In Silico Study of the Potential Inhibitory Effects on Escherichia coli DNA Gyrase of Some Hypothetical Fluoroquinolone–Tetracycline Hybrids
Abstract
1. Introduction
2. Results
2.1. Designing the Hybrids
2.2. Determining the Similarity Between the TC-FQN Hybrids and the Co-Crystallized Ligand
2.3. Comparing the Hybrids with the Co-Crystallized Ligand Regarding Physicochemical Properties
2.4. Molecular Docking
2.4.1. Self-Docking of Albicidin
2.4.2. Docking of the Hybrids
3. Discussion
3.1. Designing the Hybrids and Selecting the Target
3.2. Determining the Similarity Between the TC-FQN Hybrids and the Co-Crystallized Ligand
3.3. Comparing the Hybrids with the Co-Crystallized Ligand Regarding the Physicochemical Properties
3.4. Molecular Docking
3.4.1. Self-Docking of Albicidin
3.4.2. Docking of the Hybrids
4. Materials and Methods
4.1. Designing the Hybrids and Selecting the Target
4.2. Determining the Similarity Between the TC-FQN Hybrids and the Co-Crystallized Ligand
4.3. Comparing the Hybrids with the Co-Crystallized Ligand Regarding the Physicochemical Properties
4.4. Molecular Docking
4.4.1. Self-Docking of Albicidin
4.4.2. Docking of the Hybrids
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hospital-Acquired Complication—3. Healthcare-Associated Infection Fact Sheet|Australian Commission on Safety and Quality in Health Care. Available online: https://www.safetyandquality.gov.au/publications-and-resources/resource-library/hospital-acquired-complication-3-healthcare-associated-infection-fact-sheet (accessed on 26 July 2022).
- Global Guidelines for the Prevention of Surgical Site Infection, 2nd Ed. Available online: https://www.who.int/publications/i/item/9789241550475 (accessed on 16 March 2022).
- CDC. The Biggest Antibiotic-Resistant Threats in the U.S. Available online: https://www.cdc.gov/antimicrobial-resistance/data-research/threats/?CDC_AAref_Val=https://www.cdc.gov/drugresistance/biggest-threats.html (accessed on 12 February 2023).
- Nelson, R.E.; Hatfield, K.M.; Wolford, H.; Samore, M.H.; Scott, R.D.; Reddy, S.C.; Olubajo, B.; Paul, P.; Jernigan, J.A.; Baggs, J. National Estimates of Healthcare Costs Associated With Multidrug-Resistant Bacterial Infections Among Hospitalized Patients in the United States. Clin. Infect. Dis. 2021, 72, S17–S26. [Google Scholar] [CrossRef] [PubMed]
- Podolsky, S.H. The Evolving Response to Antibiotic Resistance (1945–2018). Palgrave Commun. 2018, 4, 1–8. [Google Scholar] [CrossRef]
- Fernandes, P.; Martens, E. Antibiotics in Late Clinical Development. Biochem. Pharmacol. 2017, 133, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Fair, R.J.; Tor, Y. Antibiotics and Bacterial Resistance in the 21st Century. Perspect. Med. Chem. 2014, 6, 25–64. [Google Scholar] [CrossRef] [PubMed]
- Skandalis, N.; Maeusli, M.; Papafotis, D.; Miller, S.; Lee, B.; Theologidis, I.; Luna, B. Environmental Spread of Antibiotic Resistance. Antibiotics 2021, 10, 640. [Google Scholar] [CrossRef]
- Wang, L.; Liu, D.; Lv, Y.; Cui, L.; Li, Y.; Li, T.; Song, H.; Hao, Y.; Shen, J.; Wang, Y.; et al. Novel Plasmid-Mediated Tet(X5) Gene Conferring Resistance to Tigecycline, Eravacycline, and Omadacycline in a Clinical Acinetobacter Baumannii Isolate. Antimicrob. Agents Chemother. 2019, 64, e01326-19. [Google Scholar] [CrossRef]
- Blondeau, J.M. Fluoroquinolones: Mechanism of Action, Classification, and Development of Resistance. Surv. Ophthalmol. 2004, 49 (Suppl. S2), S73–S78. [Google Scholar] [CrossRef]
- Fàbrega, A.; Madurga, S.; Giralt, E.; Vila, J. Mechanism of Action of and Resistance to Quinolones. Microb. Biotechnol. 2009, 2, 40–61. [Google Scholar] [CrossRef]
- Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of Quinolone Action and Resistance. Biochemistry 2014, 53, 1565–1574. [Google Scholar] [CrossRef]
- Correia, S.; Poeta, P.; Hébraud, M.; Capelo, J.L.; Igrejas, G. Mechanisms of Quinolone Action and Resistance: Where Do We Stand? J. Med. Microbiol. 2017, 66, 551–559. [Google Scholar] [CrossRef]
- Tillotson, G.S. Quinolones: Structure-Activity Relationships and Future Predictions. J. Med. Microbiol. 1996, 44, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.C.; Jain, A.; Jain, S. Fluoroquinolone Antibacterials: A Review on Chemistry, Microbiology and Therapeutic Prospects. Acta Pol. Pharm. 2009, 66, 587–604. [Google Scholar] [PubMed]
- Rusu, A.; Tóth, G.; Szőcs, L.; Kökösi, J.; Kraszni, M.; Gyéresi, Á.; Noszál, B. Triprotic Site-Specific Acid–Base Equilibria and Related Properties of Fluoroquinolone Antibacterials. J. Pharm. Biomed. Anal. 2012, 66, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Blokhina, S.V.; Sharapova, A.V.; Ol’khovich, M.V.; Volkova, T.V.; Perlovich, G.L. Solubility, Lipophilicity and Membrane Permeability of Some Fluoroquinolone Antimicrobials. Eur. J. Pharm. Sci. 2016, 93, 29–37. [Google Scholar] [CrossRef]
- Millanao, A.R.; Mora, A.Y.; Villagra, N.A.; Bucarey, S.A.; Hidalgo, A.A. Biological Effects of Quinolones: A Family of Broad-Spectrum Antimicrobial Agents. Molecules 2021, 26, 7153. [Google Scholar] [CrossRef]
- Rusu, A.; Lungu, I.-A.; Moldovan, O.-L.; Tanase, C.; Hancu, G. Structural Characterization of the Millennial Antibacterial (Fluoro)Quinolones—Shaping the Fifth Generation. Pharmaceutics 2021, 13, 1289. [Google Scholar] [CrossRef]
- Bush, N.G.; Diez-Santos, I.; Abbott, L.R.; Maxwell, A. Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance. Molecules 2020, 25, 5662. [Google Scholar] [CrossRef]
- Horta, P.; Secrieru, A.; Coninckx, A.; Cristiano, M. Quinolones for Applications in Medicinal Chemistry: Synthesis and Structure in Targets in Heterocyclic Systems—2018; Chapter 11; Italian Chemical Society: Roma, Italy, 2018; pp. 260–297. [Google Scholar]
- Klein, N.C.; Cunha, B.A. Tetracyclines. Med. Clin. North Am. 1995, 79, 789–801. [Google Scholar] [CrossRef]
- Chopra, I.; Roberts, M. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef]
- Chukwudi, C.U. rRNA Binding Sites and the Molecular Mechanism of Action of the Tetracyclines. Antimicrob. Agents Chemother. 2016, 60, 4433–4441. [Google Scholar] [CrossRef]
- Michaelis, M.; Kleinschmidt, M.C.; Doerr, H.W.; Cinatl, J. Minocycline Inhibits West Nile Virus Replication and Apoptosis in Human Neuronal Cells. J. Antimicrob. Chemother. 2007, 60, 981–986. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Khanna, D.; Kalra, S. Minocycline and Doxycycline: More Than Antibiotics. Curr. Mol. Pharmacol. 2021, 14, 1046–1065. [Google Scholar] [CrossRef] [PubMed]
- Debrah, A.Y.; Mand, S.; Specht, S.; Marfo-Debrekyei, Y.; Batsa, L.; Pfarr, K.; Larbi, J.; Lawson, B.; Taylor, M.; Adjei, O.; et al. Doxycycline Reduces Plasma VEGF-C/sVEGFR-3 and Improves Pathology in Lymphatic Filariasis. PLoS Pathog. 2006, 2, e92. [Google Scholar] [CrossRef]
- Scheinfeld, N.; Berk, T. A Review of the Diagnosis and Treatment of Rosacea. Postgrad. Med. 2010, 122, 139–143. [Google Scholar] [CrossRef]
- Szeto, G.L.; Brice, A.K.; Yang, H.-C.; Barber, S.A.; Siliciano, R.F.; Clements, J.E. Minocycline Attenuates HIV Infection and Reactivation by Suppressing Cellular Activation in Human CD4+ T Cells. J. Infect. Dis. 2010, 201, 1132–1140. [Google Scholar] [CrossRef]
- Dutta, K.; Basu, A. Use of Minocycline in Viral Infections. Indian J. Med. Res. 2011, 133, 467–470. [Google Scholar]
- Elewa, H.F.; Hilali, H.; Hess, D.C.; Machado, L.S.; Fagan, S.C. Minocycline for Acute Neuroprotection. Pharmacotherapy 2006, 26, 515–521. [Google Scholar] [CrossRef]
- Shutter, M.C.; Akhondi, H. Tetracycline. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- LaPlante, K.L.; Dhand, A.; Wright, K.; Lauterio, M. Re-Establishing the Utility of Tetracycline-Class Antibiotics for Current Challenges with Antibiotic Resistance. Ann. Med. 2022, 54, 1686–1700. [Google Scholar] [CrossRef]
- Gupta, V.; Datta, P. Next-Generation Strategy for Treating Drug Resistant Bacteria: Antibiotic Hybrids. Indian J. Med. Res. 2019, 149, 97–106. [Google Scholar] [CrossRef]
- Brötz-Oesterhelt, H.; Brunner, N.A. How Many Modes of Action Should an Antibiotic Have? Curr. Opin. Pharmacol. 2008, 8, 564–573. [Google Scholar] [CrossRef]
- Pokrovskaya, V.; Baasov, T. Dual-Acting Hybrid Antibiotics: A Promising Strategy to Combat Bacterial Resistance. Expert Opin. Drug Discov. 2010, 5, 883–902. [Google Scholar] [CrossRef] [PubMed]
- Emmerson, A.M.; Jones, A.M. The Quinolones: Decades of Development and Use. J. Antimicrob. Chemother. 2003, 51 (Suppl. S1), 13–20. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Walkty, A.; Vercaigne, L.; Karlowsky, J.A.; Embil, J.; Gin, A.S.; Hoban, D.J. The New Fluoroquinolones: A Critical Review. Can. J. Infect. Dis. 1999, 10, 207–238. [Google Scholar] [CrossRef] [PubMed]
- Redgrave, L.S.; Sutton, S.B.; Webber, M.A.; Piddock, L.J.V. Fluoroquinolone Resistance: Mechanisms, Impact on Bacteria, and Role in Evolutionary Success. Trends Microbiol. 2014, 22, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.I.; MacGowan, A.P. Development of the Quinolones. J. Antimicrob. Chemother. 2003, 51 (Suppl. S1), 1–11. [Google Scholar] [CrossRef]
- Limberakis, C. Quinolone Antibiotics: Levofloxacin (Levaquin®), Moxifloxacin (Avelox®), Gemifloxacin (Factive®), and Garenoxacin (T-3811). In The Art of Drug Synthesis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; pp. 39–69. ISBN 978-0-470-13497-9. [Google Scholar]
- Uivarosi, V. Metal Complexes of Quinolone Antibiotics and Their Applications: An Update. Molecules 2013, 18, 11153–11197. [Google Scholar] [CrossRef]
- Gao, F.; Wang, P.; Yang, H.; Miao, Q.; Ma, L.; Lu, G. Recent Developments of Quinolone-Based Derivatives and Their Activities against Escherichia Coli. Eur. J. Med. Chem. 2018, 157, 1223–1248. [Google Scholar] [CrossRef]
- Fedorowicz, J.; Sączewski, J. Modifications of Quinolones and Fluoroquinolones: Hybrid Compounds and Dual-Action Molecules. Monatshefte Chem. 2018, 149, 1199–1245. [Google Scholar] [CrossRef]
- Lungu, I.-A.; Moldovan, O.-L.; Biriș, V.; Rusu, A. Fluoroquinolones Hybrid Molecules as Promising Antibacterial Agents in the Fight against Antibacterial Resistance. Pharmaceutics 2022, 14, 1749. [Google Scholar] [CrossRef]
- Sriram, D.; Yogeeswari, P.; Senchani, G.; Banerjee, D. Newer Tetracycline Derivatives: Synthesis, Anti-HIV, Antimycobacterial Activities and Inhibition of HIV-1 Integrase. Bioorganic Med. Chem. Lett. 2007, 17, 2372–2375. [Google Scholar] [CrossRef]
- Pokrovskaya, V.; Belakhov, V.; Hainrichson, M.; Yaron, S.; Baasov, T. Design, Synthesis, and Evaluation of Novel Fluoroquinolone−Aminoglycoside Hybrid Antibiotics. J. Med. Chem. 2009, 52, 2243–2254. [Google Scholar] [CrossRef] [PubMed]
- Gorityala, B.K.; Guchhait, G.; Goswami, S.; Fernando, D.M.; Kumar, A.; Zhanel, G.G.; Schweizer, F. Hybrid Antibiotic Overcomes Resistance in P. Aeruginosa by Enhancing Outer Membrane Penetration and Reducing Efflux. J. Med. Chem. 2016, 59, 8441–8455. [Google Scholar] [CrossRef]
- Gordeev, M.F.; Hackbarth, C.; Barbachyn, M.R.; Banitt, L.S.; Gage, J.R.; Luehr, G.W.; Gomez, M.; Trias, J.; Morin, S.E.; Zurenko, G.E.; et al. Novel Oxazolidinone-Quinolone Hybrid Antimicrobials. Bioorganic Med. Chem. 2003, 13, 4213–4216. [Google Scholar] [CrossRef] [PubMed]
- Kali, A.; Charles, M.V.P.; Srirangaraj, S. Cadazolid: A New Hope in the Treatment of Clostridium Difficile Infection. Australas. Med. J. 2015, 8, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Gerding, D.N.; Cornely, O.A.; Grill, S.; Kracker, H.; Marrast, A.C.; Nord, C.E.; Talbot, G.H.; Buitrago, M.; Diaconescu, I.G.; Oliveira, C.M.d.; et al. Cadazolid for the Treatment of Clostridium Difficile Infection: Results of Two Double-Blind, Placebo-Controlled, Non-Inferiority, Randomised Phase 3 Trials. Lancet Infect. Dis. 2019, 19, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Chugunova, E.; Akylbekov, N.; Bulatova, A.; Gavrilov, N.; Voloshina, A.; Kulik, N.; Zobov, V.; Dobrynin, A.; Syakaev, V.; Burilov, A. Synthesis and Biological Evaluation of Novel Structural Hybrids of Benzofuroxan Derivatives and Fluoroquinolones. Eur. J. Med. Chem. 2016, 116, 165–172. [Google Scholar] [CrossRef]
- Wang, Y.-N.; Bheemanaboina, R.R.Y.; Gao, W.-W.; Kang, J.; Cai, G.-X.; Zhou, C.-H. Discovery of Benzimidazole-Quinolone Hybrids as New Cleaving Agents toward Drug-Resistant Pseudomonas Aeruginosa DNA. ChemMedChem 2018, 13, 1004–1017. [Google Scholar] [CrossRef]
- Hashimi, S.M. Albicidin, a Potent DNA Gyrase Inhibitor with Clinical Potential. J. Antibiot. 2019, 72, 785–792. [Google Scholar] [CrossRef]
- Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef]
- Goyal, R.; Sharma, A.; Thakur, V.K.; Ola, M.; Sharma, P.C. Green Chemistry Approaches towards the Design and Synthesis of Anti-Infective Fluoroquinolone Derivatives. Curr. Res. Green Sustain. Chem. 2021, 4, 100044. [Google Scholar] [CrossRef]
- Hooper, D.C. Mechanisms of Action of Antimicrobials: Focus on Fluoroquinolones. Clin. Infect. Dis. 2001, 32, S9–S15. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.C.; Jacoby, G.A. Topoisomerase Inhibitors: Fluoroquinolone Mechanisms of Action and Resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a025320. [Google Scholar] [CrossRef] [PubMed]
- Michalczyk, E.; Hommernick, K.; Behroz, I.; Kulike, M.; Pakosz-Stępień, Z.; Mazurek, L.; Seidel, M.; Kunert, M.; Santos, K.; von Moeller, H.; et al. Molecular Mechanism of Topoisomerase Poisoning by the Peptide Antibiotic Albicidin. Nat. Catal. 2023, 6, 52–67. [Google Scholar] [CrossRef]
- Lyne, P.D. Structure-Based Virtual Screening: An Overview. Drug Discov. Today 2002, 7, 1047–1055. [Google Scholar] [CrossRef]
- Smith, A. Screening for Drug Discovery: The Leading Question. Nature 2002, 418, 453–459. [Google Scholar] [CrossRef]
- Scior, T.; Bender, A.; Tresadern, G.; Medina-Franco, J.L.; Martínez-Mayorga, K.; Langer, T.; Cuanalo-Contreras, K.; Agrafiotis, D.K. Recognizing Pitfalls in Virtual Screening: A Critical Review. J. Chem. Inf. Model. 2012, 52, 867–881. [Google Scholar] [CrossRef]
- Kuwahara, H.; Gao, X. Analysis of the Effects of Related Fingerprints on Molecular Similarity Using an Eigenvalue Entropy Approach. J. Cheminformatics 2021, 13, 27. [Google Scholar] [CrossRef]
- Bero, S.A.; Muda, A.K.; Choo, Y.H.; Muda, N.A.; Pratama, S.F. Similarity Measure for Molecular Structure: A Brief Review. J. Phys. Conf. Ser. 2017, 892, 012015. [Google Scholar] [CrossRef]
- Willett, P. Similarity Searching Using 2D Structural Fingerprints. In Chemoinformatics and Computational Chemical Biology; Bajorath, J., Ed.; Humana Press: Totowa, NJ, USA, 2011; pp. 133–158. ISBN 978-1-60761-839-3. [Google Scholar]
- Willett, P. Similarity-Based Virtual Screening Using 2D Fingerprints. Drug Discov. Today 2006, 11, 1046–1053. [Google Scholar] [CrossRef]
- Cereto-Massagué, A.; Ojeda, M.J.; Valls, C.; Mulero, M.; Garcia-Vallvé, S.; Pujadas, G. Molecular Fingerprint Similarity Search in Virtual Screening. Methods 2015, 71, 58–63. [Google Scholar] [CrossRef]
- Durant, J.L.; Leland, B.A.; Henry, D.R.; Nourse, J.G. Reoptimization of MDL Keys for Use in Drug Discovery. J. Chem. Inf. Comput. Sci. 2002, 42, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Carracedo-Reboredo, P.; Liñares-Blanco, J.; Rodríguez-Fernández, N.; Cedrón, F.; Novoa, F.J.; Carballal, A.; Maojo, V.; Pazos, A.; Fernandez-Lozano, C. A Review on Machine Learning Approaches and Trends in Drug Discovery. Comput. Struct. Biotechnol. J. 2021, 19, 4538–4558. [Google Scholar] [CrossRef] [PubMed]
- Mellor, C.L.; Marchese Robinson, R.L.; Benigni, R.; Ebbrell, D.; Enoch, S.J.; Firman, J.W.; Madden, J.C.; Pawar, G.; Yang, C.; Cronin, M.T.D. Molecular Fingerprint-Derived Similarity Measures for Toxicological Read-across: Recommendations for Optimal Use. Regul. Toxicol. Pharmacol. 2019, 101, 121–134. [Google Scholar] [CrossRef]
- Martin, Y.C.; Kofron, J.L.; Traphagen, L.M. Do Structurally Similar Molecules Have Similar Biological Activity? J. Med. Chem. 2002, 45, 4350–4358. [Google Scholar] [CrossRef]
- Dunkel, M.; Günther, S.; Ahmed, J.; Wittig, B.; Preissner, R. SuperPred: Drug Classification and Target Prediction. Nucleic Acids Res. 2008, 36, W55–W59. [Google Scholar] [CrossRef]
- Hartung, T. Making Big Sense from Big Data in Toxicology by Read-Across. ALTEX—Altern. Anim. Exp. 2016, 33, 83–93. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Velmourougane, G. Understanding Lipinski’s Rule of 5 and the Role of LogP Value in Drug Design and Development. Available online: https://www.sailife.com/understanding-lipinskis-rule-of-5-and-the-role-of-logp-value-in-drug-design-and-development/ (accessed on 11 November 2024).
- Roy, D.; Patel, C. Revisiting the Use of Quantum Chemical Calculations in LogPoctanol-Water Prediction. Molecules 2023, 28, 801. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Duffy, E.M. Prediction of Drug Solubility from Structure. Advanced Drug Delivery Reviews 2002, 54, 355–366. [Google Scholar] [CrossRef]
- Romanick, M.; Holt, A. Topological Polar Surface Area. In An ABC of PK/PD. Core Concepts in Pharmacokinetics and Pharmacodynamics for Students of Medicine, Dentistry and Pharmacy; University of Alberta Library: Edmonton, AB, Canada, 2023; Available online: https://pressbooks.openeducationalberta.ca/abcofpkpd/chapter/tpsa/ (accessed on 24 September 2024).
- Pajouhesh, H.; Lenz, G.R. Medicinal Chemical Properties of Successful Central Nervous System Drugs. Neurotherapeutics 2005, 2, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Hitchcock, S.A.; Pennington, L.D. Structure−Brain Exposure Relationships. J. Med. Chem. 2006, 49, 7559–7583. [Google Scholar] [CrossRef] [PubMed]
- Arteca, G.A. Molecular Shape Descriptors. In Reviews in Computational Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1996; pp. 191–253. ISBN 978-0-470-12586-1. [Google Scholar]
- Kufareva, I.; Abagyan, R. Methods of Protein Structure Comparison. Methods Mol. Biol. 2012, 857, 231. [Google Scholar] [CrossRef]
- Ramírez, D.; Caballero, J. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules 2018, 23, 1038. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Bhati, A.P.; Zasada, S.J.; Coveney, P.V. Rapid, Accurate, Precise and Reproducible Ligand–Protein Binding Free Energy Prediction. Interface Focus 2020, 10, 20200007. [Google Scholar] [CrossRef]
- Robertson, G.T.; Bonventre, E.J.; Doyle, T.B.; Du, Q.; Duncan, L.; Morris, T.W.; Roche, E.D.; Yan, D.; Lynch, A.S. In Vitro Evaluation of CBR-2092, a Novel Rifamycin-Quinolone Hybrid Antibiotic: Microbiology Profiling Studies with Staphylococci and Streptococci. Antimicrob. Agents Chemother. 2008, 52, 2324–2334. [Google Scholar] [CrossRef]
- BIOVIA Draw 2021. Available online: https://www.3ds.com/products/biovia/draw (accessed on 27 June 2021).
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Berman, H.; Henrick, K.; Nakamura, H. Announcing the Worldwide Protein Data Bank. Nat. Struct. Mol. Biol. 2003, 10, 980. [Google Scholar] [CrossRef]
- BIOVIA Discovery Studio 2024. Available online: https://www.3ds.com/products/biovia/discovery-studio (accessed on 3 January 2024).
- Forecaster. Available online: https://molecularforecaster.com/academic-license/ (accessed on 2 June 2024).
- Therrien, E.; Englebienne, P.; Arrowsmith, A.G.; Mendoza-Sanchez, R.; Corbeil, C.R.; Weill, N.; Campagna-Slater, V.; Moitessier, N. Integrating Medicinal Chemistry, Organic/Combinatorial Chemistry, and Computational Chemistry for the Discovery of Selective Estrogen Receptor Modulators with Forecaster, a Novel Platform for Drug Discovery. J. Chem. Inf. Model. 2012, 52, 210–224. [Google Scholar] [CrossRef]
- Moitessier, N.; Pottel, J.; Therrien, E.; Englebienne, P.; Liu, Z.; Tomberg, A.; Corbeil, C.R. Medicinal Chemistry Projects Requiring Imaginative Structure-Based Drug Design Methods. Acc. Chem. Res. 2016, 49, 1646–1657. [Google Scholar] [CrossRef]
- Xu, W.; Lucke, A.J.; Fairlie, D.P. Comparing Sixteen Scoring Functions for Predicting Biological Activities of Ligands for Protein Targets. J. Mol. Graph. Model. 2015, 57, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Scarpino, A.; Ferenczy, G.G.; Keserű, G.M. Comparative Evaluation of Covalent Docking Tools. J. Chem. Inf. Model. 2018, 58, 1441–1458. [Google Scholar] [CrossRef] [PubMed]
- Burai Patrascu, M.; Pottel, J.; Pinus, S.; Bezanson, M.; Norrby, P.-O.; Moitessier, N. From Desktop to Benchtop with Automated Computational Workflows for Computer-Aided Design in Asymmetric Catalysis. Nat. Catal. 2020, 3, 574–584. [Google Scholar] [CrossRef]
- Labarre, A.; Stille, J.K.; Patrascu, M.B.; Martins, A.; Pottel, J.; Moitessier, N. Docking Ligands into Flexible and Solvated Macromolecules. 8. Forming New Bonds─Challenges and Opportunities. J. Chem. Inf. Model. 2022, 62, 1061–1077. [Google Scholar] [CrossRef]
- Corbeil, C.R.; Englebienne, P.; Moitessier, N. Docking Ligands into Flexible and Solvated Macromolecules. 1. Development and Validation of FITTED 1.0. J. Chem. Inf. Model. 2007, 47, 435–449. [Google Scholar] [CrossRef]
- Pottel, J.; Therrien, E.; Gleason, J.L.; Moitessier, N. Docking Ligands into Flexible and Solvated Macromolecules. 6. Development and Application to the Docking of HDACs and Other Zinc Metalloenzymes Inhibitors. J. Chem. Inf. Model. 2014, 54, 254–265. [Google Scholar] [CrossRef]
TC Component | FQN Component | |
---|---|---|
Doxycycline–CH2– | –CH2–Balofloxacin | –CH2–Moxifloxacin |
Minocycline–CH2– | –CH2–Besifloxacin | –CH2–Nemonoxacin |
Tetracycline–CH2– | –CH2–Ciprofloxacin | –CH2–Norfloxacin |
Tigecycline–CH2– | –CH2–Delafloxacin | –CH2–Sitafloxacin |
–CH2–Finafloxacin | –CH2–Zabofloxacin |
Hybrid Code | Tanimoto Coefficient | Hybrid Code | Tanimoto Coefficient | Hybrid Code | Tanimoto Coefficient | Hybrid Code | Tanimoto Coefficient |
---|---|---|---|---|---|---|---|
Do-Ba | 0.67 | Mi-Ba | 0.67 | Te-Ba | 0.68 | Ti-Ba | 0.68 |
Do-Be | 0.66 | Mi-Be | 0.65 | Te-Be | 0.66 | Ti-Be | 0.66 |
Do-Ci | 0.66 | Mi-Ci | 0.66 | Te-Ci | 0.67 | Ti-Ci | 0.67 |
Do-De | 0.66 | Mi-De | 0.65 | Te-De | 0.66 | Ti-De | 0.64 |
Do-Fi | 0.63 | Mi-Fi | 0.63 | Te-Fi | 0.64 | Ti-Fi | 0.64 |
Do-Mo | 0.64 | Mi-Mo | 0.64 | Te-Mo | 0.64 | Ti-Mo | 0.65 |
Do-Ne | 0.67 | Mi-Ne | 0.67 | Te-Ne | 0.67 | Ti-Ne | 0.68 |
Do-No | 0.67 | Mi-No | 0.66 | Te-No | 0.67 | Ti-No | 0.67 |
Do-Si | 0.65 | Mi-Si | 0.64 | Te-Si | 0.65 | Ti-Si | 0.65 |
Do-Za | 0.60 | Mi-Za | 0.59 | Te-Za | 0.60 | Ti-Za | 0.60 |
Hybrid Code | HBD | HBA | MW | logP | logS | RB | tPSA | BBB | Span |
---|---|---|---|---|---|---|---|---|---|
Do-Ba | 9 | 12 | 847.894 | 7.96004 | −4.32137 | 12 | 234.47 | 0 | 14.761 |
Do-Be | 10 | 11 | 852.31 | 8.64016 | −5.93672 | 11 | 225.24 | 0 | 13.6502 |
Do-Ci | 9 | 11 | 789.814 | 6.92408 | −4.25757 | 10 | 225.24 | 0 | 14.2762 |
Do-De | 10 | 13 | 898.222 | 7.14079 | −6.4443 | 10 | 270.39 | 0 | 13.9193 |
Do-Fi | 9 | 12 | 856.861 | 6.78255 | −4.02152 | 10 | 258.26 | 0 | 14.5525 |
Do-Mo | 9 | 12 | 859.905 | 8.18711 | −4.8601 | 11 | 234.47 | 0 | 14.1119 |
Do-Ne | 10 | 12 | 829.904 | 7.71927 | −3.79623 | 12 | 234.47 | 0 | 14.7355 |
Do-No | 9 | 11 | 777.803 | 6.65226 | −4.23877 | 10 | 225.24 | 0 | 14.5137 |
Do-Si | 10 | 11 | 868.285 | 8.42228 | −5.82351 | 11 | 225.24 | 0 | 14.1988 |
Do-Za | 9 | 14 | 859.865 | 5.31606 | −3.01163 | 11 | 247.36 | 0 | 14.4449 |
Mi-Ba | 8 | 11 | 860.937 | 7.75452 | −3.94298 | 11 | 217.48 | 0 | 14.9754 |
Mi-Be | 9 | 10 | 865.353 | 8.43635 | −5.61406 | 10 | 208.25 | 0 | 13.9213 |
Mi-Ci | 8 | 10 | 802.857 | 6.7219 | −3.91432 | 9 | 208.25 | 0 | 14.5806 |
Mi-De | 9 | 12 | 911.265 | 6.94443 | −6.16854 | 9 | 253.4 | 0 | 14.078 |
Mi-Fi | 8 | 11 | 869.904 | 6.56169 | −3.57005 | 9 | 241.27 | 0 | 15.4229 |
Mi-Mo | 8 | 11 | 872.948 | 7.97204 | −4.46624 | 10 | 217.48 | 0 | 14.85 |
Mi-Ne | 9 | 11 | 842.947 | 7.50761 | −3.40136 | 11 | 217.48 | 0 | 15.0102 |
Mi-No | 8 | 10 | 790.846 | 6.45784 | −3.90934 | 9 | 208.25 | 0 | 14.8218 |
Mi-Si | 9 | 10 | 881.328 | 8.21306 | −5.48178 | 10 | 208.25 | 0 | 14.3282 |
Mi-Za | 8 | 13 | 872.908 | 5.08481 | −2.37858 | 10 | 230.37 | 0 | 15.126 |
Te-Ba | 9 | 12 | 847.894 | 6.7395 | −3.49544 | 12 | 234.47 | 0 | 14.698 |
Te-Be | 10 | 11 | 852.31 | 7.38854 | −5.08594 | 11 | 225.24 | 0 | 13.6847 |
Te-Ci | 9 | 11 | 789.814 | 5.76569 | −3.49409 | 10 | 225.24 | 0 | 14.3242 |
Te-De | 10 | 13 | 898.222 | 5.9824 | −5.66162 | 10 | 270.39 | 0 | 13.9825 |
Te-Fi | 9 | 12 | 856.861 | 5.59308 | −3.28442 | 10 | 258.26 | 0 | 14.51 |
Te-Mo | 9 | 12 | 859.905 | 6.93548 | −4.1755 | 11 | 234.47 | 0 | 13.8736 |
Te-Ne | 10 | 12 | 829.904 | 6.49873 | −2.97309 | 12 | 234.47 | 0 | 14.7124 |
Te-No | 9 | 11 | 777.803 | 5.52495 | −3.49583 | 10 | 225.24 | 0 | 14.5488 |
Te-Si | 10 | 11 | 868.285 | 7.17066 | −4.97454 | 11 | 225.24 | 0 | 14.1618 |
Te-Za | 9 | 14 | 859.865 | 4.18875 | −2.24149 | 11 | 247.36 | 0 | 14.4696 |
Ti-Ba | 10 | 13 | 989.112 | 8.20142 | −0.609453 | 14 | 249.82 | 0 | 19.7149 |
Ti-Be | 11 | 12 | 993.528 | 8.9158 | −2.68174 | 13 | 240.59 | 0 | 18.6122 |
Ti-Ci | 10 | 12 | 931.032 | 7.12409 | −1.04944 | 12 | 240.59 | 0 | 18.8034 |
Ti-De | 12 | 13 | 1040.45 | 7.36406 | −3.02325 | 12 | 282.5 | 0 | 19.1446 |
Ti-Fi | 10 | 13 | 998.079 | 6.9352 | −0.559961 | 12 | 273.61 | 0 | 19.7615 |
Ti-Mo | 10 | 13 | 1001.12 | 8.41774 | −1.60355 | 13 | 249.82 | 0 | 18.7474 |
Ti-Ne | 11 | 13 | 971.122 | 7.93612 | −0.0193502 | 14 | 249.82 | 0 | 19.7203 |
Ti-No | 10 | 12 | 919.021 | 6.85594 | −1.10865 | 12 | 240.59 | 0 | 18.5602 |
Ti-Si | 11 | 12 | 1009.50 | 8.67628 | −2.50717 | 13 | 240.59 | 0 | 19.2606 |
Ti-Za | 10 | 15 | 1001.08 | 5.37239 | 0.497277 | 13 | 262.71 | 0 | 19.2322 |
Albicidin | 9 | 12 | 842.818 | 8.70223 | −7.27913 | 9 | 285.74 | 0 | 16.647 |
No. | Hybrid Code | Energy (kcal/mol) | Rank Score | Match Score | FITTED Score |
---|---|---|---|---|---|
1. | Do-Ba | −46.8805 | −25.9619 | 40.8598 | −32.4995 |
2. | Do-Be | −55.3341 | −29.0247 | 27.6213 | −33.4442 |
3. | Do-Ci | −52.5709 | −26.8659 | 61.2568 | −36.667 |
4. | Do-De | −41.1101 | −31.9846 | 27.5557 | −36.3935 |
5. | Do-Fi | −59.1246 | −29.9974 | 38.7332 | −36.1947 |
6. | Do-Mo | −44.0383 | −21.2354 | 42.2432 | −27.9944 |
7. | Do-Ne | −52.2205 | −21.4368 | 44.3933 | −28.5397 |
8. | Do-No | −65.3521 | −22.5224 | 39.6634 | −28.8685 |
9. | Do-Si | −43.6101 | −21.8714 | 44.1344 | −28.9329 |
10. | Do-Za | −27.7438 | −28.3422 | 28.6443 | −32.9253 |
11. | Mi-Ba | −47.7369 | −24.8899 | 33.7495 | −30.2898 |
12. | Mi-Be | −50.6453 | −23.5048 | 44.205 | −30.5776 |
13. | Mi-Ci | −54.9941 | −20.2415 | 37.5034 | −26.2421 |
14. | Mi-De | −44.5589 | −28.5292 | 31.7109 | −33.6029 |
15. | Mi-Fi | −56.69 | −27.7948 | 33.9761 | −33.2309 |
16. | Mi-Mo | −55.2164 | −27.4651 | 29.489 | −32.1834 |
17. | Mi-Ne | −56.1481 | −28.0855 | 34.6462 | −33.6289 |
18. | Mi-No | −60.445 | −21.1604 | 36.1175 | −26.9392 |
19. | Mi-Si | −41.4239 | −27.8282 | 52.2429 | −36.187 |
20. | Mi-Za | −33.6735 | −27.0834 | 28.1093 | −31.5809 |
21. | Te-Ba | −52.1768 | −29.2146 | 36.094 | −34.9896 |
22. | Te-Be | −58.9201 | −30.1819 | 50.1065 | −38.1989 |
23. | Te-Ci | −58.1497 | −22.665 | 36.0531 | −28.4335 |
24. | Te-De | −55.2032 | −41.5255 | 38.6688 | −47.7125 |
25. | Te-Fi | −51.9233 | −23.225 | 41.78 | −29.9098 |
26. | Te-Mo | −45.6765 | −21.5231 | 37.5876 | −27.5371 |
27. | Te-Ne | −56.0786 | −19.223 | 41.7466 | −25.9024 |
28. | Te-No | −61.5205 | −20.0941 | 38.623 | −26.2737 |
29. | Te-Si | −44.2699 | −23.2726 | 36.39 | −29.095 |
30. | Te-Za | −25.535 | −23.5952 | 31.9301 | −28.704 |
31. | Ti-Ba | −77.9709 | −21.1048 | 37.5492 | −27.1127 |
32. | Ti-Be | −78.3624 | −25.9144 | 37.413 | −31.9005 |
33. | Ti-Ci | −93.1157 | −26.1696 | 38 | −32.2496 |
34. | Ti-De | −58.2974 | −30.7778 | 37.439 | −36.768 |
35. | Ti-Fi | −81.4413 | −25.177 | 41.3032 | −31.7855 |
36. | Ti-Mo | −68.6103 | −27.8297 | 36.9597 | −33.7432 |
37. | Ti-Ne | −98.4678 | −30.1133 | 38.9649 | −36.3477 |
38. | Ti-No | −97.8969 | −27.2614 | 37.6273 | −33.2818 |
39. | Ti-Si | −82.2259 | −26.0071 | 38.5462 | −32.1745 |
40. | Ti-Za | −63.2206 | −28.8194 | 37.9827 | −34.8967 |
- | Albicidin | −171.899 | −26.846 | 39.746 | −33.2054 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lungu, I.-A.; Oancea, O.-L.; Rusu, A. In Silico Study of the Potential Inhibitory Effects on Escherichia coli DNA Gyrase of Some Hypothetical Fluoroquinolone–Tetracycline Hybrids. Pharmaceuticals 2024, 17, 1540. https://doi.org/10.3390/ph17111540
Lungu I-A, Oancea O-L, Rusu A. In Silico Study of the Potential Inhibitory Effects on Escherichia coli DNA Gyrase of Some Hypothetical Fluoroquinolone–Tetracycline Hybrids. Pharmaceuticals. 2024; 17(11):1540. https://doi.org/10.3390/ph17111540
Chicago/Turabian StyleLungu, Ioana-Andreea, Octavia-Laura Oancea, and Aura Rusu. 2024. "In Silico Study of the Potential Inhibitory Effects on Escherichia coli DNA Gyrase of Some Hypothetical Fluoroquinolone–Tetracycline Hybrids" Pharmaceuticals 17, no. 11: 1540. https://doi.org/10.3390/ph17111540
APA StyleLungu, I.-A., Oancea, O.-L., & Rusu, A. (2024). In Silico Study of the Potential Inhibitory Effects on Escherichia coli DNA Gyrase of Some Hypothetical Fluoroquinolone–Tetracycline Hybrids. Pharmaceuticals, 17(11), 1540. https://doi.org/10.3390/ph17111540