HPLC Fingerprint Analysis of Cibotii rhizoma from Different Regions and Identification of Common Peaks by LC-MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of HPLC Conditions
2.2. Method Validation
2.3. Establishment of the HPLC Fingerprint
2.4. Similarity Evaluation
2.5. Hierarchical Cluster Analysis (HCA)
2.6. Principal Component Analysis (PCA)
2.7. Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA)
2.8. Identification of Main Chemical Components
2.9. Advantage of the Study
3. Materials and Methods
3.1. Materials
3.2. Preparation of Samples and Standard Solutions
3.3. Apparatus and Chromatographic Conditions
3.4. Method Validation
3.5. Data Analysis
3.6. LCMS-IT-TOF
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chinese Pharmacopoeia Commission. Pharmacopoeia of People’s Republic of China, 1st ed.; China Medical Science Press: Beijing, China, 2020; p. 235. [Google Scholar]
- Chen, D.-L.; Zhong, C.; Mi, K.; Jian, S.-F.; Miao, J.-H.; Wei, K.-H.; Li, L.-X.; Guo, X.-Y. Research Progress on Resource Status and Conservation of Endangered Medicinal Plant Cibotium barometz. Guizhou Agric. Sci. 2022, 50, 122–129. [Google Scholar]
- Chen, S.-Z. Preparation of Cibotii Rhizoma. Tradit. Chin. Med. Bull. 1987, 12, 29. [Google Scholar]
- Shi, S.-M.; Yuan, Y.-B.; Lan, X.-X.; Li, H.-Z.; Chen, C.-Q. Research Progress on chemical constituents in Cibotium barometz and their pharmacological activities. Drug Eval. Res. 2016, 39, 489–492. [Google Scholar]
- Yang, C.-Z.; Liu, X.-F.; Cai, D.-L.; Fan, S.-M. Investigation on resource and quality assessment of Cibotium barometz. China J. Chin. Mater. Med. 2015, 40, 1919–1924. [Google Scholar]
- Liu, D.-F.; Zhao, L.-N.; Li, Y.-F.; Jin, C.-D. Research Progress and application in fingerprint technology on Chinese materia medica. Chin. Tradit. Herb. Drugs 2016, 47, 4085–4094. [Google Scholar]
- FDA (Ed.) Botanical Drug Development Guidance for Industry; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2016. [Google Scholar]
- EMA (Ed.) Guideline on Quality of Herbal Medicinal Products/Traditional Herbal Medicinal Products; European Medicines Agency: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Li, D.; Xiao, J.Q.; Liu, W.Y.; Zhang, C.F.; Akihisa, T.; Masahiko, A.B.; Masters, E.T.; Zhai, W.W.; Feng, F.E.; Zhang, J. Vitellaria paradoxa nutshells from seven sub-Saharan countries as potential herbal medicines for treating diabetes based on chemical compositions, HPLC fingerprints and bioactivity evaluation. Chin. J. Nat. Med. 2019, 17, 446–460. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Long, H.; Zeng, L.; Li, T.; Li, L. Establishment of fingerprint and chemical pattern recognition of Eucommia ulmoides male flowers from different cultivation areas. Chin. Tradit. Herb. Drugs 2022, 53, 7207–7213. [Google Scholar]
- Xu, Z.-Y.; Chen, Z.-D.; Yan, Y.; Chen, Z.-L.; Zhang, K. Content Determination and High-Performance Capillary Electrophoresis Fingerprint Analysis of Polysaccharides from Cibotii Rhizoma. J. Chin. Med. Mater. 2004, 27, 22–23. [Google Scholar]
- Huang, Y.-M.; Li, X.-Y.; Chen, G.-S.; Wang, J.; Kang, Z.-Y. Simultaneous Determination of Fingerprint and Protocatechuic Acid in Stir-baked Cibotium Barometz Standard Decoction by HPLC. Asia-Pac. Tradit. Med. 2021, 17, 57–60. [Google Scholar]
- Lu, Y.-P.; Xu, J.-L.; Peng, X.-J.; He, Y.; Gong, X.-Y.; Zhao, M. Study on the Fingerprint Pretreatment Method of Cibotii Rhizoma. Asia-Pac. Tradit. Med. 2021, 17, 35–38. [Google Scholar]
- Krzysztoforska, K.; Mirowska-Guzel, D.; Widy-Tyszkiewicz, E. Pharmacological effects of protocatechuic acid and its therapeutic potential in neurodegenerative diseases: Review on the basis of in vitro and in vivo studies in rodents and humans. Nutr. Neurosci. 2019, 22, 72–82. [Google Scholar] [CrossRef]
- Byun, J.W.; Hwang, S.; Kang, C.W.; Kim, J.H.; Chae, M.K.; Yoon, J.S.; Lee, E.J. Therapeutic Effect of Protocatechuic Aldehyde in an In Vitro Model of Graves’ Orbitopathy. Investig. Ophthalmol. Vis. Sci. 2016, 57, 4055–4062. [Google Scholar] [CrossRef]
- Fang, J.-Y.; Zhu, L.; Yi, T.; Zhang, J.-Y.; Yi, L.; Liang, Z.-T.; Xia, L.; Feng, J.-F.; Xu, J.; Tang, Y.-N.; et al. Fingerprint analysis of processed Rhizoma Chuanxiong by high-performance liquid chromatography coupled with diode array detection. Chin. Med. 2015, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Turhong, M.; Abudkrem, M.; Tang, Y. Fingerprint analysis of Cirsium japonicum DC. using high performance liquid chromatography. J. Pharm. Anal. 2013, 3, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Fang, L.; Li, Z.; Xie, X.; Zhang, L. A HPLC fingerprint study on Chaenomelis Fructus. BMC Chem. 2019, 13, 7. [Google Scholar] [CrossRef]
- Zhuo, Z.; Xu, D.; Li, Y.; Pu, B.; Ye, M. Fingerprint analysis of Zanthoxylum armatum DC. by HPLC. J. Food Compos. Anal. 2021, 96, 103736. [Google Scholar] [CrossRef]
- Jiang, J.-P.; Wang, M.-Q.; Ma, W.-F.; Gan, L.-F.; Chen, Q.-L. HPLC Fingerprint of Blumea riparia Based on Diversified Analytical Medels. J. Chin. Med. Mater. 2018, 41, 124–128. [Google Scholar]
- Xu, N.; Bu, X.-K.; Zhou, L.; Jia, T.-Z. Chemical Constituents from Cibotium Baronetz. Chin. J. Exp. Tradit. Med. Formulae 2011, 17, 71–73. [Google Scholar]
- Li, L.; Xie, M.-P.; Sun, H.; Lu, A.-Q.; Zhang, B.; Zhang, D.; Wang, S.-J. Bioactive phenolic acid-substituted glycoses and glycosides from rhizomes of Cibotium barometz. J. Asian Nat. Prod. Res. 2019, 21, 947–953. [Google Scholar] [CrossRef]
- Chemam, Y.; Benayache, S.; Marchioni, E.; Zhao, M.; Mosset, P.; Benayache, F. On-Line Screening, Isolation and Identification of Antioxidant Compounds of Helianthemum ruficomum. Molecules 2017, 22, 239. [Google Scholar] [CrossRef]
- Chen, Y.-X.; Yu, M.; Dai, X.-Y.; Jia, H.-M.; Zhang, H.-W.; Ma, Z.; Zou, Z.-M. Characterization of major constituents and determination of protocatechuic acid in Chinese herbal medicine Cibotii Rhizoma. Chin. Tradit. Herb. Drugs 2023, 54, 2254–2261. [Google Scholar]
- Xie, M.-P.; Li, L.; Sun, H.; Lu, A.-Q.; Zhang, B.; Shi, J.-G.; Zhang, D.; Wang, S.-J. Hepatoprotective hemiterpene glycosides from the rhizome of Cibotium barometz (L.) J. Sm. Phytochemistry 2017, 138, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.-S.; Li, X.-R.; Qi, L.-T.; Li, J.-C.; Ma, D.-L.; Zheng, Y.-G. A Textual Study on the Varieties and Origin Changes of Cibotii Rhizoma. China Pharm. 2019, 30, 553–555. [Google Scholar]
Batch | Producing Area | Similarity | Batch | Producing Area | Similarity |
---|---|---|---|---|---|
S1 | Guilin, Guangxi | 0.979 | S8 | Baoshan, Yunnan | 0.975 |
S2 | Hezhou, Guangxi | 0.981 | S9 | Qiandongnan, Guizhou | 0.939 |
S3 | Hezhou, Guangxi | 0.975 | S10 | Pingxiang, Jiangxi | 0.785 |
S4 | Baise, Guangxi | 0.979 | S11 | Longyan, Fujian | 0.998 |
S5 | Leshan, Sichuan | 0.987 | S12 | Puning, Guangdong | 0.987 |
S6 | Meishan, Sichuan | 0.944 | S13 | Guangzhou, Guangdong | 0.989 |
S7 | Chengdu, Sichuan | 0.910 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | 0.120 | 0.253 | 0.305 | 0.194 | 0.340 | 0.496 | 0.130 | 0.183 | 0.078 | 0.084 | 1.000 | 0.199 | 0.124 | 0.500 | 0.156 |
S2 | 0.052 | 0.034 | 0.158 | 0.265 | 0.106 | 0.261 | 0.129 | 0.229 | 0.041 | 0.030 | 1.000 | 0.181 | 0.088 | 0.559 | 0.082 |
S3 | 0.042 | 0.023 | 0.126 | 0.185 | 0.080 | 0.270 | 0.094 | 0.161 | 0.037 | 0.018 | 1.000 | 0.175 | 0.093 | 0.489 | 0.091 |
S4 | 0.138 | 0.085 | 0.313 | 0.374 | 0.336 | 0.763 | 0.184 | 0.373 | 0.115 | 0.060 | 1.000 | 0.162 | 0.202 | 0.780 | 0.082 |
S5 | 0.190 | 0.088 | 0.242 | 0.168 | 0.267 | 0.556 | 0.168 | 0.146 | 0.076 | 0.060 | 1.000 | 0.223 | 0.123 | 0.507 | 0.137 |
S6 | 0.209 | 0.086 | 0.255 | 0.232 | 0.139 | 1.032 | 0.209 | 0.210 | 0.108 | 0.057 | 1.000 | 0.382 | 0.165 | 0.566 | 0.144 |
S7 | 0.186 | 0.187 | 0.234 | 0.407 | 0.676 | 1.032 | 0.203 | 0.394 | 0.093 | 0.126 | 1.000 | 0.191 | 0.181 | 0.321 | 0.134 |
S8 | 0.096 | 0.041 | 0.149 | 0.138 | 0.069 | 0.337 | 0.091 | 0.124 | 0.053 | 0.025 | 1.000 | 0.172 | 0.093 | 0.416 | 0.112 |
S9 | 0.191 | 0.089 | 0.380 | 0.704 | 0.331 | 1.076 | 0.268 | 0.632 | 0.105 | 0.084 | 1.000 | 0.336 | 0.109 | 1.001 | 0.140 |
S10 | 0.234 | 0.128 | 0.289 | 1.011 | 1.222 | 0.883 | 0.348 | 1.011 | 0.101 | 0.089 | 1.000 | 0.129 | 0.095 | 0.211 | 0.040 |
S11 | 0.089 | 0.049 | 0.198 | 0.294 | 0.157 | 0.466 | 0.166 | 0.264 | 0.065 | 0.043 | 1.000 | 0.212 | 0.124 | 0.546 | 0.133 |
S12 | 0.064 | 0.033 | 0.174 | 0.202 | 0.090 | 0.375 | 0.131 | 0.185 | 0.054 | 0.029 | 1.000 | 0.157 | 0.111 | 0.596 | 0.087 |
S13 | 0.069 | 0.045 | 0.163 | 0.193 | 0.127 | 0.413 | 0.123 | 0.212 | 0.039 | 0.041 | 1.000 | 0.273 | 0.095 | 0.564 | 0.190 |
RSD/% | 51.17 | 76.57 | 33.4 | 75.06 | 106.67 | 49.77 | 41.9 | 78.77 | 38.08 | 54.6 | 0.00 | 34.26 | 29.82 | 35.73 | 33.85 |
Protocatechuic Acid | Protocatechuic Aldehyde | |
---|---|---|
S1 | 60.04 | 14.89 |
S2 | 44.23 | 12.50 |
S3 | 44.31 | 9.80 |
S4 | 69.52 | 12.39 |
S5 | 33.38 | 7.46 |
S6 | 15.82 | 6.50 |
S7 | 82.97 | 15.43 |
S8 | 20.38 | 7.36 |
S9 | 50.64 | 12.84 |
S10 | 193.81 | 14.18 |
S11 | 42.95 | 11.76 |
S12 | 36.44 | 11.75 |
S13 | 50.32 | 16.30 |
PC | Initial Eigenvalue | Extraction Sums of Squared Loading | Rotating Load Sum of Squares | ||||||
---|---|---|---|---|---|---|---|---|---|
Total | Variance/% | Accumulate/% | Total | Variance/% | Accumulate/% | Total | Variance/% | Accumulate/% | |
1 | 6.964 | 46.430 | 46.430 | 6.964 | 46.430 | 46.430 | 6.183 | 41.218 | 41.218 |
2 | 4.014 | 26.763 | 73.193 | 4.014 | 26.763 | 73.193 | 4.634 | 30.890 | 72.108 |
3 | 1.677 | 11.182 | 84.375 | 1.677 | 11.182 | 84.375 | 1.804 | 12.267 | 84.375 |
4 | 0.925 | 6.167 | 90.542 |
Peak a | tR b/min | Tentative Identification | Molecular Formula | Measd | Predicted | Error (ppm) | Fragments |
---|---|---|---|---|---|---|---|
1 | 3.545 | Quercetin methyl eter | C16H14O7 | 317.0625 | 317.0667 | −4.2 | 317 [M-H]− |
2 | 7.385 | Mucic acid dimethyl ester gallate | C15H18O12 | 389.0736 | 389.0725 | 1.1 | 389 [M-H]− |
3 | 14.210 | 6-O-protocatechuoyl-D-glucopyranose | C13H16O9 | 315.0776 | 315.0800 | −2.4 | 315 [M-H]−, 153 [M- C6H11O5]−, 109 [M-C6H11O5-CO2]− |
4 | 15.097 | Unidentified | C15H26O14 | 429.1215 | 429.1250 | −3.5 | 429, 315 |
5 | 16.035 | Protocatechuic acid * | C7H6O4 | 153.0242 | 153.0193 | 4.9 | 153 [M-H]−, 109 [M-COOH]− |
6 | 16.577 | Cyathenosin A | C13H14O9 | 313.0534 | 313.0565 | −3.1 | 313 [M-H]−, 235, 153 [M-C6H9O5]−, 109 [M-C6H9O5-CO2]− |
7 | 17.595 | 6-O-protocatechuoyl-D-glucopyranose(isomeride) | C13H16O9 | 315.0719 | 315.0722 | −0.3 | 315 [M-H]−, 153 [M-C6H11O5]− |
8 | 18.363 | 6-O-protocatechuoyl-D-glucopyranose(isomeride) | C13H16O9 | 315.0718 | 315.0722 | −0.4 | 631 [2M-H]−, 315 [M-H]−, 255 |
9 | 20.417 | Vanillic acid 4-β-D-glucopyranoside | C14H18O9 | 329.0881 | 329.0878 | 0.3 | 329 [M-H]−, 167 [M-C6H11O5]−, 123 [M-C6H11O5- CO2]− |
10 | 22.163 | Protocatechuic aldehyde * | C7H6O3 | 137.0220 | 137.0244 | −2.4 | 137 [M-H]− |
11 | 25.857 | 1-caffeoyl-β-D-glucose | C15H18O9 | 341.0865 | 341.0878 | −1.3 | 341 [M-H]−, 281 [M-COOH]−, 233, 179 [M-COOH-C6H11O5]− |
12 | 27.363 | 3-caffeoyl-β-D-glucose | C15H18O9 | 341.0893 | 341.0878 | 1.5 | 341 [M-H]−, 281 [M-COOH]−, 233, 203, 179 [M-COOH-C6H11O5] |
13 | 28.957 | 4-caffeoyl-β-D-glucose | C15H18O9 | 341.0859 | 341.0878 | −1.9 | 341 [M-H]−, 281 [M-COOH]−, 203, 179 [M-COOH-C6H11O5] |
14 | 45.730 | Cibotiumbaroside G | C18H20O11 | 411.0959 | 411.0933 | 2.6 | 411 [M-H]−, 315 [M-C5H5O2]−, 249 |
15 | 76.873 | Unidentified | C20H26O10 | 425.1443 | 425.1453 | −1.0 | 425, 395 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Duan, Y.; Zhao, Z.; Yang, D.; Xu, X. HPLC Fingerprint Analysis of Cibotii rhizoma from Different Regions and Identification of Common Peaks by LC-MS. Pharmaceuticals 2024, 17, 313. https://doi.org/10.3390/ph17030313
Guo Z, Duan Y, Zhao Z, Yang D, Xu X. HPLC Fingerprint Analysis of Cibotii rhizoma from Different Regions and Identification of Common Peaks by LC-MS. Pharmaceuticals. 2024; 17(3):313. https://doi.org/10.3390/ph17030313
Chicago/Turabian StyleGuo, Zhongjing, Yu Duan, Zhimin Zhao, Depo Yang, and Xinjun Xu. 2024. "HPLC Fingerprint Analysis of Cibotii rhizoma from Different Regions and Identification of Common Peaks by LC-MS" Pharmaceuticals 17, no. 3: 313. https://doi.org/10.3390/ph17030313
APA StyleGuo, Z., Duan, Y., Zhao, Z., Yang, D., & Xu, X. (2024). HPLC Fingerprint Analysis of Cibotii rhizoma from Different Regions and Identification of Common Peaks by LC-MS. Pharmaceuticals, 17(3), 313. https://doi.org/10.3390/ph17030313