Evaluation of Emulsification Techniques to Optimize the Properties of Chalcone Nanoemulsions for Antifungal Applications
Abstract
:1. Introduction
2. Results
2.1. Stability
2.2. Morphology of Nanoemulsions
2.3. Particle Size, Zeta Potential and Polydispersity Index
2.4. Antifungal Properties of Nanoemulsions
2.5. Cytotoxicity
2.6. In Vitro Release Kinetic Profile
3. Discussion
3.1. Stability
3.2. Morphology of Nanoemulsions
3.3. Particle Size, Zeta Potential and Polydispersity Index
3.4. Antifungal Properties of Nanoemulsions
3.5. Cytotoxicity
3.6. In Vitro Release Kinetic Profile
3.7. Molecular Docking Simulations
3.7.1. Binding Mode of the DB4OCH3 with Thymidylate Kinase (ID: 4QGG)
3.7.2. Binding Mode of the DB4OCH3 with DNA Gyrase B (ID: 6F86)
3.8. MPO-Based DMPK Prediction
3.8.1. MPO Analysis
3.8.2. PAMPA Prediction
3.8.3. Liver and hERG Toxicity Prediction
4. Materials and Methods
4.1. Materials
4.2. Production of Polymeric Nanoemulsions Carrying Chalcones
- -
- Factor A: DB4OCH3 Concentration: LL 0.07 mg/mL (−); HL 1.20 mg/mL (+);
- -
- Factor B: Technique: HL Ultrasound and high-speed (+); LL: Ultrasound (−).
4.3. High-Speed Homogenization Combined with Ultrasound
4.4. Ultrasonic Tip Sonicator
4.5. Preparation of the Inoculum for Antifungal Sensitivity Tests
4.6. Stability Study
4.7. Characterization of the NEs
4.8. Cytotoxicity
4.9. Hemolytic Assay
4.10. Encapsulation Efficiency (EE%) and In Vitro Release Kinetics
4.11. Antifungal Susceptibility Against Candida albicans
4.12. Molecular Docking Simulations
4.13. MPO-Based DMPK Prediction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nasr, M. Development of an Optimized Hyaluronic Acid-Based Lipidic Nanoemulsion Co-Encapsulating Two Polyphenols for Nose to Brain Delivery. Drug Deliv. 2016, 23, 1444–1452. [Google Scholar] [CrossRef] [PubMed]
- Tayeb, H.H.; Sainsbury, F. Nanoemulsions in Drug Delivery: Formulation to Medical Application. Nanomedicine 2018, 13, 2507–2525. [Google Scholar] [CrossRef]
- Das, A.K.; Nanda, P.K.; Bandyopadhyay, S.; Banerjee, R.; Biswas, S.; McClements, D.J. Application of Nanoemulsion-Based Approaches for Improving the Quality and Safety of Muscle Foods: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2677–2700. [Google Scholar] [CrossRef] [PubMed]
- Lugani, Y.; Sooch, B.S.; Singh, P.; Kumar, S. Nanobiotechnology Applications in Food Sector and Future Innovations; Elsevier Inc.: Amsterdam, The Netherlands, 2020; ISBN 9780128198131. [Google Scholar]
- Maurya, A.; Singh, V.K.; Das, S.; Prasad, J.; Kedia, A.; Upadhyay, N.; Dubey, N.K.; Dwivedy, A.K. Essential Oil Nanoemulsion as Eco-Friendly and Safe Preservative: Bioefficacy Against Microbial Food Deterioration and Toxin Secretion, Mode of Action, and Future Opportunities. Front. Microbiol. 2021, 12, 751062. [Google Scholar] [CrossRef]
- Milkova, V.; Goycoolea, F.M. Encapsulation of Caffeine in Polysaccharide Oil-Core Nanocapsules. Colloid Polym. Sci. 2020, 298, 1035–1041. [Google Scholar] [CrossRef]
- Ayala-Fuentes, J.C.; Chavez-Santoscoy, R.A. Nanotechnology as a Key to Enhance the Benefits and Improve the Bioavailability of Flavonoids in the Food Industry. Foods 2021, 10, 2701. [Google Scholar] [CrossRef]
- Adiwidjaja, J.; McLachlan, A.J.; Boddy, A.V. Curcumin as a Clinically-Promising Anti-Cancer Agent: Pharmacokinetics and Drug Interactions. Expert Opin. Drug Metab. Toxicol. 2017, 13, 953–972. [Google Scholar] [CrossRef]
- Banaee, F.; Poureini, F.; Mohammadi, M.; Najafpour, G.D.; Moghadamnia, A.A. Encapsulation of Curcumin in Gliadin-Pectin in a Core–Shell Nanostructure for Efficient Delivery of Curcumin to Cancer Cells In Vitro. Colloid Polym. Sci. 2022, 300, 1063–1073. [Google Scholar] [CrossRef]
- Goyal, P.; Kumar, P.; Gupta, A. Amphipathic Methoxypolyethylene Glycol-Curcumin Conjugate as Effective Drug Delivery System Useful for Colonic Diseases. Colloid Polym. Sci. 2021, 299, 1757–1766. [Google Scholar] [CrossRef]
- Mendes, E.V. As Redes de Atenção à Saúde; Organização Pan-Americana da Saúde: Rio de Janeiro, Brazil, 2011; ISBN 9788579670756. [Google Scholar]
- Monteiro-Neto, V.; de Souza, C.D.; Gonzaga, L.F.; da Silveira, B.C.; Sousa, N.C.F.; Pontes, J.P.; Santos, D.M.; Martins, W.C.; Pessoa, J.F.V.; Carvalho Júnior, A.R.; et al. naldehyde Potentiates the Antimicrobial Actions of Ciprofloxacin against Staphylococcus aureus and Escherichia coli. PLoS ONE 2020, 15, e0232987. [Google Scholar] [CrossRef]
- Jasim, H.A.; Nahar, L.; Jasim, M.A.; Moore, S.A.; Ritchie, K.J.; Sarker, S.D. Chalcones: Synthetic Chemistry Follows Where Nature Leads. Biomolecules 2021, 11, 1203. [Google Scholar] [CrossRef] [PubMed]
- Mellado, M.; Espinoza, L.; Madrid, A.; Mella, J.; Chávez-Weisser, E.; Diaz, K.; Cuellar, M. Design, Synthesis, Antifungal Activity, and Structure–Activity Relationship Studies of Chalcones and Hybrid Dihydrochromane–Chalcones. Mol. Divers. 2020, 24, 603–615. [Google Scholar] [CrossRef]
- Pandhurnekar, C.P.; Meshram, E.M.; Chopde, H.N.; Batra, R.J. Synthesis, Characterization, and Biological Activity of 4-(2-Hydroxy-5-(Aryl-Diazenyl)Phenyl)-6-(Aryl)Pyrimidin-2-Ols Derivatives. Org. Chem. Int. 2013, 2013, 582079. [Google Scholar] [CrossRef]
- Ajayi, O. Thermodynamic and Kinetic Stability of Cosmetic Nanoemulsions. In Design and Applications of Self-Assembly Aggregates—From Micelles to Nanoemulsions; IntechOpen: London, UK, 2024; Volume 2024, pp. 1–16. [Google Scholar] [CrossRef]
- Abreu, F.O.M.d.S.; do Nascimento, J.F.; Pinheiro, H.N.; Castelo, R.M.; Santos, H.S.; Mendes, F.R.S.; Cavalcanti, B.C.; Mendoza, M.F.M.; Benincá, T.; Malheiros, P.S.; et al. Formulation of nanoemulsions enriched with chalcone-based compounds: Formulation process, physical stability, and antimicrobial effect. Polym. Bull. 2024, 81, 7367–7391. [Google Scholar] [CrossRef]
- Medina-Alarcón, K.P.J.L.; Singulani, L.A.; Dutra, N.S.; Pitangui, M.A.; Pereira-da-Silva, M.A.; Santos, M.B.; Ayusso, G.M.; Regasini, L.O.; Soares, C.P.; Chorilli, M.; et al. Antifungal activity of 2′-hydroxychalcone loaded in nanoemulsion against Paracoccidioides spp. Future Microbiol. 2020, 15, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Lovelyn, C.; Attama, A.A. Current State of Nanoemulsions in Drug Delivery. J. Biomater. Nanobiotechnol. 2011, 2011, 626–639. [Google Scholar] [CrossRef]
- Cui, R.; Zhu, F. Ultrasound Modified Polysaccharides: A Review of Structure, Physicochemical Properties, Biological Activities and Food Applications. Trends Food Sci. Technol. 2021, 107, 491–508. [Google Scholar] [CrossRef]
- Maphosa, Y.; Jideani, V.A. Factors Affecting the Stability of Emulsions Stabilised by Biopolymers. In Science and Technology Behind Nanoemulsions; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Akther, T.; Ranjani, S.; Hemalatha, S. Nanoparticles Engineered from Endophytic Fungi (Botryosphaeria rhodina) against ESBL-Producing Pathogenic Multidrug-Resistant E. coli. Environ. Sci. Eur. 2021, 33, 83. [Google Scholar] [CrossRef]
- Ranjani, S.; Shariq Ahmed, M.; Ruckmani, K.; Hemalatha, S. Green Nanocolloids Control Multi Drug Resistant Pathogenic Bacteria. J. Clust. Sci. 2020, 31, 861–866. [Google Scholar] [CrossRef]
- Mirković, D.; Ibrić, S.; Balanč, B.; Knez, Ž.; Bugarski, B. Evaluation of the Impact of Critical Quality Attributes and Critical Process Parameters on Quality and Stability of Parenteral Nutrition Nanoemulsions. J. Drug Deliv. Sci. Technol. 2017, 39, 341–347. [Google Scholar] [CrossRef]
- Shakeel, F.; Shafiq, S.; Haq, N.; Alanazi, F.K.; Alsarra, I.A. Nanoemulsions as Potential Vehicles for Transdermal and Dermal Delivery of Hydrophobic Compounds: An Overview. Expert Opin. Drug Deliv. 2012, 9, 953–974. [Google Scholar] [CrossRef] [PubMed]
- Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties1. Nanoscale 2018, 10, 12871–12934. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Jain, D.K. Chalcone Derivatives as Potential Antifungal Agents: Synthesis, and Antifungal Activity. J. Adv. Pharm. Technol. Res. 2015, 6, 114–117. [Google Scholar] [CrossRef]
- Yu, H.; Huang, Q. Improving the Oral Bioavailability of Curcumin Using Novel Organogel-Based Nanoemulsions. J. Agric. Food Chem. 2012, 60, 5373–5379. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Khan, N.R.; Subhan, Z.; Mehmood, S.; Amin, A.; Rabbani, I.; Rehman, F.U.; Basit, H.M.; Syed, H.K.; Khan, I.U.; et al. Novel Curcumin-Encapsulated α -Tocopherol Nanoemulsion System and Its Potential Application for Wound Healing in Diabetic Animals. BioMed Res. Int. 2022, 2022, 7669255. [Google Scholar] [CrossRef]
- Badr, M.M.; Badawy, M.E.I.; Taktak, N.E.M. Preparation, Characterization, and Antimicrobial Activity of Cinnamon Essential Oil and Cinnamaldehyde Nanoemulsions. J. Essent. Oil Res. 2022, 34, 544–558. [Google Scholar] [CrossRef]
- da Silva Abreu, F.O.M.; Holanda, T.; Do Nascimento, J.F.; Pinheiro, H.N.; Castelo, R.M.; Dos Santos, H.S.; Benincá, T.; da Silva Malheiros, P.; Prado, J.C.S.; de Oliveira Fontenelle, R.; et al. Evaluation of the Antibacterial and Antifungal Capacity of Nanoemulsions Loaded with Synthetic Chalcone Derivatives Di-Benzyl Cinnamaldehyde and Benzyl 4-Aminochalcone. J. Renew. Mater. 2024, 12, 285–304. [Google Scholar] [CrossRef]
- Salehi, F.; Emami, L.; Rezaei, Z.; Khabnadideh, S.; Tajik, B.; Sabet, R. Fluconazole-Like Compounds as Potential Antifungal Agents: QSAR, Molecular Docking, and Molecular Dynamics Simulation. J. Chem. 2022, 2022, 5031577. [Google Scholar] [CrossRef]
- Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and Nanoparticles: Sources and Toxicity. Biointerphases 2007, 2, MR17–MR71. [Google Scholar] [CrossRef]
- Egbuna, C.; Parmar, V.K.; Jeevanandam, J.; Ezzat, S.M.; Patrick-Iwuanyanwu, K.C.; Adetunji, C.O.; Khan, J.; Onyeike, E.N.; Uche, C.Z.; Akram, M.; et al. Toxicity of Nanoparticles in Biomedical Application: Nanotoxicology. J. Toxicol. 2021, 2021, 9954443. [Google Scholar] [CrossRef]
- Pushpalatha, R.; Selvamuthukumar, S.; Kilimozhi, D. Cross-Linked, Cyclodextrin-Based Nanosponges for Curcumin Delivery—Physicochemical Characterization, Drug Release, Stability and Cytotoxicity. J. Drug Deliv. Sci. Technol. 2018, 45, 45–53. [Google Scholar] [CrossRef]
- Mann, G.; Chauhan, K.; Kumar, V.; Daksh, S.; Kumar, N.; Thirumal, M.; Datta, A. Bio-Evaluation of 99mTc-Labeled Homodimeric Chalcone Derivative as Amyloid-β-Targeting Probe. Front. Med. 2022, 9, 813465. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Teng, Z.; Li, X.; Lu, G.; Deng, X.; Niu, X.; Wang, J. Chalcone Attenuates Staphylococcus aureus Virulence by Targeting Sortase A and Alpha-Hemolysin. Front. Microbiol. 2017, 8, 1715. [Google Scholar] [CrossRef] [PubMed]
- Kalepu, S.; Nekkanti, V. Insoluble Drug Delivery Strategies: Review of Recent Advances and Business Prospects. Acta Pharm. Sin. B 2015, 5, 442–453. [Google Scholar] [CrossRef]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic Modeling on Drug Release from Controlled Drug Delivery Systems. Acta Pol. Pharm.-Drug Res. 2010, 67, 217–223. [Google Scholar]
- Mwangi, W.W.; Ho, K.W.; Tey, B.T.; Chan, E.S. Effects of Environmental Factors on the Physical Stability of Pickering-Emulsions Stabilized by Chitosan Particles. Food Hydrocoll. 2016, 60, 543–550. [Google Scholar] [CrossRef]
- Mitra, I.; Mukherjee, S.; Reddy Venkata, P.B.; Dasgupta, S.; Jagadeesh Bose, C.K.; Mukherjee, S.; Linert, W.; Moi, S.C. Benzimidazole Based Pt(II) Complexes with Better Normal Cell Viability than Cisplatin: Synthesis, Substitution Behavior, Cytotoxicity, DNA Binding and DFT Study. RSC Adv. 2016, 6, 76600–76613. [Google Scholar] [CrossRef]
- Almeida, A.C.S.; Silva, J.P.M.; Siqueira, A.; Frejlich, J. Medida de Viscosidade pelo Método de Ostwald: Um Experimento Didático. Rev. Bras. Ensino Fís. 1995, 17, 279–283. [Google Scholar]
- Berlinck, R.G.S.; Ogawa, C.A.; Almeida, A.M.P.; Sanchez, M.A.A.; Malpezzi, E.L.A.; Costa, L.V.; Hajdu, E.; De Freitas, J.C. Chemical and Pharmacological Characterization of Halitoxin from Amphimedon Viridis (Porifera) from the Southeastern Brazilian Coast. Comp. Biochem. Physiol.-C Pharmacol. Toxicol. Endocrinol. 1996, 115, 155–163. [Google Scholar] [CrossRef]
- Fontenelle, R.O.S.; Morais, S.M.; Brito, E.H.S.; Kerntopf, M.R.; Brilhante, R.S.N.; Cordeiro, R.A.; Tomé, A.R.; Queiroz, M.G.R.; Nascimento, N.R.F.; Sidrim, J.J.C.; et al. Chemical Composition, Toxicological Aspects and Antifungal Activity of Essential Oil from Lippia sidoides Cham. J. Antimicrob. Chemother. 2007, 59, 934–940. [Google Scholar] [CrossRef]
- CLSI M27; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. CLSI: Wayne, PA, USA, 2008.
- Tari, L.W.; Trzoss, M.; Bensen, D.C.; Li, X.; Chen, Z.; Lam, T.; Zhang, J.; Creighton, C.J.; Cunningham, M.L.; Kwan, B.; et al. Pyrrolopyrimidine inhibitors of DNA gyrase B (GyrB) and topoisomerase IV (ParE). Part I: Structure guided discovery and optimization of dual targeting agents with potent, broad-spectrum enzymatic activity. Bioorg. Med. Chem. Lett. 2013, 23, 1529–1536. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Marinho, E.M.; de Andrade Neto, J.B.; Silva, J.; da Silva, C.R.; Cavalcanti, B.C.; Marinho, E.S.; Júnior, H.V.N. Virtual screening based on molecular docking of possible inhibitors of COVID-19 main protease. Microb. Pathog. 2020, 148, 104365. [Google Scholar] [CrossRef] [PubMed]
- Wager, T.T.; Hou, X.; Verhoest, P.R.; Villalobos, A. Villalobos, Moving beyond Rules: The Development of a Central Nervous System Multiparameter Optimization (CNS MPO) Approach to Enable Alignment of Druglike Properties. ACS Chem. Neurosci. 2010, 1, 435–449. [Google Scholar] [CrossRef] [PubMed]
- Oberhauser, N.; Nurisso, A.; Carrupt, P.A. MLP Tools: A PyMOL plugin for using the molecular lipophilicity potential in computer-aided drug design. J. Comput.-Aided Mol. Des. 2014, 28, 587–596. [Google Scholar] [CrossRef]
- Nunes, J.V.S.; Marinho, E.M.; Roberto, C.H.A.; Magalhaes, E.P.; Ribeiro, L.R.; da Rocha, M.N.; de Queiroz Almeida-Neto, F.W.; Monteiro, M.L.; Marinho, E.S.; Teixeira, A.M.R.; et al. Synthesis, Vibrational Analysis, Thermal analysis, Quantum-chemical Calculation, Molecular Docking and Dynamics, DMPK and Evaluation of the Antichagasic Potential of a Fluorinated Chalcone. J. Mol. Struct. 2024, 1318, 139124. [Google Scholar] [CrossRef]
- da Rocha, M.N.; da Fonseca, A.M.; Dantas, A.N.M.; Dos Santos, H.S.; Marinho, E.S.; Marinho, G.S. In Silico Study in MPO and Molecular Docking of the Synthetic Drynaran Analogues Against the Chronic Tinnitus: Modulation of the M1 Muscarinic Acetylcholine Receptor. Mol. Biotechnol. 2023, 66, 254–269. [Google Scholar] [CrossRef]
Code | Concentration (mg/mL) | PZ (nm) | PdI | ZP (mV) | EE (%) |
---|---|---|---|---|---|
UHS-7 | 0.07 | 195.70 ± 2.69 | 0.525 ± 0.01 | −83.97 ± 5.01 | 92.10 ± 0.77 |
UHS-12 | 1.20 | 218.60 ± 3.11 | 0.492 ± 0.01 | −88.83 ± 5.14 | 91.70 ± 1.15 |
U-7 | 0.07 | 196.30 ± 1.79 | 0.518 ± 0.01 | −76.90 ± 4.44 | 39.40 ± 0.10 |
U-12 | 1.20 | 243.40 ± 4.49 | 0.509 ± 0.01 | −91.77 ± 5.58 | 74.00 ± 0.28 |
C. albicans Strains | |||||
---|---|---|---|---|---|
Samples | ATCC (90028) | LABMIC (0102) | LABMIC (0104) | LABMIC (0105) | LABMIC (0128) |
CIM (µg/mL) | |||||
CONTROL | N.I | N.I | N.I | N.I | N.I |
DB4OCH3 (10.000 µg/mL) | 312 | 312 | 625 | 625 | 625 |
UHS-7 (70 µg/mL) | 17.5 | 17.5 | 8.75 | 17.5 | 8.75 |
UHS-12 (1.200 µg/mL) | 75 | 75 | 75 | 37.5 | 75 |
ANF. B (16 µg/mL) | 1 | 1 | 1 | 1 | 1 |
Samples | Cytotoxicity ¹ | Hemolytic Assay 2 |
---|---|---|
IC50 (µg/mL) ± S.E.M. | EC50 (µg/mL) ± S.E.M. | |
DB4OCH3 | >150 | >200 |
UHS-7 | 45.61 ± 1.73 | >200 |
UHS-12 | 107.52 ± 2.56 | >200 |
U-7 | 38.45 ± 1.10 | >200 |
U-12 | 83.90 ± 5.10 | >200 |
Bleomycin | 30.48 ± 3.55 | - |
NE | Zero-Order | First-Order | Higuchi | Hixson–Crowell | Korsmeyer–Peppas | |||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | K0 (h−1) | R2 | Kt (h−1) | R2 | KH (h−1/2) | R2 | KHC (mg/h1/2) | R2 | Kk (h−n) | |
DB4OCH3 | 0.9511 | 0.0021 | 0.9102 | 0.0005 | 0.8944 | 0.1089 | 0.9370 | 0.0005 | 0.8269 | 0.6701 |
UHS-7 | 0.9542 | 0.0364 | 0.9564 | 0.0004 | 0.9192 | 1.9371 | 0.9619 | 0.0011 | 0.8835 | 0.532 |
Target | Ligand | RMSD (Å) | EA (kcal/mol) | Interactions | ||
---|---|---|---|---|---|---|
Type | Residue | Distance (Å) | ||||
TMK | DB4OCH3 | 0.584 | −6.767 | Hydrophobic | Tyr100 | 3.53 |
Tyr100 | 3.62 | |||||
Phe159 | 3.45 | |||||
H-bond | Arg70 | 2.86 | ||||
π-Stacking | Phe66 | 4.10 | ||||
Phe159 | 5.00 | |||||
OXA * | 1.273 | −7.233 | Hydrophobic | Tyr100 | 3.75 | |
H-bond | Phe66 | 3.99 | ||||
Tyr100 | 4.32 | |||||
Salt Bridges | Lys15 | 3.68 | ||||
Arg92 | 5.47 | |||||
32C ** | 1.95 | −7.67 | Hydrophobic | Arg48 | 3.65 | |
Leu52 | 3.94 | |||||
Arg92 | 3.77 | |||||
Tyr100 | 3.82 | |||||
H-bond | Arg70 | 3.16 | ||||
Arg70 | 1.89 | |||||
Gln101 | 1.95 | |||||
Gln101 | 1.78 | |||||
π-Stacking | Phe66 | 3.87 | ||||
Phe66 | 4.80 | |||||
Salt Bridges | Arg48 | 3.48 | ||||
Gyrase B | DB4OCH3 | 0.563 | −6.101 | Hydrophobic | Ile78 | 3.58 |
Ile94 | 3.42 | |||||
Ile94 | 3.82 | |||||
H-bond | Val120 | 3.33 | ||||
Ser121 | 2.63 | |||||
Thr165 | 2.94 | |||||
OXA * | 1.987 | −6.857 | Hydrophobic | Asn46 | 3.65 | |
Glu50 | 3.62 | |||||
Ile78 | 3.41 | |||||
Thr165 | 3.82 | |||||
H-bond | Glu50 | 2.91 | ||||
Salt bridge | Arg136 | 3.53 | ||||
CWW ** | 2.927 | −4.381 | Hydrophobic | Val43 | 3.83 | |
Val71 | 3.86 | |||||
Ile78 | 3.54 | |||||
H-bond | Asn46 | 2.83 | ||||
Asp73 | 1.89 | |||||
Asp73 | 1.92 | |||||
Arg76 | 3.58 | |||||
Gly77 | 1.81 | |||||
Thr165 | 3.09 | |||||
Water bridge | Gly77 | 2.70 |
Property | Value | T0 |
---|---|---|
logP | 3.36 | 0.82 |
logD7.4 | 3.39 | 0.30 |
TPSA | 35.53 Å2 | 0.77 |
MW | 294.13 g/mol | 1.00 |
HBD | 0 | 1.00 |
pKa basic | 2.81 | 1.00 |
MPO score | 4.90 | |
Pfizer rule | Alert: (logP > 3 and TPSA < 75 Å2) |
Property | ADMETlab 3.0 | Deep-PK |
---|---|---|
Papp,A→B Caco-2 | 1.12 × 10−5 cm/s | 2.57 × 10−5 cm/s |
Papp,A→B MDCK | 2.16 × 10−5 cm/s | 6.91 × 10−5 cm/s |
P-gp inhibition | Inhibitor | Inhibitor |
VDss | 0.59 L/kg | 1.87 L/kg |
CYP2C19 | Non-Substrate | Non-Substrate |
CYP2D6 | Substrate | Substrate |
CYP3A4 | Non-Substrate | Non-Substrate |
CLMicro | 11.48 mL/min/kg | 5.95 mL/min/kg |
DILI | 0.82 | Toxic |
Code | Concentration (mg/mL) | Technique |
---|---|---|
UHS-7 | − | + |
UHS-12 | + | + |
U-7 | − | − |
U-12 | + | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, J.F.d.; Abreu, F.O.M.d.S.; Holanda, T.; Oliveira dos Santos Fontenelle, R.; Prado, J.C.S.; Marinho, E.S.; da Rocha, M.N.; Guedes, J.M.; Cavalcanti, B.C.; Ribeiro, W.L.C.; et al. Evaluation of Emulsification Techniques to Optimize the Properties of Chalcone Nanoemulsions for Antifungal Applications. Pharmaceuticals 2024, 17, 1442. https://doi.org/10.3390/ph17111442
Nascimento JFd, Abreu FOMdS, Holanda T, Oliveira dos Santos Fontenelle R, Prado JCS, Marinho ES, da Rocha MN, Guedes JM, Cavalcanti BC, Ribeiro WLC, et al. Evaluation of Emulsification Techniques to Optimize the Properties of Chalcone Nanoemulsions for Antifungal Applications. Pharmaceuticals. 2024; 17(11):1442. https://doi.org/10.3390/ph17111442
Chicago/Turabian StyleNascimento, Joice Farias do, Flavia Oliveira Monteiro da Silva Abreu, Taysse Holanda, Raquel Oliveira dos Santos Fontenelle, Júlio César Sousa Prado, Emmanuel Silva Marinho, Matheus Nunes da Rocha, Jesyka Macêdo Guedes, Bruno Coelho Cavalcanti, Wesley Lyeverton Correia Ribeiro, and et al. 2024. "Evaluation of Emulsification Techniques to Optimize the Properties of Chalcone Nanoemulsions for Antifungal Applications" Pharmaceuticals 17, no. 11: 1442. https://doi.org/10.3390/ph17111442
APA StyleNascimento, J. F. d., Abreu, F. O. M. d. S., Holanda, T., Oliveira dos Santos Fontenelle, R., Prado, J. C. S., Marinho, E. S., da Rocha, M. N., Guedes, J. M., Cavalcanti, B. C., Ribeiro, W. L. C., Marinho, M. M., & Santos, H. S. d. (2024). Evaluation of Emulsification Techniques to Optimize the Properties of Chalcone Nanoemulsions for Antifungal Applications. Pharmaceuticals, 17(11), 1442. https://doi.org/10.3390/ph17111442