Trends in Antidiabetic Drug Use and Safety of Metformin in Diabetic Patients with Varying Degrees of Chronic Kidney Disease from 2010 to 2021 in Korea: Retrospective Cohort Study Using the Common Data Model
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Patterns of Antidiabetic Medication Use in Chronic Kidney Disease
2.3. Risk of Metformin-Associated Lactic Acidosis in Chronic Kidney Disease
3. Discussion
4. Methods
4.1. Data Source
4.2. Study Population
4.3. Trends in Antidiabetic Medication Use
4.4. Safety of Metformin Use
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Boer, I.H.; Khunti, K.; Sadusky, T.; Tuttle, K.R.; Neumiller, J.J.; Rhee, C.M.; Rosas, S.E.; Rossing, P.; Bakris, G. Diabetes Management in Chronic Kidney Disease: A Consensus Report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Diabetes Care 2022, 45, 3075–3090. [Google Scholar] [CrossRef] [PubMed]
- Stevens, P.E.; Levin, A. Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and Management of Chronic Kidney Disease: Synopsis of the Kidney Disease: Improving Global Outcomes 2012 Clinical Practice Guideline. Ann. Intern. Med. 2013, 158, 825–830. [Google Scholar] [CrossRef]
- Feng, X.S.; Farej, R.; Dean, B.B.; Xia, F.; Gaiser, A.; Kong, S.X.; Elliott, J.; Lindemann, S.; Singh, R. CKD Prevalence Among Patients with and without Type 2 Diabetes: Regional Differences in the United States. Kidney Med. 2021, 4, 100385. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Diabetes: Fact Sheets. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 15 March 2024).
- Korean Society of Nephrology. Practical Recommendations for the Management of Diabetic Kidney Disease. Available online: https://ksn.or.kr/bbs/index.php?page=1&code=guideline_k (accessed on 15 March 2024).
- American Diabetes Association Professional Practice Committee. 11. Chronic Kidney Disease and Risk Management: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S219–S230. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Presswala, L.; Harris, Y.T.; Romao, I.; Ross, D.W.; Paz, H.A.; Zhang, M.; Jhaveri, K.D.; Sakhiya, V.; Fishbane, S. Hypoglycemia in Patients with Type 2 Diabetes Mellitus and Chronic Kidney Disease: A Prospective Observational Study. Kidney360 2020, 1, 897–903. [Google Scholar] [CrossRef]
- Flory, J.H.; Hennessy, S.; Bailey, C.J.; Inzucchi, S.E. Reports of Lactic Acidosis Attributed to Metformin, 2015–2018. Diabetes Care 2020, 43, 244–246. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S158–S178. [Google Scholar] [CrossRef]
- Inzucchi, S.E.; Lipska, K.J.; Mayo, H.; Bailey, C.J.; McGuire, D.K. Metformin in Patients with Type 2 Diabetes and Kidney Disease: A Systematic Review. JAMA 2014, 312, 2668–2675. [Google Scholar] [CrossRef]
- Chen, C.C.; Ko, Y.; Chen, C.H.; Hung, Y.J.; Wei, T.E.; Chang, T.H.; Ke, S.S.; Kuo, K.N.; Chen, C. Relationship between Metformin Use and Lactic Acidosis in Advanced Chronic Kidney Disease: The REMIND-TMU Study. Am. J. Med. Sci. 2022, 364, 575–582. [Google Scholar] [CrossRef]
- Hur, K.Y.; Kim, M.K.; Ko, S.H.; Han, M.; Lee, D.W.; Kwon, H.S.; Committee of Clinical Practice Guidelines, Korean Diabetes Association. Metformin Treatment for Patients with Diabetes and Chronic Kidney Disease: A Korean Diabetes Association and Korean Society of Nephrology Consensus Statement. Diabetes Metab. J. 2020, 44, 3–10. [Google Scholar] [CrossRef]
- Lazarus, B.; Wu, A.; Shin, J.I.; Sang, Y.; Alexander, G.C.; Secora, A.; Inker, L.A.; Coresh, J.; Chang, A.R.; Grams, M.E. Association of Metformin Use with Risk of Lactic Acidosis Across the Range of Kidney Function: A Community-Based Cohort Study. JAMA Intern. Med. 2018, 178, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Spallek, H.; Song, M.; Polk, D.E.; Bekhuis, T.; Frantsve-Hawley, J.; Aravamudhan, K. Barriers to Implementing Evidence-Based Clinical Guidelines: A Survey of Early Adopters. J. Evid. Based Dent. Pract. 2010, 10, 195–206. [Google Scholar] [CrossRef]
- Kim, M.H.; Oh, H.J.; Kwon, S.H.; Jeon, J.S.; Noh, H.; Han, D.C.; Kim, H.; Ryu, D.R. Metformin Use and Cardiovascular Outcomes in Patients with Diabetes and Chronic Kidney Disease: A Nationwide Cohort Study. Kidney Res. Clin. Pract. 2021, 40, 660–672. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, M.; Loi, B.; Ariff, N.M.; Chuan, N.O.; Sham, S.Y.Z.; Thambiah, S.C.; Samsudin, I.N. Appropriateness of Metformin Prescription for Type 2 Diabetes Mellitus Patients with Chronic Kidney Disease (Stages 3–5). Malays. J. Pathol. 2020, 42, 71–76. [Google Scholar] [PubMed]
- Huang, A.; Wu, X.; Orloff, J.; Min, J.Y.; Flory, J. Rates of Metformin Use in Stage 3b Chronic Kidney Disease Rose after FDA Label Change. J. Gen. Intern. Med. 2021, 36, 3261–3263. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.J.; Lee, S.E.; Shin, D.H.; Park, I.B.; Lee, H.S.; Kim, K.A. Barriers to Initiating SGLT2 Inhibitors in Diabetic Kidney Disease: A Real-World Study. BMC Nephrol. 2021, 22, 177. [Google Scholar] [CrossRef]
- McKenzie, J.; Rajapakshe, R.; Shen, H.; Rajapakshe, S.; Lin, A. A Semiautomated Chart Review for Assessing the Development of Radiation Pneumonitis Using Natural Language Processing: Diagnostic Accuracy and Feasibility Study. JMIR Med. Inform. 2021, 9, e29241. [Google Scholar] [CrossRef]
- Ahmadi, N.; Zoch, M.; Kelbert, P.; Noll, R.; Schaaf, J.; Wolfien, M.; Sedlmayr, M. Methods Used in the Development of Common Data Models for Health Data: Scoping Review. JMIR Med. Inform. 2023, 11, e45116. [Google Scholar] [CrossRef]
- Jeon, S.; Seo, J.; Kim, S.; Lee, J.; Kim, J.-H.; Sohn, J.W.; Moon, J.; Joo, H.J. Proposal and Assessment of a De-Identification Strategy to Enhance Anonymity of the Observational Medical Outcomes Partnership Common Data Model (OMOP-CDM) in a Public Cloud-Computing Environment: Anonymization of Medical Data Using Privacy Models. J. Med. Internet Res. 2020, 22, e19597. [Google Scholar] [CrossRef]
- Junior, E.P.P.; Normando, P.; Flores-Ortiz, R.; Afzal, M.U.; Jamil, M.A.; Bertolin, S.F.; Oliveira, V.A.; Martufi, V.; de Sousa, F.; Bashir, A.; et al. Integrating real-world data from Brazil and Pakistan into the OMOP common data model and standardized health analytics framework to characterize COVID-19 in the Global South. J. Am. Med. Inform. Assoc. 2023, 30, 643–655. [Google Scholar] [CrossRef]
- Garza, M.; Del Fiol, G.; Tenenbaum, J.; Walden, A.; Zozus, M.N. Evaluating Common Data Models for Use with a Longitudinal Community Registry. J. Biomed. Inform. 2016, 64, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2020, 98, S1–S115. [Google Scholar] [CrossRef] [PubMed]
- Liaw, J.; Harhay, M.; Setoguchi, S.; Gerhard, T.; Dave, C.V. Trends in Prescribing Preferences for Antidiabetic Medications Among Patients with Type 2 Diabetes in the U.K. with and Without Chronic Kidney Disease, 2006–2020. Diabetes Care 2022, 45, 2316–2325. [Google Scholar] [CrossRef] [PubMed]
- Gor, D.; Gerber, B.S.; Walton, S.M.; Lee, T.A.; Nutescu, E.A.; Touchette, D.R. Antidiabetic Drug Use Trends in Patients with Type 2 Diabetes Mellitus and Chronic Kidney Disease: A Cross-Sectional Analysis of the National Health and Nutrition Examination Survey. J. Diabetes 2020, 12, 385–395. [Google Scholar] [CrossRef]
- Rhee, J.J.; Han, J.; Montez-Rath, M.E.; Kim, S.H.; Cullen, M.R.; Stafford, R.S.; Winkelmayer, W.C.; Chertow, G.M. Antidiabetic Medication Use in Patients with Type 2 Diabetes and Chronic Kidney Disease. J. Diabetes Its Complicat. 2019, 33, 107423. [Google Scholar] [CrossRef]
- Ministry of Food and Drug Safety (MFDS). Drug Approval by MFDS. Available online: https://nedrug.mfds.go.kr/eng/index (accessed on 15 March 2024).
- Wanner, C.; Inzucchi, S.E.; Lachin, J.M.; Fitchett, D.; von Eynatten, M.; Mattheus, M.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Zinman, B. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 323–334. [Google Scholar] [CrossRef]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef]
- Heerspink, H.J.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.F.; Mann, J.F.; McMurray, J.J.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef]
- KDIGO. Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO). KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2022, 102, S1–S127. [Google Scholar] [CrossRef]
- Machado-Duque, M.E.; Gaviria-Mendoza, A.; Valladales-Restrepo, L.F.; Franco, J.S.; de Rosario Forero, M.; Vizcaya, D.; Machado-Alba, J.E. Treatment Patterns of Antidiabetic and Kidney Protective Therapies Among Patients with Type 2 Diabetes Mellitus and Chronic Kidney Disease in Colombia. The KDICO Descriptive Study. Diabetol. Metab. Syndr. 2023, 15, 150. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.S.; Khan, M.; Ortega, D.; Jaffery, S.; Lamerato, L.E.; Budzynska, K. Prescription Patterns of Novel Antihyperglycemic Medications. J. Am. Board Fam. Med. 2022, 35, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Health Insurance Review & Assessment Service (HIRA). Medication Reimbursement History. Available online: https://www.hira.or.kr/ (accessed on 15 March 2024).
- Cole, N.I.; Swift, P.A.; Suckling, R.J.; Andrews, P.A. Metformin in Advanced Chronic Kidney Disease: Are Current Guidelines Overly Restrictive? Br. J. Diabetes 2016, 16, 168–175. [Google Scholar] [CrossRef]
- Montvida, O.; Shaw, J.; Atherton, J.J.; Stringer, F.; Paul, S.K. Long-Term Trends in Antidiabetes Drug Usage in the U.S.: Real-World Evidence in Patients Newly Diagnosed with Type 2 Diabetes. Diabetes Care 2018, 41, 69–78. [Google Scholar] [CrossRef]
- American Diabetes Association. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2019. Diabetes Care 2019, 42, S90–S102. [Google Scholar] [CrossRef] [PubMed]
- Korean Diabetes Association. KDA Treatment Guidelines for Diabetes. Available online: https://diabetes.or.kr/english/ (accessed on 15 March 2024).
- Mann, J.F.; Ørsted, D.D.; Brown-Frandsen, K.; Marso, S.P.; Poulter, N.R.; Rasmussen, S.; Tornøe, K.; Zinman, B.; Buse, J.B. Liraglutide and Renal Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 839–848. [Google Scholar] [CrossRef] [PubMed]
- DeFronzo, R.; Fleming, G.A.; Chen, K.; Bicsak, T.A. Metformin-associated lactic acidosis: Current perspectives on causes and risk. Metabolism 2016, 65, 20–29. [Google Scholar] [CrossRef]
- Visconti, L.; Cernaro, V.; Ferrara, D.; Costantino, G.; Aloisi, C.; Amico, L.; Chirico, V.; Santoro, D.; Noto, A.; David, A.; et al. Metformin-Related Lactic Acidosis: Is It a Myth or an Underestimated Reality? Ren. Fail. 2016, 38, 1560–1565. [Google Scholar] [CrossRef]
- Dissanayake, A.M.; Wheldon, M.C.; Ahmed, J.; Hood, C.J. Extending Metformin Use in Diabetic Kidney Disease: A Pharmacokinetic Study in Stage 4 Diabetic Nephropathy. Kidney Int. Rep. 2017, 2, 705–712. [Google Scholar] [CrossRef]
- Gan, S.C.; Barr, J.; Arieff, A.I.; Pearl, R.G. Biguanide-Associated Lactic Acidosis: Case Report and Review of the Literature. Arch. Intern. Med. 1992, 152, 2333–2336. [Google Scholar] [CrossRef]
- Yendapally, R.; Sikazwe, D.; Kim, S.S.; Ramsinghani, S.; Fraser-Spears, R.; Witte, A.P.; La-Viola, B. A Review of Phenformin, Metformin, and Imeglimin. Drug Dev. Res. 2020, 81, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Nong, K.; Vandvik, P.O.; Guyatt, G.H.; Schnell, O.; Rydén, L.; Marx, N.; Brosius, F.C., 3rd; Mustafa, R.A.; Agarwal, A.; et al. Benefits and harms of drug treatment for type 2 diabetes: Systematic review and network meta-analysis of randomised controlled trials. BMJ 2023, 381, e074068. [Google Scholar] [CrossRef] [PubMed]
- Bodmer, M.; Meier, C.; Krähenbühl, S.; Jick, S.S.; Meier, C.R. Metformin, Sulfonylureas, or Other Antidiabetes Drugs and the Risk of Lactic Acidosis or Hypoglycemia: A Nested Case-Control Analysis. Diabetes Care 2008, 31, 2086–2091. [Google Scholar] [CrossRef] [PubMed]
- Peña Porta, J.M.; Villafuerte Ledesma, H.M.; Vicente de Vera Floristán, C.; Ferrer Dufol, A.; Salvador Gómez, T.; Álvarez Lipe, R. Incidence, Factors Related to Presentation, Course and Mortality of Metformin-Associated Lactic Acidosis in the Healthcare Area of a Tertiary Hospital. Nefrologia Engl. Ed. 2019, 39, 35–43. [Google Scholar] [CrossRef]
- Blough, B.; Moreland, A.; Mora, A., Jr. Metformin-Induced Lactic Acidosis with Emphasis on the Anion Gap. Proc. Bayl. Univ. Med. Cent. 2015, 28, 31–33. [Google Scholar] [CrossRef]
- Kim, S.; Sarwal, A.; Yee, X.T.; Gandarillas Fraga, S.A.; Campion, V.; Gnanasekaran, I. Metformin-Associated Lactic Acidosis (MALA): Is It an Underestimated Entity? A Retrospective, Single-Center Case Series. Hemodial. Int. 2024, 28, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Chan, N.N.; Brain, H.P.S.; Feher, M.D. Metformin-Associated Lactic Acidosis: A Rare or Very Rare Clinical Entity? Diabet. Med. 1999, 16, 273–281. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). Drugs@FDA: FDA-Approved Drugs. Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm (accessed on 15 March 2024).
- Observational Health Data Science and Informatics (OHDSI). Standardized Data: The OMOP Common Data Model. Available online: https://www.ohdsi.org/data-standardization/ (accessed on 15 March 2024).
- Fralick, M.; Kim, S.C.; Schneeweiss, S.; Kim, D.; Redelmeier, D.A.; Patorno, E. Fracture Risk after Initiation of Use of Canagliflozin: A Cohort Study. Ann. Intern. Med. 2019, 170, 155–163. [Google Scholar] [CrossRef]
- Ueda, P.; Svanström, H.; Melbye, M.; Eliasson, B.; Svensson, A.-M.; Franzén, S.; Gudbjörnsdottir, S.; Hveem, K.; Jonasson, C.; Pasternak, B. Sodium glucose cotransporter 2 inhibitors and risk of serious adverse events: Nationwide register-based cohort study. BMJ 2018, 363, k4365. [Google Scholar] [CrossRef]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A More Accurate Method to Estimate Glomerular Filtration Rate from Serum Creatinine: A New Prediction Equation. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef]
- Schwandt, A.; Denkinger, M.; Fasching, P.; Pfeifer, M.; Wagner, C.; Weiland, J.; Zeyfang, A.; Holl, R.W. Comparison of MDRD, CKD-EPI, and Cockcroft-Gault equation in relation to measured glomerular filtration rate among a large cohort with diabetes. J. Diabetes Its Complicat. 2017, 31, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Biedermann, P.; Ong, R.; Davydov, A.; Orlova, A.; Solovyev, P.; Sun, H.; Wetherill, G.; Brand, M.; Didden, E.M. Standardizing Registry Data to the OMOP Common Data Model: Experience from Three Pulmonary Hypertension Databases. BMC Med. Res. Methodol. 2021, 21, 238. [Google Scholar] [CrossRef] [PubMed]
- Thammavaranucupt, K.; Phonyangnok, B.; Parapiboon, W.; Wongluechai, L.; Pichitporn, W.; Sumrittivanicha, J.; Sungkanuparph, S.; Nongnuch, A.; Jayanama, K. Metformin-Associated Lactic Acidosis and Factors Associated with 30-Day Mortality. PLoS ONE 2022, 17, e0273678. [Google Scholar] [CrossRef]
CKD Group or Stage | Mild CKD b (n = 6185) | Advanced CKD c (n = 2133) | |||||
---|---|---|---|---|---|---|---|
CKD 3a (n = 974) | CKD 3b (n = 587) | CKD 4 (n = 252) | CKD 5 | p-Value d | |||
Without Dialysis (n = 96) | With Dialysis (n = 224) | ||||||
Age (years) | 58.9 ± 11.1 | 67.8 ± 9.1 | 69.8 ± 8.9 | 69.6 ± 10.4 | 66.7 ± 11.2 | 60.6 ± 12.2 | <0.001 |
CCI score | 2.2 ± 1.4 | 2.4 ± 1.5 | 2.8 ± 1.8 | 3.0 ± 1.7 | 3.3 ± 1.7 | 3.7 ± 1.5 | <0.001 |
Female | 3881 (62.7) | 292 (30.0) | 196 (33.4) | 103 (40.9) | 41 (42.7) | 75 (33.5) | <0.001 |
Comorbidities | |||||||
HTN | 4016 (64.9) | 775 (79.6) | 492 (83.8) | 213 (84.5) | 79 (82.3) | 182 (81.2) | 0.005 |
Dyslipidemia | 4701 (76.0) | 657 (67.5) | 363 (61.8) | 144 (57.1) | 47 (49.0) | 107 (47.8) | <0.001 |
CHF | 166 (2.7) | 51 (5.2) | 33 (5.6) | 15 (6.0) | 6 (6.2) | 16 (7.1) | 0.82 |
CAD | 143 (2.3) | 36 (3.7) | 33 (5.6) | 13 (5.2) | 3 (3.1) | 11 (4.9) | 0.83 |
COPD | 124 (2.0) | 40 (4.1) | 32 (5.5) | 12 (4.8) | 3 (3.1) | 6 (2.7) | 0.78 |
Concurrent medications | |||||||
ACEIs | 497 (8.0) | 107 (11.0) | 86 (14.7) | 62 (24.6) | 19 (19.8) | 62 (27.7) | 0.003 |
ARBs | 3609 (58.4) | 726 (74.5) | 463 (78.9) | 206 (81.7) | 82 (85.4) | 193 (86.2) | <0.001 |
BBs | 1738(28.0) | 366 (37.6) | 248 (42.2) | 129 (51.1) | 50 (52.1) | 145 (64.7) | <0.001 |
Diuretics | 1657 (26.8) | 449 (46.1) | 361 (61.5) | 197 (78.1) | 81 (84.4) | 201 (89.7) | <0.001 |
CCBs | 3299 (53.3) | 673 (69.1) | 451 (76.8) | 209 (82.9) | 87 (90.6) | 216 (96.4) | <0.001 |
Digoxin | 67 (1.1) | 36 (3.7) | 35 (6.0) | 23 (9.1) | 7 (7.3) | 15 (6.7) | 0.175 |
Aspirin | 2441 (39.5) | 561 (57.6) | 362 (61.7) | 160 (63.5) | 28 (29.0) | 163 (72.8) | <0.001 |
Antiplatelet agents other than aspirin | 969 (15.7) | 195 (20.0) | 150 (25.6) | 87 (34.5) | 39 (40.6) | 207 (92.4) | <0.001 |
Nitrates | 135 (2.2) | 73 (7.5) | 52 (8.9) | 30 (11.9) | 5 (5.2) | 39 (17.4) | 0.035 |
Warfarin | 72 (1.2) | 40 (4.1) | 37 (6.3) | 24 (9.5) | 7 (7.3) | 13 (5.8) | 0.185 |
Anticoagulant agents other than warfarin | 162 (2.6) | 75 (7.7) | 50 (8.5) | 25 (9.9) | 3 (3.1) | 11 (4.9) | 0.143 |
Statins | 5300 (85.7) | 802 (82.3) | 475 (80.9) | 200 (79.4) | 74 (77.1) | 184 (82.1) | 0.742 |
Before Propensity Score Matching (PSM) | After PSM | |||||||
---|---|---|---|---|---|---|---|---|
No. of Metformin-Treated Patients | MALA Cases (N [%]) | IR a (95% CI) | IRR (95% CI) | p-Value b,c | No. of Metformin-Treated Patients | MALA Cases (N [%]) | IR a (95% CI) | |
All | 6818 | 27 (0.4) | 1.22 (0.80–1.77) | N/A | N/A | 536 | 2 (0.4) | 1.35 (0.16–4.90) |
CKD stages | ||||||||
Mild CKD d | 5463 | 10(0.2) | 0.56 (0.26–1.03) | REF | REF | 328 | 1 (0.3) | 1.10 (0.02–6.15) |
CKD 3a | 704 | 5 (0.7) | 2.18 (0.71–5.08) | 3.90 (1.33–11.42) | 0.021 | 97 | 1 (1.0) | 3.47 (0.08–19.3) |
CKD 3b | 401 | 3 (0.7) | 2.42 (0.49–7.07) | 4.34 (1.19–15.76) | 0.054 | 72 | 0 (0.0) | N/E |
CKD 4 | 146 | 4 (2.7) | 10.44 (2.85–26.7) | 18.72 (5.87–59.71) | <0.001 | 39 | 0 (0.0) | N/E |
CKD 5 | 104 | 5 (4.8) | 20.24 (6.57–47.2) | 86.21 (29.47–252.21) | <0.001 | N/E | N/E | N/E |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joo, S.H.; Yang, S.; Lee, S.; Park, S.J.; Park, T.; Rhee, S.Y.; Cha, J.M.; Rhie, S.J.; Hwang, H.S.; Kim, Y.G.; et al. Trends in Antidiabetic Drug Use and Safety of Metformin in Diabetic Patients with Varying Degrees of Chronic Kidney Disease from 2010 to 2021 in Korea: Retrospective Cohort Study Using the Common Data Model. Pharmaceuticals 2024, 17, 1369. https://doi.org/10.3390/ph17101369
Joo SH, Yang S, Lee S, Park SJ, Park T, Rhee SY, Cha JM, Rhie SJ, Hwang HS, Kim YG, et al. Trends in Antidiabetic Drug Use and Safety of Metformin in Diabetic Patients with Varying Degrees of Chronic Kidney Disease from 2010 to 2021 in Korea: Retrospective Cohort Study Using the Common Data Model. Pharmaceuticals. 2024; 17(10):1369. https://doi.org/10.3390/ph17101369
Chicago/Turabian StyleJoo, Sung Hwan, Seungwon Yang, Suhyun Lee, Seok Jun Park, Taemin Park, Sang Youl Rhee, Jae Myung Cha, Sandy Jeong Rhie, Hyeon Seok Hwang, Yang Gyun Kim, and et al. 2024. "Trends in Antidiabetic Drug Use and Safety of Metformin in Diabetic Patients with Varying Degrees of Chronic Kidney Disease from 2010 to 2021 in Korea: Retrospective Cohort Study Using the Common Data Model" Pharmaceuticals 17, no. 10: 1369. https://doi.org/10.3390/ph17101369
APA StyleJoo, S. H., Yang, S., Lee, S., Park, S. J., Park, T., Rhee, S. Y., Cha, J. M., Rhie, S. J., Hwang, H. S., Kim, Y. G., & Chung, E. K. (2024). Trends in Antidiabetic Drug Use and Safety of Metformin in Diabetic Patients with Varying Degrees of Chronic Kidney Disease from 2010 to 2021 in Korea: Retrospective Cohort Study Using the Common Data Model. Pharmaceuticals, 17(10), 1369. https://doi.org/10.3390/ph17101369