55.58%) | <0.001 * | 100 (80.65%) | 99 (68.27%) | 0.02 * |
Linezolid | 1 (0.22%) | 8 (3.13%) | <0.001 * | 16 (23.88%) | 11 (9.65%) | 0.009 |
Penicillin | 474 (98.34%) | 382 (87.01%) | <0.001 * | 112 (93.33%) | 231 (93.52%) | 0.94 |
Rifampicin | 252 (53.16%) | 263 (64.93%) | <0.001 * | 57 (45.24%) | 157 (62.55%) | 0.001 * |
Tetracycline | 224 (62.57%) | 25 (78.12%) | 0.07 | 85 (71.43%) | 81 (72.32%) | 0.88 |
Oxacillin | 354 (72.99%) | 229 (73.40%) | 0.89 | 104 (81.89%) | 119 (76.28%) | 0.25 |
Vancomycin | 2 (16.67%) | 1 (3.58%) | 0.14 | 12 (15.79%) | 1 (0.91%) | <0.001 * |
Teicoplanin | 5 (26.31%) | 55 (53.40%) | 0.03 * | 16 (26.67%) | 96 (63.57%) | <0.001 * |
Streptococcus spp. | Enterococcus spp. | |||||
Antimicrobial Agent | Pre-COVID-19 (n = 281) | Post-COVID-19 (n = 192) | p Value | Pre-COVID-19(n = 45) | Post-COVID-19 (n = 128) | p Value |
Ciprofloxacin | 5 (100%) | 3 (100%) | - | 37 (86.05%) | 91 (72.8%) | 0.07 |
Clindamycin | 80 (29.31%) | 50 (27.03%) | 0.59 | 1 (100%) | 1 (50%) | - |
Clarithromycin | 84 (49.12%) | 53 (27.03%) | <0.001 * | 4 (100%) | 5 (71.43%) | 0.23 |
Doxycycline | 24 (10.57%) | 16 (19.75%) | 0.03 * | 25 (80.65%) | 19 (33.33%) | <0.001 * |
Erythromycin | 144 (52.55%) | 46 (29.11%) | <0.001 * | 6 (100%) | 42 (75%) | 0.16 |
Linezolid | 0 (0%) | 0 (0%) | - | 2 (4.54%) | 1 (1.20%) | 0.23 |
Penicillin | 200 (85.11%) | 74 (62.18%) | <0.001 * | 16 (38.09%) | 60 (61.22%) | 0.01 * |
Rifampicin | 4 (20%) | 3 (3.61%) | 0.008 | - | 19 (51.35%) | - |
Tetracycline | 41 (35.04%) | 34 (32.69%) | 0.71 | 6 (75%) | 13 (41.93%) | 0.09 |
Oxacillin | 170 (91.89%) | 37 (87.70%) | 0.73 | - | 24 (96%) | - |
Vancomycin | 3 (1.11%) | 0 (0%) | 0.26 | 7 (29.17%) | 4 (5.33%) | 0.001 * |
Teicoplanin | - | - | - | 12 (29.27%) | 27 (36.98%) | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golli, A.-L.; Zlatian, O.M.; Cara, M.L.; Olteanu, M. Pre- and Post-COVID-19 Antimicrobial Resistance Pattern of Pathogens in an Intensive Care Unit. Pharmaceuticals 2024, 17, 407. https://doi.org/10.3390/ph17040407
Golli A-L, Zlatian OM, Cara ML, Olteanu M. Pre- and Post-COVID-19 Antimicrobial Resistance Pattern of Pathogens in an Intensive Care Unit. Pharmaceuticals. 2024; 17(4):407. https://doi.org/10.3390/ph17040407
Chicago/Turabian StyleGolli, Andreea-Loredana, Ovidiu Mircea Zlatian, Monica Laura Cara, and Mădălina Olteanu. 2024. "Pre- and Post-COVID-19 Antimicrobial Resistance Pattern of Pathogens in an Intensive Care Unit" Pharmaceuticals 17, no. 4: 407. https://doi.org/10.3390/ph17040407
APA StyleGolli, A. -L., Zlatian, O. M., Cara, M. L., & Olteanu, M. (2024). Pre- and Post-COVID-19 Antimicrobial Resistance Pattern of Pathogens in an Intensive Care Unit. Pharmaceuticals, 17(4), 407. https://doi.org/10.3390/ph17040407