Integrating Nanotechnological Advancements of Disease-Modifying Anti-Rheumatic Drugs into Rheumatoid Arthritis Management
Abstract
:1. Introduction
2. DMARDS: Classification and Characteristics
3. Potential Role of Nanotechnology in Delivery of DMARDs
3.1. Types of Nanoparticles Explored for Drug Delivery of DMARDs
3.1.1. Cubosomes
3.1.2. Nanospheres
3.1.3. Nanoemulsions
3.1.4. Solid Lipid Nanoparticles (SLNs)
3.1.5. Nanomicelles
3.1.6. Liposome
3.1.7. Niosomes
3.1.8. Nanostructured Lipid Carrier (NLCs)
Formulation | Method of Preparation | Excipients | Outcomes | Ref. |
---|---|---|---|---|
Methotrexate (MTX) | ||||
Teriflunomide and MTX-loaded hydroxyapatite nanoparticles (HAP-NP) | Wet chemical precipitation method | Calcium nitrate tetrahydrate, ammonium dihydrogen phosphate, and cetyltrimethylammonium bromide | The in vitro release of TEF and MTX from NP was 70.41 ± 1.22% and 82.43 ± 1.31% till 24 h, which showed sustained release behavior. An in vivo study showed that NPs exhibited significant decrease in ankle diameter and arthritis score and showed the least hepatotoxicity. Biochemical investigations showed insignificant changes in glutamic oxaloacetate transaminase and glutamic pyruvic transaminase levels. | [92] |
Self-assembled nanoparticles | Counter-ion induced gellification | Glycol chitosan, steric acid, sodium alginate, and calcium chloride | In vitro MTX release from NPs illustrated sustained drug release till 24 h. NPs showed intercellular uptake in murine macrophage cells, i.e., RAW 264.7, using confocal microscopy and FACS analysis. In vivo study in collagen-induced arthritis mice showed the significant accumulation of NPs in inflamed joints and demonstrated significantly higher therapeutic activity in comparison to free MTX. | [93] |
Sodium alginate chitosan nanoparticles | Ionotropic pre-gelation method | Chitosan and sodium alginate | In vitro drug release from NPs showed the initial burst release and then sustained release of 68.99% till 36 h. | [94] |
Multifunctional folate receptor-targeting and pH-responsive nanocarriers (MTX-loaded FA-PPLNPs) | Modified emulsion–solvent evaporation | PLGA, lipopolysaccharide, folic acid, polyethylene glycolpoly (lactic-co-glycolic acid), and poly (cyclohexane-1,4-diylacetone dimethylene ketal) | In vitro drug release from NPs showed the burst release of 14% and 35% MTX within 1 h, 35% and 62% till 6 h, and 64% and 81% till 36 h, at pH 7.4 and 5, respectively. Cellular uptake in RAW246.7 cells and cytotoxicity study using the MTT assay of NPs revealed superior cellular uptake and higher cytotoxicity, which might be attributable to their active targeting on activated macrophages. In vivo study in adjuvant-induced arthritis rat model revealed that the average clinical score (0.6) and paw thickness (6.18 mm) of NPs-treated rats were nearly similar as those of normal rats. | [95] |
Cubosomes | Lipid emulsification coupled with high-pressure homogenization technique | Poloxamer 188 | The in vitro study of cubosomes revealed sustained drug release for 12 h. Ex vivo skin permeation using the excised skin of Wistar rats demonstrated 2.50 ± 0.3 ng of MTX permeation within 2 h and 8.80 ± 5.2 ng within 12 h. In vivo study using rat tail flick method showed that thermal stimulus time was 5.63 ± 0.21 s and 2.70 ± 0.20 s with drug-loaded cubosomes and diclofenac gel, which showed the higher analgesic activity of cubosomes. The paw thickness in complete Freund’s adjuvant (CFA)-induced arthritic rats was reduced from 1.47 cm to 1.03 cm within 15 days in cubosome-treated rats. | [96] |
MTX and gold nanoparticle-loaded multifunctional temperature-responsive nanospheres | Emulsion–diffusion evaporation technique | PEG-PLGA and poly (vinyl alcohol) | The in vitro drug release profile of NPs in PBS (pH 7.4) was a sustained release pattern till 120 h. In vitro cytotoxicity assessed using the MTT assay in THP1 monocytes and differentiated macrophages showed significant improvement in the cytotoxic effect in the presence of Au-NPs in nanospheres. In vitro anti-inflammatory activity assessed using cytokines measurement showed that nanospheres significantly decreased the levels of IL-1, IL-6, and TNF-α in THP-1 monocytes and differentiated macrophages. | [97] |
MTX and superparamagnetic iron oxide nanoparticles (SPION) Co-associated into PLGA nanoparticles conjugated with anti-CD64 antibody | Solvent emulsification–evaporation method | PLGA | In vitro MTT and LDH assays were performed with RAW 264.7 cells to study the effect of NPs on cell viability and cytotoxicity. It was found that, after 24 h of incubation, the toxicity of MTX-loaded NPs was higher than the free drug. | [98] |
Lipid nanoemulsions | High pressure homogenization | Cholesteryl oleate, egg phosphatidylcholine, cholesterol, and tween 80 | In vivo study in antigen-induced arthritis (AIA) rabbits revealed that animals treated with the intraarticular injection of lipid nano-emulsion showed reductions in synovial leukocyte infiltrate and protein leakage in comparison to those of non-treated arthritic rats. | [99] |
MTX-loaded PLGA Au half-shell nanoparticles conjugated with arginine–glycine aspartic acid (RGD) peptides over the surface of gold half-shell | Nanoprecipitation method | PLGA, carboxylic acid, Au, and EDC | The in vivo study of developed NPs was executed in collagen-induced arthritic mice, which showed that NPs when injected into arthritic mice effectively delivered the drug to inflamed joints due to the presence of RGD peptides over NPs. Upon near-infrared irradiation exposure, heat was produced by gold half-shells, which leads to rapid drug release from PLGA nanoparticles. | [100] |
Liposomal MTX (MTX-gamma-DMPE) | Hydration method | Egg lecithin, cholesterol and phosphatidic acid, distearoylphosphatidylcholine, polyethylene glycol, and DMPE | The in vitro study of liposomes was performed by the estimation of cytokine production by macrophages, which showed that liposomes caused the inhibition of IL-1 and PGE2. An in vivo study was performed in collagen-induced arthritis in Lewis rats, and treatments to different groups of rats were provided intravenously. The clinical score and hind paw diameter measurements remained significantly lower in MTX-loaded liposomes along with the reduced side effects. | [101] |
Sulfasalazine (SSZ) | ||||
Nanoparticles | Nanoprecipitation and ionotropic gelation techniques | Eudragit S100 and ethyl cellulose | Nanoprecipitation was found to be a comparatively better technique for the preparation of SSZ-NPs, which produced a mean particle diameter of 165.4 nm, the zeta potential of −47.7 mV, the entrapment efficiency of 89.29%, and could sustain drug release for 12 h in the in vitro study. | [102] |
Micellar/liposomal Micellar/niosomal | Solvent evaporation method, thin film hydration method, followed by sonication | Soy lecithin, tween 80, squalene, and polyvinyl alcohol | The in vitro release study of liposomes showed that slow drug release was 25% at 10 days and 50% at 30 days, while niosomes exhibited ~40% release at 10 days. The toxicity of SSZ nano-formulations against human dermal fibroblasts was assessed using the MTT viability assay. The IC50 of SSZ was decreased by about 4-folds from 940 mM for free SSZ to 240 mM for liposomal or 230 mM for niosomal SSZ. | [103] |
Leflunomide | ||||
Nanostructured lipid carriers (NLC) | Melt emulsification ultrasonication method | Stearic acid, oleic acid, tween 80, and poloxamer 188 | The in vitro drug release study of NLCs (F1) in phosphate-buffered saline of pH 7.4 exhibited 90.35% drug release in 48 h. In vivo anti-inflammatory activity was examined in CFA-induced arthritic Sprague Dawley rats, which revealed that NLCs exhibited great potential in decreasing CFA-induced knee edema over thirty days of treatment. In vivo intestinal lymphatic uptake study in Sprague Dawley rats showed that NLCs produced an increase in lymphatic drug uptake, which might be due to chylomicron formation. | [104] |
Superparamagnetic iron oxide nanoparticles (SPION) bioemulsomes | Thin-film hydration method | L-α-phosphatidylcholine (Lipoid® S100), cholesterol, compritol 888 ATO® CA, ferric chloride hexahydrate, ferrous sulfate tetrahydrate, and ammonium hydroxide | An in vitro study showed that bioemulsomes exhibited a two-phase release pattern with the initial burst release in the first 1 h and sustained release for 24 h. The in vivo study revealed that the intra-articular injection of bioemulsomes for 14 days in CFA-induced arthritic Sprague Dawley rats showed a normal joint diameter after 14 days of treatment, with statistically insignificant difference compared to the negative control. | [105] |
3.2. Promising Developments of Nanoparticles-Based Drug Delivery Systems
3.3. Why Do Nanoparticles Outperform Conventional Delivery Methods?
3.4. Applications of Nanoparticles in Biologics
3.5. Biocompatibility of Nanoparticles
3.6. Clearance of Nanoparticles from the Body
3.7. Scalability of Nanoparticles
3.8. Drug Loading of Nanoparticles and Stability Issues
4. Published Patents and Current Clinical Status of DMARDs
5. Conclusions
6. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
5-ASA | 5-aminosalicylic acid |
bDMARD | Biologic DMARD |
CFA | Complete Freund’s adjuvant |
CQ | Chloroquine |
DMARDs | Disease-modifying anti-rheumatic drugs |
FLS | Fibroblast-like synoviocytes |
HCQ | Hydroxychloroquine |
MMNPs | Methotrexate and minocycline-loaded nanoparticles |
MTCs | Methotrexate-loaded cubosomes |
MTX | Methotrexate |
NLC | Nanostructured lipid carriers |
RA | Rheumatoid arthritis |
RANKL | Receptor activator of nuclear factor kappa beta ligands |
SLN | Solid lipid nanoparticle |
SPION | Superparamagnetic iron oxide nanoparticles |
SSZ | Sulfasalazine |
Th17 | T-helper 17 |
TNF | Tumor necrosis factor |
References
- Scherer, H.U.; Häupl, T.; Burmester, G.R. The Etiology of Rheumatoid Arthritis. J. Autoimmun. 2020, 110, 102400. [Google Scholar] [CrossRef]
- Burmester, G.R.; Pope, J.E. Novel Treatment Strategies in Rheumatoid Arthritis. Lancet 2017, 389, 2338–2348. [Google Scholar] [CrossRef] [PubMed]
- McInnes, I.B.; Schett, G. Pathogenetic Insights from the Treatment of Rheumatoid Arthritis. Lancet 2017, 389, 2328–2337. [Google Scholar] [CrossRef] [PubMed]
- Majithia, V.; Geraci, S.A. Rheumatoid Arthritis: Diagnosis and Management. Am. J. Med. 2007, 120, 936–939. [Google Scholar] [CrossRef] [PubMed]
- Källberg, H.; Ding, B.; Padyukov, L.; Bengtsson, C.; Rönnelid, J.; Klareskog, L.; Alfredsson, L.; Group, E.S. Smoking Is a Major Preventable Risk Factor for Rheumatoid Arthritis: Estimations of Risks after Various Exposures to Cigarette Smoke. Ann. Rheum. Dis. 2011, 70, 508–511. [Google Scholar] [CrossRef] [PubMed]
- Shah, L.; Elshaikh, A.O.; Lee, R.; Mathew, C.J.; Jose, M.T.; Cancarevic, I. Do Menopause and Aging Affect the Onset and Progression of Rheumatoid Arthritis and Systemic Lupus Erythematosus? Cureus 2020, 12, e10944. Available online: https://assets.cureus.com/uploads/review_article/pdf/40927/1612431253-1612431250-20210204-30437-pinddj.pdf (accessed on 9 January 2024). [CrossRef] [PubMed]
- Okada, Y.; Eyre, S.; Suzuki, A.; Kochi, Y.; Yamamoto, K. Genetics of Rheumatoid Arthritis: 2018 Status. Ann. Rheum. Dis. 2019, 78, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Alpízar-Rodríguez, D.; Pluchino, N.; Canny, G.; Gabay, C.; Finckh, A. The Role of Female Hormonal Factors in the Development of Rheumatoid Arthritis. Rheumatology 2017, 56, 1254–1263. [Google Scholar] [CrossRef]
- Cutolo, M.; Seriolo, B.; Villaggio, B.; Pizzorni, C.; Craviotto, C.; Sulli, A. Androgens and Estrogens Modulate the Immune and Inflammatory Responses in Rheumatoid Arthritis. Ann. N. Y. Acad. Sci. 2002, 966, 131–142. [Google Scholar] [CrossRef]
- Proud, N.; Hughes, G.; McCashney, C.; Algarves Miranda, L. Periodontal Health as Perceived by Rheumatologists and Rheumatoid Arthritis Patients. Rheumato 2023, 3, 118–131. [Google Scholar] [CrossRef]
- Mikuls, T.R.; Payne, J.B.; Yu, F.; Thiele, G.M.; Reynolds, R.J.; Cannon, G.W.; Markt, J.; McGowan, D.; Kerr, G.S.; Redman, R.S. Periodontitis and Porphyromonas Gingivalis in Patients with Rheumatoid Arthritis. Arthritis Rheumatol. 2014, 66, 1090–1100. [Google Scholar] [CrossRef]
- Batool, A.; Vaithilingam, R.D.; Hassan, N.H.M.; Safii, S.H.; Saub, R. Evaluating the Potential of Matrix Metalloproteinase as a Diagnostic Biomarker in Rheumatoid Arthritis and Periodontitis: A Systematic Review and Meta-Analysis. Medicine 2023, 102, e35340. [Google Scholar] [CrossRef]
- Zhuo, J.; Xia, Q.; Sharma, N.; Gao, S.; Lama, S.; Cui, J.; Feathers, V.; Shadick, N.; Weinblatt, M.E. The Role of Shared Epitope in Rheumatoid Arthritis Prognosis in Relation to Anti-Citrullinated Protein Antibody Positivity. Rheumatol. Ther. 2022, 9, 637–647. [Google Scholar] [CrossRef]
- Wouters, F.; Maurits, M.P.; Van Boheemen, L.; Verstappen, M.; Mankia, K.; Matthijssen, X.M.E.; Dorjée, A.L.; Emery, P.; Knevel, R.; Van Schaardenburg, D. Determining in Which Pre-Arthritis Stage HLA-Shared Epitope Alleles and Smoking Exert Their Effect on the Development of Rheumatoid Arthritis. Ann. Rheum. Dis. 2022, 81, 48–55. [Google Scholar] [CrossRef]
- Choy, E.H.S.; Smith, C.; Dore, C.J.; Scott, D.L. A Meta-Analysis of the Efficacy and Toxicity of Combining Disease-Modifying Anti-Rheumatic Drugs in Rheumatoid Arthritis Based on Patient Withdrawal. Rheumatology 2005, 44, 1414–1421. [Google Scholar] [CrossRef]
- Shinde, C.G.; Venkatesh, M.P.; Kumar, T.M.P.; Shivakumar, H.G. Methotrexate: A Gold Standard for Treatment of Rheumatoid Arthritis. J. Pain Palliat. Care Pharmacother. 2014, 28, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.; Mousavi, M.J.; Jamalzehi, S.; Alimohammadi, R.; Bezvan, M.H.; Mohammadi, H.; Aslani, S. Strategies toward Rheumatoid Arthritis Therapy; the Old and the New. J. Cell. Physiol. 2019, 234, 10018–10031. [Google Scholar] [CrossRef] [PubMed]
- Gaffo, A.; Saag, K.G.; Curtis, J.R. Treatment of Rheumatoid Arthritis. Am. J. Health Pharm. 2006, 63, 2451–2465. [Google Scholar] [CrossRef] [PubMed]
- Hazlewood, G.S.; Whittle, S.L.; Kamso, M.M.; Akl, E.A.; Wells, G.A.; Tugwell, P.; Thomas, M.; Lee, C.; Ejaredar, M.; Choudhary, D. Disease-modifying Anti-rheumatic Drugs for Rheumatoid Arthritis: A Systematic Review and Network Meta-analysis. Cochrane Database Syst. Rev. 2020, 2020, CD013562. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085935/ (accessed on 9 January 2024). [CrossRef]
- Drugbank. Available online: https://go.drugbank.com/ (accessed on 15 October 2023).
- Giri, B.R.; Kim, J.S.; Park, J.H.; Jin, S.G.; Kim, K.S.; Choi, H.G.; Kim, D.W. Improved Bioavailability and High Photostability of Methotrexate by Spray-Dried Surface-Attached Solid Dispersion with an Aqueous Medium. Pharmaceutics 2021, 13, 111. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, G.; Foroutan, S.M.; Zarghi, A.; Shafaati, A. Synthesis and Characterization of Methotrexate Polyethylene Glycol Esters as a Drug Delivery System. Chem. Pharm. Bull. 2010, 58, 147–153. [Google Scholar] [CrossRef]
- Tanaka, Y. Subcutaneous Injection of Methotrexate: Advantages in the Treatment of Rheumatoid Arthritis. Mod. Rheumatol. 2023, 33, 633–639. [Google Scholar] [CrossRef]
- Rozman, B. Clinical Pharmacokinetics of Leflunomide. Clin. Pharmacokinet. 2002, 41, 421–430. [Google Scholar] [CrossRef]
- Cadden, J.; Klooster, W.T.; Coles, S.J.; Aitipamula, S. Cocrystals of Leflunomide: Design, Structural, and Physicochemical Evaluation. Cryst. Growth Des. 2019, 19, 3923–3933. [Google Scholar] [CrossRef]
- Mracec, M.; Oprea, T.I.; Mracec, M. Models of the Algistatic Activity of 5-Amino-1-Aryl-1H-Tetrazoles. Rev. Roum. Chim. 2011, 56, 373–379. [Google Scholar]
- El-Sayyad, N.M.E.-M.; Badawi, A.; Abdullah, M.E.; Abdelmalak, N.S. Dissolution Enhancement of Leflunomide Incorporating Self Emulsifying Drug Delivery Systems and Liquisolid Concepts. Bull. Fac. Pharm. Cairo Univ. 2017, 55, 53–62. [Google Scholar] [CrossRef]
- Priyam, A.; Shivhare, K.; Yadav, S.; Sharma, A.K.; Kumar, P. Enhanced Solubility and Self-Assembly of Amphiphilic Sulfasalazine-PEG-OMe (S-PEG) Conjugate into Core-Shell Nanostructures Useful for Colonic Drug Delivery. Colloids Surf. A Physicochem. Eng. Asp. 2018, 547, 157–167. [Google Scholar] [CrossRef]
- Kasim, N.A.; Whitehouse, M.; Ramachandran, C.; Bermejo, M.; Lennernäs, H.; Hussain, A.S.; Junginger, H.E.; Stavchansky, S.A.; Midha, K.K.; Shah, V.P. Molecular Properties of WHO Essential Drugs and Provisional Biopharmaceutical Classification. Mol. Pharm. 2004, 1, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Dahan, A.; Amidon, G.L. Small Intestinal Efflux Mediated by MRP2 and BCRP Shifts Sulfasalazine Intestinal Permeability from High to Low, Enabling Its Colonic Targeting. Am. J. Physiol. Liver Physiol. 2009, 297, G371–G377. [Google Scholar] [CrossRef] [PubMed]
- Plosker, G.L.; Croom, K.F. Sulfasalazine: A Review of Its Use in the Management of Rheumatoid Arthritis. Drugs 2005, 65, 1825–1849. [Google Scholar] [CrossRef] [PubMed]
- Della Porta, A.; Bornstein, K.; Coye, A.; Montrief, T.; Long, B.; Parris, M.A. Acute Chloroquine and Hydroxychloroquine Toxicity: A Review for Emergency Clinicians. Am. J. Emerg. Med. 2020, 38, 2209–2217. [Google Scholar] [CrossRef] [PubMed]
- Pauli, E.; Joshi, H.; Vasavada, A.; Brackett, J.; Towa, L. Evaluation of an Immediate-Release Formulation of Hydroxychloroquine Sulfate with an Interwoven Pediatric Taste-Masking System. J. Pharm. Sci. 2020, 109, 1493–1497. [Google Scholar] [CrossRef] [PubMed]
- Warhurst, D.C.; Steele, J.C.P.; Adagu, I.S.; Craig, J.C.; Cullander, C. Hydroxychloroquine Is Much Less Active than Chloroquine against Chloroquine-Resistant Plasmodium Falciparum, in Agreement with Its Physicochemical Properties. J. Antimicrob. Chemother. 2003, 52, 188–193. [Google Scholar] [CrossRef]
- Shi, J.G.; Chen, X.; Lee, F.; Emm, T.; Scherle, P.A.; Lo, Y.; Punwani, N.; Williams, W.V.; Yeleswaram, S. The Pharmacokinetics, Pharmacodynamics, and Safety of Baricitinib, an Oral JAK 1/2 Inhibitor, in Healthy Volunteers. J. Clin. Pharmacol. 2014, 54, 1354–1361. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, S.C.J.; Tse, C.L.Y.; Burry, L.; Dresser, L.D. Baricitinib: A Review of Pharmacology, Safety, and Emerging Clinical Experience in COVID-19. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2020, 40, 843–856. [Google Scholar] [CrossRef] [PubMed]
- Anwer, M.K.; Ali, E.A.; Iqbal, M.; Ahmed, M.M.; Aldawsari, M.F.; Saqr, A.A.; Ansari, M.N.; Aboudzadeh, M.A. Development of Sustained Release Baricitinib Loaded Lipid-Polymer Hybrid Nanoparticles with Improved Oral Bioavailability. Molecules 2021, 27, 168. [Google Scholar] [CrossRef] [PubMed]
- Markham, A.; Keam, S.J. Peficitinib: First Global Approval. Drugs 2019, 79, 887–891. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, H.; Amano, Y.; Moritomo, A.; Shirakami, S.; Nakajima, Y.; Nakai, K.; Nomura, N.; Ito, M.; Higashi, Y.; Inoue, T. Discovery and Structural Characterization of Peficitinib (ASP015K) as a Novel and Potent JAK Inhibitor. Bioorg. Med. Chem. 2018, 26, 4971–4983. [Google Scholar] [CrossRef] [PubMed]
- Lefevre, P.L.C.; Vande Casteele, N. Clinical Pharmacology of Janus Kinase Inhibitors in Inflammatory Bowel Disease. J. Crohn’s Colitis 2020, 14, S725–S736. [Google Scholar] [CrossRef] [PubMed]
- Vong, C.; Martin, S.W.; Deng, C.; Xie, R.; Ito, K.; Su, C.; Sandborn, W.J.; Mukherjee, A. Population Pharmacokinetics of Tofacitinib in Patients with Moderate to Severe Ulcerative Colitis. Clin. Pharmacol. Drug Dev. 2021, 10, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Kushner IV, J.; Lamba, M.; Stock, T.; Wang, R.; Nemeth, M.A.; Alvey, C.; Chen, R.; DeMatteo, V.; Blanchard, A. Development and Validation of a Level a In-Vitro in-Vivo Correlation for Tofacitinib Modified-Release Tablets Using Extrudable Core System Osmotic Delivery Technology. Eur. J. Pharm. Sci. 2020, 147, 105200. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, Y.; Wei, S.; Zhang, L.; Zong, S. Development and Evaluation of Tofacitinib Transdermal System for the Treatment of Rheumatoid Arthritis in Rats. Drug Dev. Ind. Pharm. 2021, 47, 878–886. [Google Scholar] [CrossRef] [PubMed]
- Gorantla, S.; Saha, R.N.; Singhvi, G. Spectrophotometric Method to Quantify Tofacitinib in Lyotropic Liquid Crystalline Nanoparticles and Skin Layers: Application in Ex Vivo Dermal Distribution Studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 255, 119719. [Google Scholar] [CrossRef] [PubMed]
- Nader, A.; Stodtmann, S.; Friedel, A.; Mohamed, M.F.; Othman, A.A. Pharmacokinetics of Upadacitinib in Healthy Subjects and Subjects with Rheumatoid Arthritis, Crohn’s Disease, Ulcerative Colitis, or Atopic Dermatitis: Population Analyses of Phase 1 and 2 Clinical Trials. J. Clin. Pharmacol. 2020, 60, 528–539. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.-E.F.; Trueman, S.; Othman, A.A.; Han, J.-H.; Ju, T.R.; Marroum, P. Development of in Vitro–in Vivo Correlation for Upadacitinib Extended-Release Tablet Formulation. AAPS J. 2019, 21, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mease, P.J. Etanercept, a TNF Antagonist for Treatment for Psoriatic Arthritis and Psoriasis. Skin Therapy Lett. 2003, 8, 1–4. [Google Scholar] [PubMed]
- Reddy, S.P.; Lin, E.J.; Shah, V.V.; Wu, J.J. Chapter 10—Adalimumab; In Therapy for Severe Psoriasis; Wu, J.J., Feldman, S.R., Lebwohl, M.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 111–126. ISBN 978-0-323-44797-3. [Google Scholar]
- Baliga, V.D.; Prabhu, R.S. Disease-Modifying Antirheumatic Drugs–Old and New: A Brief Overview. Clin. Dermatol. Rev. 2019, 3, 47–56. [Google Scholar]
- Hanzel, J.; Bukkems, L.H.; Gecse, K.B.; D’Haens, G.R.; Mathôt, R.A.A. Population Pharmacokinetics of Subcutaneous Infliximab CT-P13 in Crohn’s Disease and Ulcerative Colitis. Aliment. Pharmacol. Ther. 2021, 54, 1309–1319. [Google Scholar] [CrossRef]
- Harzallah, I.; Rigaill, J.; Williet, N.; Paul, S.; Roblin, X. Golimumab Pharmacokinetics in Ulcerative Colitis: A Literature Review. Therap. Adv. Gastroenterol. 2017, 10, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Roy, A.; Murthy, B. Population Pharmacokinetics and Exposure-response Relationship of Intravenous and Subcutaneous Abatacept in Patients with Rheumatoid Arthritis. J. Clin. Pharmacol. 2019, 59, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, H.; Hsu, J.C.; Lu, P.; Fettner, S.; Zhang, X.; Douglass, W.; Bao, M.; Rowell, L.; Burmester, G.R.; Kivitz, A. Pharmacokinetic and Pharmacodynamic Analysis of Subcutaneous Tocilizumab in Patients with Rheumatoid Arthritis from 2 Randomized, Controlled Trials: SUMMACTA and BREVACTA. J. Clin. Pharmacol. 2017, 57, 459–468. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.-C.; Fettner, S.; Rowell, L.; Gott, T.; Grimsey, P.; Unsworth, A. Pharmacokinetics and Pharmacodynamics of Tocilizumab after Subcutaneous Administration in Patients with Rheumatoid Arthritis. Int. J. Clin. Pharmacol. Ther. 2013, 51, 620–630. [Google Scholar] [CrossRef] [PubMed]
- Paccaly, A.J.; Kovalenko, P.; Parrino, J.; Boyapati, A.; Xu, C.; van Hoogstraten, H.; Ishii, T.; Davis, J.D.; DiCioccio, A.T. Pharmacokinetics and Pharmacodynamics of Subcutaneous Sarilumab and Intravenous Tocilizumab Following Single-Dose Administration in Patients with Active Rheumatoid Arthritis on Stable Methotrexate. J. Clin. Pharmacol. 2021, 61, 90–104. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Su, Y.; Paccaly, A.; Kanamaluru, V. Population Pharmacokinetics of Sarilumab in Patients with Rheumatoid Arthritis. Clin. Pharmacokinet. 2019, 58, 1455–1467. [Google Scholar] [CrossRef] [PubMed]
- Prosperi, D.; Colombo, M.; Zanoni, I.; Granucci, F. Drug Nanocarriers to Treat Autoimmunity and Chronic Inflammatory Diseases. In Seminars in Immunology; Elsevier: Amsterdam, The Netherlands, 2017; Volume 34, pp. 61–67. [Google Scholar]
- Ulbrich, W.; Lamprecht, A. Targeted Drug-Delivery Approaches by Nanoparticulate Carriers in the Therapy of Inflammatory Diseases. J. R. Soc. Interface 2010, 7, S55–S66. [Google Scholar] [CrossRef] [PubMed]
- Pham, C.T.N. Nanotherapeutic Approaches for the Treatment of Rheumatoid Arthritis. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2011, 3, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Serra Devecchi, P.; Santamaria Vilanova, P. Nanoparticle-Based Autoimmune Disease Therapy. Clin. Immunol. 2015, 160, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Feng, X.; Ding, J.; Chang, F.; Chen, X. Nanotherapeutics Relieve Rheumatoid Arthritis. J. Control. Release 2017, 252, 108–124. [Google Scholar] [CrossRef] [PubMed]
- Karami, Z.; Hamidi, M. Cubosomes: Remarkable Drug Delivery Potential. Drug Discov. Today 2016, 21, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Garg, G.; Sharma, P.K. Nanospheres: A Novel Approach for Targeted Drug Delivery System. Int. J. Pharm. Sci. Rev. Res. 2010, 5, 84–88. [Google Scholar]
- Guterres, S.S.; Alves, M.P.; Pohlmann, A.R. Polymeric Nanoparticles, Nanospheres and Nanocapsules, for Cutaneous Applications. Drug Target Insights 2007, 2, 147–157. [Google Scholar] [CrossRef]
- Suyal, J.; Bhatt, G.; Singh, N. Formulation and Evaluation of Nanoemulsion for Enhanced Bioavailability of Itraconazole. Int. J. Pharm. Sci. Res. 2018, 9, 2927–2931. [Google Scholar]
- Jaiswal, M.; Dudhe, R.; Sharma, P.K. Nanoemulsion: An Advanced Mode of Drug Delivery System. 3 Biotech. 2015, 5, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Zahoor, I.; Sachdeva, M.; Subramaniyan, V.; Fuloria, S.; Fuloria, N.K.; Naved, T.; Bhatia, S.; Al-Harrasi, A.; Aleya, L. Deciphering the Role of Nanoparticles for Management of Bacterial Meningitis: An Update on Recent Studies. Environ. Sci. Pollut. Res. 2021, 28, 60459–60476. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Sharma, N.; Zahoor, I.; Behl, T.; Antil, A.; Gupta, S.; Anwer, M.K.; Mohan, S.; Bungau, S.G. Decrypting the Potential of Nanotechnology-Based Approaches as Cutting-Edge for Management of Hyperpigmentation Disorder. Molecules 2023, 28, 220. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, Properties and Applications. Soft Matter 2016, 12, 2826–2841. [Google Scholar] [CrossRef] [PubMed]
- Shaker, D.S.; Ishak, R.A.H.; Ghoneim, A.; Elhuoni, M.A. Nanoemulsion: A Review on Mechanisms for the Transdermal Delivery of Hydrophobic and Hydrophilic Drugs. Sci. Pharm. 2019, 87, 17. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, N.; Sachdeva, M.; Behl, T.; Zahoor, I.; Fuloria, N.K.; Sekar, M.; Fuloria, S.; Subramaniyan, V.; Alsubayiel, A.M. Focusing the Pivotal Role of Nanotechnology in Huntington’s Disease: An Insight into the Recent Advancements. Environ. Sci. Pollut. Res. 2022, 29, 73809–73827. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Ray, S.; Thakur, R.S. Solid Lipid Nanoparticles: A Modern Formulation Approach in Drug Delivery System. Indian J. Pharm. Sci. 2009, 71, 349. [Google Scholar] [CrossRef] [PubMed]
- Behl, T.; Singh, S.; Sharma, N.; Zahoor, I.; Albarrati, A.; Albratty, M.; Meraya, A.M.; Najmi, A.; Bungau, S. Expatiating the Pharmacological and Nanotechnological Aspects of the Alkaloidal Drug Berberine: Current and Future Trends. Molecules 2022, 27, 3705. [Google Scholar] [CrossRef]
- Sharma, N.; Behl, T.; Singh, S.; Kaur, P.; Zahoor, I.; Mohan, S.; Rachamalla, M.; Dailah, H.G.; Almoshari, Y.; Salawi, A. Targeting Nanotechnology and Nutraceuticals in Obesity: An Updated Approach. Curr. Pharm. Des. 2022, 28, 3269–3288. [Google Scholar] [CrossRef] [PubMed]
- Bose, A.; Roy Burman, D.; Sikdar, B.; Patra, P. Nanomicelles: Types, Properties and Applications in Drug Delivery. IET Nanobiotechnol. 2021, 15, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Tawfik, S.M.; Azizov, S.; Elmasry, M.R.; Sharipov, M.; Lee, Y.-I. Recent Advances in Nanomicelles Delivery Systems. Nanomaterials 2020, 11, 70. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zeng, Y.; Chen, M.; Liu, G. Application of Nanomicelles in Enhancing Bioavailability and Biological Efficacy of Bioactive Nutrients. Polymers 2022, 14, 3278. [Google Scholar] [CrossRef] [PubMed]
- Nsairat, H.; Khater, D.; Sayed, U.; Odeh, F.; Al Bawab, A.; Alshaer, W. Liposomes: Structure, Composition, Types, and Clinical Applications. Heliyon 2022, 8, e09394. [Google Scholar] [CrossRef] [PubMed]
- Nakhaei, P.; Margiana, R.; Bokov, D.O.; Abdelbasset, W.K.; Jadidi Kouhbanani, M.A.; Varma, R.S.; Marofi, F.; Jarahian, M.; Beheshtkhoo, N. Liposomes: Structure, Biomedical Applications, and Stability Parameters with Emphasis on Cholesterol. Front. Bioeng. Biotechnol. 2021, 9, 705886. [Google Scholar] [CrossRef] [PubMed]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, Preparation, and Applications. Nanoscale Res. Lett. 2013, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kazi, K.M.; Mandal, A.S.; Biswas, N.; Guha, A.; Chatterjee, S.; Behera, M.; Kuotsu, K. Niosome: A Future of Targeted Drug Delivery Systems. J. Adv. Pharm. Technol. Res. 2010, 1, 374. [Google Scholar] [PubMed]
- Momekova, D.B.; Gugleva, V.E.; Petrov, P.D. Nanoarchitectonics of Multifunctional Niosomes for Advanced Drug Delivery. ACS Omega 2021, 6, 33265–33273. [Google Scholar] [CrossRef] [PubMed]
- Gharbavi, M.; Amani, J.; Kheiri-Manjili, H.; Danafar, H.; Sharafi, A. Niosome: A Promising Nanocarrier for Natural Drug Delivery through Blood-Brain Barrier. Adv. Pharmacol. Pharm. Sci. 2018, 2018, 6847971. [Google Scholar] [CrossRef]
- Ge, X.; Wei, M.; He, S.; Yuan, W.-E. Advances of Non-Ionic Surfactant Vesicles (Niosomes) and Their Application in Drug Delivery. Pharmaceutics 2019, 11, 55. [Google Scholar] [CrossRef]
- Khan, R.; Irchhaiya, R. Niosomes: A Potential Tool for Novel Drug Delivery. J. Pharm. Investig. 2016, 46, 195–204. [Google Scholar] [CrossRef]
- Ag Seleci, D.; Seleci, M.; Walter, J.-G.; Stahl, F.; Scheper, T. Niosomes as Nanoparticular Drug Carriers: Fundamentals and Recent Applications. J. Nanomater. 2016, 2016, 7372306. [Google Scholar] [CrossRef]
- Salvi, V.R.; Pawar, P. Nanostructured Lipid Carriers (NLC) System: A Novel Drug Targeting Carrier. J. Drug Deliv. Sci. Technol. 2019, 51, 255–267. [Google Scholar] [CrossRef]
- Chauhan, I.; Yasir, M.; Verma, M.; Singh, A.P. Nanostructured Lipid Carriers: A Groundbreaking Approach for Transdermal Drug Delivery. Adv. Pharm. Bull. 2020, 10, 150. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.-L.; A Al-Suwayeh, S.; Fang, J.-Y. Nanostructured Lipid Carriers (NLCs) for Drug Delivery and Targeting. Recent Pat. Nanotechnol. 2013, 7, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Elmowafy, M.; Al-Sanea, M.M. Nanostructured Lipid Carriers (NLCs) as Drug Delivery Platform: Advances in Formulation and Delivery Strategies. Saudi Pharm. J. 2021, 29, 999–1012. [Google Scholar] [CrossRef] [PubMed]
- Haider, M.; Abdin, S.M.; Kamal, L.; Orive, G. Nanostructured Lipid Carriers for Delivery of Chemotherapeutics: A Review. Pharmaceutics 2020, 12, 288. [Google Scholar] [CrossRef]
- Pandey, S.; Kumar, V.; Leekha, A.; Rai, N.; Ahmad, F.J.; Verma, A.K.; Talegaonkar, S. Co-Delivery of Teriflunomide and Methotrexate from Hydroxyapatite Nanoparticles for the Treatment of Rheumatoid Arthritis: In Vitro Characterization, Pharmacodynamic and Biochemical Investigations. Pharm. Res. 2018, 35, 1–17. [Google Scholar] [CrossRef]
- Li, X.; Qu, J.; Zhang, T.; He, X.; Jiang, Y.; Chen, J. Nuclear Factor Kappa B (NF-ΚB) Targeted Self-Assembled Nanoparticles Loaded with Methotrexate for Treatment of Rheumatoid Arthritis. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 8204. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.D.C.; Tharani, C.B.; Narayanan, N.; Kumar, C.S. Formulation and Characterization of Methotrexate Loaded Sodium Alginate Chitosan Nanoparticles. Indian J. Res. Pharm. Biotechnol. 2013, 1, 915. [Google Scholar]
- Zhao, J.; Zhao, M.; Yu, C.; Zhang, X.; Liu, J.; Cheng, X.; Lee, R.J.; Sun, F.; Teng, L.; Li, Y. Multifunctional Folate Receptor-Targeting and PH-Responsive Nanocarriers Loaded with Methotrexate for Treatment of Rheumatoid Arthritis. Int. J. Nanomed. 2017, 12, 6735–6746. [Google Scholar] [CrossRef]
- Janakiraman, K.; Krishnaswami, V.; Sethuraman, V.; Rajendran, V.; Kandasamy, R. Development of Methotrexate-Loaded Cubosomes with Improved Skin Permeation for the Topical Treatment of Rheumatoid Arthritis. Appl. Nanosci. 2019, 9, 1781–1796. [Google Scholar] [CrossRef]
- Lima, S.A.C.; Reis, S. Temperature-Responsive Polymeric Nanospheres Containing Methotrexate and Gold Nanoparticles: A Multi-Drug System for Theranostic in Rheumatoid Arthritis. Colloids Surf. B Biointerfaces 2015, 133, 378–387. [Google Scholar] [CrossRef]
- Moura, C.C.; Segundo, M.A.; Neves, J.; das Reis, S.; Sarmento, B. Co-Association of Methotrexate and SPIONs into Anti-CD64 Antibody-Conjugated PLGA Nanoparticles for Theranostic Application. Int. J. Nanomedicine 2014, 9, 4911–4922. [Google Scholar] [PubMed]
- Mello, S.B.V.; Tavares, E.R.; Bulgarelli, A.; Bonfá, E.; Maranhão, R.C. Intra-Articular Methotrexate Associated to Lipid Nanoemulsions: Anti-Inflammatory Effect upon Antigen-Induced Arthritis. Int. J. Nanomed. 2013, 8, 443–449. [Google Scholar]
- Lee, S.-M.; Kim, H.J.; Ha, Y.-J.; Park, Y.N.; Lee, S.-K.; Park, Y.-B.; Yoo, K.-H. Targeted Chemo-Photothermal Treatments of Rheumatoid Arthritis Using Gold Half-Shell Multifunctional Nanoparticles. ACS Nano 2013, 7, 50–57. [Google Scholar] [CrossRef]
- Williams, A.; Goodfellow, R.; Topley, N.; Amos, N.; Williams, B. The Suppression of Rat Collagen-Induced Arthritis and Inhibition of Macrophage Derived Mediator Release by Liposomal Methotrexate Formulations. Inflamm. Res. 2000, 49, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Krishna Sailaja, A.; Swati, P. Preparation and Characterization of Sulphasalazine Loaded Nanoparticles by Nanoprecipitation and Ionotropic Gelation Techniques Using Various Polymers. Curr. Nanomed. (Former. Recent Pat. Nanomed.) 2017, 7, 125–141. [Google Scholar] [CrossRef]
- Ansari, M.J.; Aldawsari, M.F.; Zafar, A.; Soltani, A.; Yasir, M.; Jahangir, M.A.; Taleuzzaman, M.; Erfani-Moghadam, V.; Daneshmandi, L.; Mahmoodi, N.O. In Vitro Release and Cytotoxicity Study of Encapsulated Sulfasalazine within LTSP Micellar/Liposomal and TSP Micellar/Niosomal Nano-Formulations. Alex. Eng. J. 2022, 61, 9749–9756. [Google Scholar] [CrossRef]
- Krishnan, Y.; Mukundan, S.; Akhil, S.; Gupta, S.; Viswanad, V. Enhanced Lymphatic Uptake of Leflunomide Loaded Nanolipid Carrier via Chylomicron Formation for the Treatment of Rheumatoid Arthritis. Adv. Pharm. Bull. 2018, 8, 257. [Google Scholar] [CrossRef] [PubMed]
- Abbas, H.; Gad, H.A.; El Sayed, N.S.; Rashed, L.A.; Khattab, M.A.; Noor, A.O.; Zewail, M. Development and Evaluation of Novel Leflunomide SPION Bioemulsomes for the Intra-Articular Treatment of Arthritis. Pharmaceutics 2022, 14, 2005. [Google Scholar] [CrossRef] [PubMed]
- Bader, R.A. The Development of Targeted Drug Delivery Systems for Rheumatoid Arthritis Treatment. In Rheumatoid Arthritis–Treatment; InTech: Rijeka, Croatia; Shanghai, China, 2012; Volume 18, pp. 111–132. [Google Scholar]
- Nasra, S.; Bhatia, D.; Kumar, A. Recent Advances in Nanoparticle-Based Drug Delivery Systems for Rheumatoid Arthritis Treatment. Nanoscale Adv. 2022, 4, 3479–3494. [Google Scholar] [CrossRef] [PubMed]
- Movahedi, M.; Beauchamp, M.; Abrahamowicz, M.; Ray, D.W.; Michaud, K.; Pedro, S.; Dixon, W.G. Risk of Incident Diabetes Mellitus Associated with the Dosage and Duration of Oral Glucocorticoid Therapy in Patients with Rheumatoid Arthritis. Arthritis Rheumatol. 2016, 68, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Chenthamara, D.; Subramaniam, S.; Ramakrishnan, S.G.; Krishnaswamy, S.; Essa, M.M.; Lin, F.-H.; Qoronfleh, M.W. Therapeutic Efficacy of Nanoparticles and Routes of Administration. Biomater. Res. 2019, 23, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Kadian, R. Nanoparticles: A Promising Drug Delivery Approach. Asian J. Pharm. Clin. Res. 2018, 11, 30–35. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- He, Y.; Xin, Y.; Rosas, E.C.; Alencar, L.M.R.; Santos-Oliveira, R.; Peng, X.; Yu, H.; Fu, J.; Zhang, W. Engineered High-Loaded Mixed-Monoclonal Antibodies (Adalimumab, Rituximab and Trastuzumab) Polymeric Nanoparticle for Rheumatoid Arthritis Treatment: A Proof of Concept. J. Biomed. Nanotechnol. 2020, 16, 1254–1266. [Google Scholar] [CrossRef]
- Aldayel, A.M.; O’Mary, H.L.; Valdes, S.A.; Li, X.; Thakkar, S.G.; Mustafa, B.E.; Cui, Z. Lipid Nanoparticles with Minimum Burst Release of TNF-α SiRNA Show Strong Activity against Rheumatoid Arthritis Unresponsive to Methotrexate. J. Control. Release 2018, 283, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, I.M.; Gonçalves, C.; Oliveira, E.P.; Simón-Vázquez, R.; da Silva Morais, A.; González-Fernández, Á.; Reis, R.L.; Oliveira, J.M. PAMAM Dendrimers Functionalised with an Anti-TNF α Antibody and Chondroitin Sulphate for Treatment of Rheumatoid Arthritis. Mater. Sci. Eng. C 2021, 121, 111845. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, I.M.; Fernandes, D.C.; Maia, F.R.; Canadas, R.F.; Reis, R.L.; Oliveira, J.M. Bioengineered Nanoparticles Loaded-Hydrogels to Target TNF Alpha in Inflammatory Diseases. Pharmaceutics 2021, 13, 1111. [Google Scholar] [CrossRef] [PubMed]
- Naahidi, S.; Jafari, M.; Edalat, F.; Raymond, K.; Khademhosseini, A.; Chen, P. Biocompatibility of Engineered Nanoparticles for Drug Delivery. J. Control. Release 2013, 166, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Jiao, M.; Zhang, P.; Meng, J.; Li, Y.; Liu, C.; Luo, X.; Gao, M. Recent Advancements in Biocompatible Inorganic Nanoparticles towards Biomedical Applications. Biomater. Sci. 2018, 6, 726–745. [Google Scholar] [CrossRef]
- He, W.; Ai, K.; Jiang, C.; Li, Y.; Song, X.; Lu, L. Plasmonic Titanium Nitride Nanoparticles for in Vivo Photoacoustic Tomography Imaging and Photothermal Cancer Therapy. Biomaterials 2017, 132, 37–47. [Google Scholar] [CrossRef]
- Perrault, S.D.; Walkey, C.; Jennings, T.; Fischer, H.C.; Chan, W.C.W. Mediating Tumor Targeting Efficiency of Nanoparticles through Design. Nano Lett. 2009, 9, 1909–1915. [Google Scholar] [CrossRef]
- Haute, D.V.; Berlin, J.M. Challenges in Realizing Selectivity for Nanoparticle Biodistribution and Clearance: Lessons from Gold Nanoparticles. Ther. Deliv. 2017, 8, 763–774. [Google Scholar] [CrossRef]
- Paliwal, R.; Babu, R.J.; Palakurthi, S. Nanomedicine Scale-up Technologies: Feasibilities and Challenges. Aaps Pharmscitech 2014, 15, 1527–1534. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Rodríguez, S.A.; Puel, F.; Briançon, S.; Allémann, E.; Doelker, E.; Fessi, H. Comparative Scale-up of Three Methods for Producing Ibuprofen-Loaded Nanoparticles. Eur. J. Pharm. Sci. 2005, 25, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, G.; Jin, S.; Xu, L.; Zhao, C. Development of High-drug-loading Nanoparticles. Chempluschem 2020, 85, 2143–2157. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, G.; Baby, T.; Tengjisi; Chen, D.; Weitz, D.A.; Zhao, C. Stable Polymer Nanoparticles with Exceptionally High Drug Loading by Sequential Nanoprecipitation. Angew. Chemie 2020, 132, 4750–4758. [Google Scholar] [CrossRef]
- Shen, S.; Wu, Y.; Liu, Y.; Wu, D. High Drug-Loading Nanomedicines: Progress, Current Status, and Prospects. Int. J. Nanomed. 2017, 12, 4085–4109. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhang, J.; Watanabe, W. Physical and Chemical Stability of Drug Nanoparticles. Adv. Drug Deliv. Rev. 2011, 63, 456–469. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.; Alzahrani, N.; Alzahrani, R.; Alshamrani, W.; Aloufi, W.; Ali, A.; Najib, S.; Siddiqui, N.A. Stability Issues and Approaches to Stabilised Nanoparticles Based Drug Delivery System. J. Drug Target. 2020, 28, 468–486. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Yang, L.; Zhong, Z. Methotrexate Nano Drug-Loading System, Preparation Method Thereof and Application of Methotrexate Nano Drug-Loading System in Treatment of Rheumatoid Arthritis. CN116327700 27 June 2023. [Google Scholar]
- Wang, L.; Li, X. Application of Combination of Mangiferin and Methotrexate in Preparation of Medicine for Treating Rheumatoid Arthritis and Protecting Liver. CN116251106 13 June 2023. [Google Scholar]
- Jonassen, T.E.N. Combination Treatment of Arthritic Disease. EP4119140 18 January 2023. [Google Scholar]
- Agrawal, S.; Woźniak, M.; Makuch, S.; Szeja, W.; Pastuch-Gawozłek, G.; Krawczyk, M.; Wiśniewski, J.; Gamian, A.; Ziółkowski, P.; Mazur, G. A Glucose-Methotrexate Conjugate for Use in Preventing or Treating Autoimmune Diseases. WO2022260546 15 December 2022. [Google Scholar]
- Turnbaugh, P.; Nayak, R.R. Methods of Treating Rheumatoid Arthritis and for Predicting the Response to Methotrexate. US20220160712 20 March 2023. [Google Scholar]
- Park, S.; Mira, J.; Beom, K.H.; Yang, S.; Park, J.S.; Lee, D.; Na, H.S. Therapeutic Uses of Methotrexate-Nanoparticle. KR20210119175A, 5 October 2021. [Google Scholar]
- Okuda, O.; Yoshida, N.; Maini, R.N. Method for Treating Rheumatoid Arthritis with a Human IL-6 Receptor Antibody and Methotrexate. US20210283250 16 September 2021. [Google Scholar]
- Park, J.H.; Jeong, M.K. Complex for Treating Rheumatoid Arthritis and Manufacturing Method Thereof. KR1020210108103 2 September 2021. [Google Scholar]
- Yoo, K.H.; Park, Y.B.; Lee, S.M.; Mun, C.H.; Yoon, T.J. Contrast Medium Agent for Optical Imaging for Early Diagnosis of Rheumatoid Arthritis. KR1020210059657 25 May 2021. [Google Scholar]
- Yu, Q.H. Pharmaceutical Composition Containing Inhibitor and Methotrexate and Preparation Method and Application of Pharmaceutical Composition. CN112675177 20 April 2021. [Google Scholar]
Drug | Chemical Formula | Mol. Weight (Daltons) | Cmax; Tmax | Bioavailability | Clearance; Half-Life | BCS Class | Ref. |
---|---|---|---|---|---|---|---|
MTX | C20H22N8O5 | 454.43 | 479 ± 107 ng/mL; 1–2 h | 64–90% | Half-life: 3–10 h | Class IV | [20,21,22,23] |
Leflunomide | C12H9F3N2O2 | 270.20 | Tmax: 6–12 h | 83–86% | 31 mL/h; 2 weeks | Class II | [20,24,25,26,27] |
Sulfasalazine | C18H14N4O5S | 398.39 | 6 µg/mL; 6 h | 10–30% | 1 L/h; 7.6 ± 3.4 h | Class IV | [20,28,29,30,31] |
Hydroxychloroquine | C18H26ClN3O | 335.87 | 129.6 ng/mL; 3.3 h | 67–74% | 96 mL/min; 123.5 days | Class I | [20,32,33,34] |
Baricitinib | C16H17N7O2S | 371.42 | 53.4 ng/mL; 1.5 h | 80% | 8.9 L/h; 12 h | Class III | [20,35,36,37] |
Peficitinib | C18H22N4O2 | 326.4 | 91–741 ng/mL; 1.1–2.1 h | 45.9% | 11–14 L/h and 8–10 L/h; 9.9–16.2 h | Class IV | [20,38,39] |
Filgotinib | C21H23N5O3S | 425.51Da | 2.15 ug/mL; 0.5 to 5.0 h | 80%; | 4.45 L/h; 5–6 h | Class II | [20,40] |
Tofacitinib | C16H20N6O | 312.36 | 3.6 ng/mL; 0.5–1 h | 74% | 25.0 L/h; 3 h | Class III | [20,41,42,43,44] |
Upadacitinib | C17H19F3N6O | 380.37 | 159 ± 45.7 ng/mL; 2–4 h | 80% | 53.7 L/h; 8–14 h | Class I | [20,45,46] |
Biologics | Protein Chemical Formula | Average Molecular Weight | Cmax; Tmax | Bioavailability | Clearance; Half-Life | Ref. |
---|---|---|---|---|---|---|
TNF-Receptor Antagonist | ||||||
Etanercept | C2224H3475N621O698S36 | 51,234.9 Da (monomer) | 1.1 µg/L; 69 h | 56.9% | 160 mL/h; 102 h | [20] |
Anti-TNF Monoclonal Antibodies | ||||||
Infliximab | C6428H9912N1694O1987S46 | 144,190.3 Da | 75 µg/mL | 79.1% | 18.4 mL/h; 7.7–9.5 days | [50] |
Adalimumab | C6428H9912N1694O1987S46 | 144,190.3 Da | 4.7 ± 1.6 μg/M; 131 ± 56 h | 64% | 12 mL/h; 10–20 days | [20] |
Golimumab | C6530H10068N1752O2026S44 | 146,943.1937 Da | 3.2 ± 1.4 µg/mL; 2–6 days | 53% |
4.9–6.7 mL/day/kg; 2 weeks | [20,51] |
Certolizumab pegol | C2115H3252N556O673S16 | 91,000.0 Da | - | 80% | 9–14 mL/h; 14–21 mL/h; 14 days | [20] |
B-Cell Depletors | ||||||
Rituximab | C6416H9874N1688O1987S44 | 143,859.7 Da | 157 ± 46 and 183 ± 55 mcg/mL; 3 days | 100% (IV) | 0.335 L/day; 22 days | [20] |
T-Cell Co-stimulators | ||||||
Abatacept | C3498H5458N922O1090S32 | 92,300.0 Da (with glycosylation) | 292 mcg/mL; 4 days | 78.6% | 0.23 mL/h/kg; 16.7 days | [52] |
IL-6 Inhibitors | ||||||
Tocilizumab | C6428H9976N1720O2018S42 | 148,000.0 Da | 51.3 ± 23.2 µg/mL; 2–3 days | 79.5% | 12.5 mL/h; 21.5 days | [53,54] |
Sarilumab | C6388H9918N1718O1998S44 | 150,000.0 Da (143,900 Da in the absence of N-glycosylation in heavy chains) | 20.0 ± 9.20 mg/L; 2–4 days | 80% | 4.3 L/day; 10 days | [55,56] |
Patent Number | Applicant | Publication Date | Patent Title |
---|---|---|---|
CN116327700 | Suzhou University | 27 June 2023 | Methotrexate nano drug-loading system, preparation method thereof and application of methotrexate nano drug-loading system in treatment of rheumatoid arthritis [128] |
CN116251106 | Zhengzhou University | 13 June 2023 | Application of combination of mangiferin and methotrexate in preparation of medicine for treating rheumatoid arthritis and protecting liver [129] |
EP4119140 | Synact Pharma APS | 18 January 2023 | Combination treatment of arthritic disease [130] |
WO2022260546 | Uniwersytet Medyczny Im. Piastów Śląskich We Wrocławiu | 15 December 2022 | A glucose-methotrexate conjugate for use in preventing or treating autoimmune diseases [131] |
US20220160712 | Chan Zuckerberg Biohub, Inc.The Regents of The University of California | 26 May 2022 | Methods of treating rheumatoid arthritis and for predicting the response to methotrexate [132] |
KR 20210119175 A | The Catholic University of Korea Industry-Academic Cooperation Foundation | 5 October 2021 | Therapeutic uses of methotrexate-nanoparticle [133] |
US20210283250 | Chugai Seiyaku Kabushiki Kaisha | 16 September 2021 | Method for treating rheumatoid arthritis with a human IL-6 receptor antibody and methotrexate [134] |
KR1020210108103 | Korea Advanced Institute of Science and Technology | 2 September 2021 | Complex for treating rheumatoid arthritis and manufacturing method thereof [135] |
KR1020210059657 | Industry-Academic Cooperation Foundation, Yonsei University | 25 May 2021 | Contrast medium agent for optical imaging for early diagnosis of rheumatoid arthritis [136] |
CN112675177 | Zhujiang Hospital of Southern Medical University | 20 April 2021 | Pharmaceutical composition containing inhibitor and methotrexate and preparation method and application of pharmaceutical composition [137] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.; Tiwary, N.; Sharma, N.; Behl, T.; Antil, A.; Anwer, M.K.; Ramniwas, S.; Sachdeva, M.; Elossaily, G.M.; Gulati, M.; et al. Integrating Nanotechnological Advancements of Disease-Modifying Anti-Rheumatic Drugs into Rheumatoid Arthritis Management. Pharmaceuticals 2024, 17, 248. https://doi.org/10.3390/ph17020248
Singh S, Tiwary N, Sharma N, Behl T, Antil A, Anwer MK, Ramniwas S, Sachdeva M, Elossaily GM, Gulati M, et al. Integrating Nanotechnological Advancements of Disease-Modifying Anti-Rheumatic Drugs into Rheumatoid Arthritis Management. Pharmaceuticals. 2024; 17(2):248. https://doi.org/10.3390/ph17020248
Chicago/Turabian StyleSingh, Sukhbir, Neha Tiwary, Neelam Sharma, Tapan Behl, Anita Antil, Md. Khalid Anwer, Seema Ramniwas, Monika Sachdeva, Gehan M. Elossaily, Monica Gulati, and et al. 2024. "Integrating Nanotechnological Advancements of Disease-Modifying Anti-Rheumatic Drugs into Rheumatoid Arthritis Management" Pharmaceuticals 17, no. 2: 248. https://doi.org/10.3390/ph17020248
APA StyleSingh, S., Tiwary, N., Sharma, N., Behl, T., Antil, A., Anwer, M. K., Ramniwas, S., Sachdeva, M., Elossaily, G. M., Gulati, M., & Ohja, S. (2024). Integrating Nanotechnological Advancements of Disease-Modifying Anti-Rheumatic Drugs into Rheumatoid Arthritis Management. Pharmaceuticals, 17(2), 248. https://doi.org/10.3390/ph17020248