Evaluating the Impact of Novel Incretin Therapies on Cardiovascular Outcomes in Type 2 Diabetes: An Early Systematic Review
Abstract
:1. Introduction
2. Results
2.1. Comparative Dosage Strategies in Retatrutide and Tirzepatide Studies
2.2. Side Effects in Incretin Therapy
3. Discussion
4. Materials and Methods
4.1. Research Question and Search Strategy
4.2. Inclusion Criteria
4.3. Exclusion Criteria
4.4. Selection of Studies
4.5. Data Extraction
4.6. Risk of Bias Assessment
4.7. Strategy for Data Synthesis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ye, J.; Wu, Y.; Yang, S.; Zhu, D.; Chen, F.; Chen, J.; Ji, X.; Hou, K. The global, regional and national burden of type 2 diabetes mellitus in the past, present and future: A systematic analysis of the Global Burden of Disease Study 2019. Front. Endocrinol. 2023, 14, 1192629. [Google Scholar] [CrossRef] [PubMed]
- Oyewole, O.O.; Ale, A.O.; Ogunlana, M.O.; Gurayah, T. Burden of Disability in Type 2 Diabetes Mellitus and the Moderating Effects of Physical Activity. World J. Clin. Cases 2023, 11, 3128. [Google Scholar] [CrossRef]
- Reurean-Pintilei, D.; Potcovaru, C.-G.; Salmen, T.; Mititelu-Tartau, L.; Cinteză, D.; Lazăr, S.; Pantea Stoian, A.; Timar, R.; Timar, B. Assessment of Cardiovascular Risk Categories and Achievement of Therapeutic Targets in European Patients with Type 2 Diabetes. J. Clin. Med. 2024, 13, 2196. [Google Scholar] [CrossRef] [PubMed]
- Potcovaru, C.-G.; Salmen, T.; Bîgu, D.; Săndulescu, M.I.; Filip, P.V.; Diaconu, L.S.; Pop, C.; Ciobanu, I.; Cinteză, D.; Berteanu, M. Assessing the Effectiveness of Rehabilitation Interventions through the World Health Organization Disability Assessment Schedule 2.0 on Disability—A Systematic Review. J. Clin. Med. 2024, 13, 1252. [Google Scholar] [CrossRef]
- An, J.; Nichols, G.A.; Qian, L.; Munis, M.A.; Harrison, T.N.; Li, Z.; Wei, R.; Weiss, T.; Rajpathak, S.; Reynolds, K. Prevalence and incidence of microvascular and macrovascular complications over 15 years among patients with incident type 2 diabetes. BMJ Open Diabetes Res. Care. 2021, 9, e001847. [Google Scholar] [CrossRef]
- de Boer, I.H.; Khunti, K.; Sadusky, T.; Tuttle, K.R.; Neumiller, J.J.; Rhee, C.M.; Rosas, S.E.; Rossing, P.; Bakris, G. Diabetes Management in Chronic Kidney Disease: A Consensus Report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Diabetes Care 2022, 45, 3075–3090. [Google Scholar] [CrossRef]
- Hou, X.; Wang, L.; Zhu, D.; Guo, L.; Weng, J.; Zhang, M.; Zhou, Z.; Zou, D.; Ji, Q.; Guo, X.; et al. Prevalence of diabetic retinopathy and vision-threatening diabetic retinopathy in adults with diabetes in China. Nat. Commun. 2023, 14, 4296. [Google Scholar] [CrossRef] [PubMed]
- Galiero, R.; Caturano, A.; Vetrano, E.; Beccia, D.; Brin, C.; Alfano, M.; Di Salvo, J.; Epifani, R.; Piacevole, A.; Tagliaferri, G.; et al. Peripheral Neuropathy in Diabetes Mellitus: Pathogenetic Mechanisms and Diagnostic Options. Int. J. Mol. Sci. 2023, 24, 3554. [Google Scholar] [CrossRef]
- Blonde, L.; Umpierrez, G.E.; Reddy, S.S.; McGill, J.B.; Berga, S.L.; Bush, M.; Chandrasekaran, S.; DeFronzo, R.A.; Einhorn, D.; Galindo, R.J.; et al. American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan-2022 Update. Endocr. Pract. 2022, 28, 923–1049. [Google Scholar]
- American Diabetes Association Professional Practice Committee. 10. Cardiovascular Disease and Risk Management: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S179–S218. [Google Scholar] [CrossRef]
- Salmen, T.; Serbanoiu, L.-I.; Bica, I.-C.; Serafinceanu, C.; Muzurović, E.; Janez, A.; Busnatu, S.; Banach, M.; Rizvi, A.A.; Rizzo, M.; et al. A Critical View over the Newest Antidiabetic Molecules in Light of Efficacy—A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2023, 24, 9760. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, J.; Mohanty, S.; Kundu, A.; Epari, V. Medication Adherence Among Patients of Type II Diabetes Mellitus and Its Associated Risk Factors: A Cross-Sectional Study in a Tertiary Care Hospital of Eastern India. Cureus 2022, 14, e33074. [Google Scholar] [CrossRef]
- Raveendran, A.V.; Chacko, E.C.; Pappachan, J.M. Non-pharmacological Treatment Options in the Management of Diabetes Mellitus. Eur. Endocrinol. 2018, 14, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Garvey, W.T.; Batterham, R.L.; Bhatta, M.; Buscemi, S.; Christensen, L.N.; Frias, J.P.; Jódar, E.; Kandler, K.; Rigas, G.; Wadden, T.A.; et al. Two-year effects of semaglutide in adults with overweight or obesity: The STEP 5 trial. Nat. Med. 2022, 28, 2083–2091. [Google Scholar] [CrossRef]
- Wadden, T.A.; Bailey, T.S.; Billings, L.K.; Davies, M.; Frias, J.P.; Koroleva, A.; Lingvay, I.; O’Neil, P.M.; Rubino, D.M.; Skovgaard, D.; et al. Effect of Subcutaneous Semaglutide vs Placebo as an Adjunct to Intensive Behavioral Therapy on Body Weight in Adults With Overweight or Obesity: The STEP 3 Randomized Clinical Trial. JAMA 2021, 325, 1403–1413. [Google Scholar] [CrossRef] [PubMed]
- Rubino, D.M.; Greenway, F.L.; Khalid, U.; O’Neil, P.M.; Rosenstock, J.; Sørrig, R.; Wadden, T.A.; Wizert, A.; Garvey, W.T.; STEP 8 Investigators. Effect of Weekly Subcutaneous Semaglutide vs Daily Liraglutide on Body Weight in Adults With Overweight or Obesity Without Diabetes: The STEP 8 Randomized Clinical Trial. JAMA 2022, 327, 138–150. [Google Scholar] [CrossRef] [PubMed]
- Kushner, R.F.; Calanna, S.; Davies, M.; Dicker, D.; Garvey, W.T.; Goldman, B.; Lingvay, I.; Thomsen, M.; Wadden, T.A.; Wharton, S.; et al. Semaglutide 2.4 mg for the Treatment of Obesity: Key Elements of the STEP Trials 1 to 5. Obesity 2020, 28, 1050–1061. [Google Scholar] [CrossRef]
- Silver, H.J.; Olson, D.; Mayfield, D.; Wright, P.; Nian, H.; Mashayekhi, M.; Koethe, J.R.; Niswender, K.D.; Luther, J.M.; Brown, N.J. Effect of the glucagon-like peptide-1 receptor agonist liraglutide, compared to caloric restriction, on appetite, dietary intake, body fat distribution and cardiometabolic biomarkers: A randomized trial in adults with obesity and prediabetes. Diabetes Obes. Metab. 2023, 25, 2340–2350. [Google Scholar] [CrossRef]
- Wadden, T.A.; Tronieri, J.S.; Sugimoto, D.; Lund, M.T.; Auerbach, P.; Jensen, C.; Rubino, D. Liraglutide 3.0 mg and Intensive Behavioral Therapy (IBT) for Obesity in Primary Care: The SCALE IBT Randomized Controlled Trial. Obesity 2020, 28, 529–536. [Google Scholar] [CrossRef]
- Garvey, W.T.; Birkenfeld, A.L.; Dicker, D.; Mingrone, G.; Pedersen, S.D.; Satylganova, A.; Skovgaard, D.; Sugimoto, D.; Jensen, C.; Mosenzon, O. Efficacy and Safety of Liraglutide 3.0 mg in Individuals With Overweight or Obesity and Type 2 Diabetes Treated With Basal Insulin: The SCALE Insulin Randomized Controlled Trial. Diabetes Care 2020, 43, 1085–1093. [Google Scholar] [CrossRef]
- le Roux, C.W.; Zhang, S.; Aronne, L.J.; Kushner, R.F.; Chao, A.M.; Machineni, S.; Dunn, J.; Chigutsa, F.B.; Ahmad, N.N.; Bunck, M.C. Tirzepatide for the treatment of obesity: Rationale and design of the SURMOUNT clinical development program. Obesity 2023, 31, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Nahra, R.; Wang, T.; Gadde, K.M.; Oscarsson, J.; Stumvoll, M.; Jermutus, L.; Hirshberg, B.; Ambery, P. Effects of Cotadutide on Metabolic and Hepatic Parameters in Adults With Overweight or Obesity and Type 2 Diabetes: A 54-Week Randomized Phase 2b Study. Diabetes Care 2021, 44, 1433–1442. [Google Scholar] [CrossRef] [PubMed]
- Jastreboff, A.M.; Kaplan, L.M.; Frías, J.P.; Wu, Q.; Du, Y.; Gurbuz, S.; Coskun, T.; Haupt, A.; Milicevic, Z.; Hartman, M.L.; et al. Triple-Hormone-Receptor Agonist Retatrutide for Obesity—A Phase 2 Trial. NEJM 2023, 389, 514–526. [Google Scholar] [CrossRef] [PubMed]
- Lupianez-Merly, C.; Dilmaghani, S.; Vosoughi, K.; Camilleri, M. Review article: Pharmacologic management of obesity—Updates on approved medications, indications and risks. Aliment. Pharmacol. Ther. 2024, 59, 475–491. [Google Scholar] [CrossRef] [PubMed]
- Alobaida, M.; Alrumayh, A.; Oguntade, A.S.; Al-Amodi, F.; Bwalya, M. Cardiovascular Safety and Superiority of Anti-Obesity Medications. Diabetes Metab. Syndr. Obes. Targets Ther. 2021, 14, 3199–3208. [Google Scholar] [CrossRef]
- Ferhatbegović, L.; Mršić, D.; Macić-Džanković, A. The benefits of GLP1 receptors in cardiovascular diseases. Front. Clin. Diabetes Healthc. 2023, 4, 1293926. [Google Scholar] [CrossRef]
- Ussher, J.R.; Drucker, D.J. Glucagon-like peptide 1 receptor agonists: Cardiovascular benefits and mechanisms of action. Nat. Rev. Cardiol. 2023, 20, 463–474. [Google Scholar] [CrossRef]
- Frías, J.P.; Davies, M.J.; Rosenstock, J.; Pérez Manghi, F.C.; Fernández Landó, L.; Bergman, B.K.; Liu, B.; Cui, X.; Brown, K.; SURPASS-2 Investigators. Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. NEJM 2021, 385, 503–515. [Google Scholar] [CrossRef]
- Ludvik, B.; Giorgino, F.; Jódar, E.; Frias, J.P.; Fernández Landó, L.; Brown, K.; Bray, R.; Rodríguez, Á. Once-weekly tirzepatide versus once-daily insulin degludec as add-on to metformin with or without SGLT2 inhibitors in patients with type 2 diabetes (SURPASS-3): A randomised, open-label, parallel-group, phase 3 trial. Lancet 2021, 398, 583–598. [Google Scholar] [CrossRef]
- Del Prato, S.; Kahn, S.E.; Pavo, I.; Weerakkody, G.J.; Yang, Z.; Doupis, J.; Aizenberg, D.; Wynne, A.G.; Riesmeyer, J.S.; Heine, R.J.; et al. Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS-4): A randomised, open-label, parallel-group, multicentre, phase 3 trial. Lancet 2021, 398, 1811–1824. [Google Scholar] [CrossRef]
- Doggrell, S.A. Retatrutide showing promise in obesity (and type 2 diabetes). Expert Opin. Investig. Drugs 2023, 32, 997–1001. [Google Scholar] [CrossRef] [PubMed]
- Doggrell, S.A. Is retatrutide (LY3437943), a GLP-1, GIP, and glucagon receptor agonist a step forward in the treatment of diabetes and obesity? Expert. Opin. Investig. Drugs 2023, 32, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Frias, J.; Jastreboff, A.M.; Du, Y.; Lou, J.; Gurbuz, S.; Thomas, M.K.; Hartman, M.L.; Haupt, A.; Milicevic, Z.; et al. Retatrutide, a GIP, GLP-1 and glucagon receptor agonist, for people with type 2 diabetes: A randomised, double-blind, placebo and active-controlled, parallel-group, phase 2 trial conducted in the USA. Lancet 2023, 402, 529–544. [Google Scholar] [CrossRef] [PubMed]
- Hankosky, E.R.; Wang, H.; Neff, L.M.; Kan, H.; Wang, F.; Ahmad, N.N.; Griffin, R.; Stefanski, A.; Garvey, W.T. Tirzepatide reduces the predicted risk of atherosclerotic cardiovascular disease and improves cardiometabolic risk factors in adults with obesity or overweight: SURMOUNT-1 post hoc analysis. Diabetes Obes. Metab. 2024, 26, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Garvey, W.T.; Frias, J.P.; Jastreboff, A.M.; le Roux, C.W.; Sattar, N.; Aizenberg, D.; Mao, H.; Zhang, S.; Ahmad, N.N.; Bunck, M.C.; et al. Tirzepatide once weekly for the treatment of obesity in people with type 2 diabetes (SURMOUNT-2): A double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 2023, 402, 613–626. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Sattar, N.; Pavo, I.; Haupt, A.; Duffin, K.L.; Yang, Z.; Wiese, R.J.; Tuttle, K.R.; Cherney, D.Z.I. Effects of tirzepatide versus insulin glargine on kidney outcomes in type 2 diabetes in the SURPASS-4 trial: Post-hoc analysis of an open-label, randomised, phase 3 trial. Lancet Diabetes Endocrinol. 2022, 10, 774–785. [Google Scholar] [CrossRef]
- Bergmann, N.C.; Davies, M.J.; Lingvay, I.; Knop, F.K. Semaglutide for the treatment of overweight and obesity: A review. Diabetes Obes. Metab. 2023, 25, 18–35. [Google Scholar] [CrossRef]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. NEJM 2016, 375, 1834–1844. [Google Scholar] [CrossRef]
- Husain, M.; Birkenfeld, A.L.; Donsmark, M.; Dungan, K.; Eliaschewitz, F.G.; Franco, D.R.; Jeppesen, O.K.; Lingvay, I.; Mosenzon, O.; Pedersen, S.D.; et al. Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. NEJM 2019, 381, 841–851. [Google Scholar] [CrossRef]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. NEJM 2016, 375, 311–322. [Google Scholar] [CrossRef]
- Riddle, M.C.; Gerstein, H.C.; Xavier, D.; Cushman, W.C.; Leiter, L.A.; Raubenheimer, P.J.; Atisso, C.M.; Raha, S.; Varnado, O.J.; Konig, M.; et al. Efficacy and Safety of Dulaglutide in Older Patients: A post hoc Analysis of the REWIND trial. J. Clin. Endocrinol. Metab. 2021, 106, 1345–1351. [Google Scholar] [CrossRef] [PubMed]
- Lingvay, I.; Brown-Frandsen, K.; Colhoun, H.M.; Deanfield, J.; Emerson, S.S.; Esbjerg, S.; Hardt-Lindberg, S.; Hovingh, G.K.; Kahn, S.E.; Kushner, R.F.; et al. Semaglutide for cardiovascular event reduction in people with overweight or obesity: SELECT study baseline characteristics. Obesity 2023, 31, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, M.; Nikolic, D.; Patti, A.M.; Mannina, C.; Montalto, G.; McAdams, B.S.; Rizvi, A.A.; Cosentino, F. GLP-1 receptor agonists and reduction of cardiometabolic risk: Potential underlying mechanisms. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864 Pt B, 2814–2821. [Google Scholar] [CrossRef]
- Tuttolomondo, A.; Cirrincione, A.; Casuccio, A.; Del Cuore, A.; Daidone, M.; Di Chiara, T.; Di Raimondo, D.; Corte, V.D.; Maida, C.; Simonetta, I.; et al. Efficacy of dulaglutide on vascular health indexes in subjects with type 2 diabetes: A randomized trial. Cardiovasc. Diabetol. 2021, 20, 1. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, S.J.; Bhatt, D.L.; Buse, J.B.; Prato, S.D.; Kahn, S.E.; Lincoff, A.M.; McGuire, D.K.; Nauck, M.A.; Nissen, S.E.; Sattar, N.; et al. Comparison of tirzepatide and dulaglutide on major adverse cardiovascular events in participants with type 2 diabetes and atherosclerotic cardiovascular disease: SURPASS-CVOT design and baseline characteristics. Am. Heart J. 2024, 267, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.R.; Frias, J.P.; Brown, L.S.; Gorman, D.N.; Vasas, S.; Tsamandouras, N.; Birnbaum, M.J. Efficacy and Safety of Oral Small Molecule Glucagon-Like Peptide 1 Receptor Agonist Danuglipron for Glycemic Control Among Patients With Type 2 Diabetes: A Randomized Clinical Trial. JAMA Netw. Open. 2023, 6, e2314493. [Google Scholar] [CrossRef]
- Zhang, B.; Cheng, Z.; Chen, J.; Zhang, X.; Liu, D.; Jiang, H.; Ma, G.; Wang, X.; Gan, S.; Sun, J.; et al. Efficacy and Safety of Mazdutide in Chinese Patients With Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Phase 2 Trial. Diabetes Care 2024, 47, 160–168. [Google Scholar] [CrossRef]
- Oprea, E.; Berteanu, M.; Cintezã, D.; Manolescu, B.N. The effect of the ALAnerv nutritional supplement on some oxidative stress markers in postacute stroke patients undergoing rehabilitation. Appl. Physiol. Nutr. Metab. 2013, 38, 613–620. [Google Scholar] [CrossRef]
- Yousefian, M.; Abedimanesh, S.; Yadegar, A.; Nakhjavani, M.; Bathaie, S.Z. Co-administration of “L-Lysine, Vitamin C, and Zinc” increased the antioxidant activity, decreased insulin resistance, and improved lipid profile in streptozotocin-induced diabetic rats. Biomed. Pharmacother. 2024, 174, 116525. [Google Scholar] [CrossRef]
- Hu, E.-H.; Tsai, M.-L.; Lin, Y.; Chou, T.-S.; Chen, T.-H. A Review and Meta-Analysis of the Safety and Efficacy of Using Glucagon-like Peptide-1 Receptor Agonists. Medicina 2024, 60, 357. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Batterham, R.L.; Davies, M.; Van Gaal, L.F.; Kandler, K.; Konakli, K.; Lingvay, I.; McGowan, B.M.; Oral, T.K.; Rosenstock, J.; et al. Weight regain and cardiometabolic effects after withdrawal of semaglutide: The STEP 1 trial extension. Diabetes Obes. Metab. 2022, 24, 1553–1564. [Google Scholar] [CrossRef] [PubMed]
- Giorgino, F.; Bhana, S.; Czupryniak, L.; Dagdelen, S.; Galstyan, G.R.; Janež, A.; Lalić, N.; Nouri, N.; Rahelić, D.; Stoian, A.P.; et al. Management of patients with diabetes and obesity in the COVID-19 era: Experiences and learnings from South and East Europe, the Middle East, and Africa. Diabetes Res. Clin. Pract. 2021, 172, 108617. [Google Scholar] [CrossRef] [PubMed]
- Patti, A.M.; Rizvi, A.A.; Giglio, R.V.; Stoian, A.P.; Ligi, D.; Mannello, F. Impact of Glucose-Lowering Medications on Cardiovascular and Metabolic Risk in Type 2 Diabetes. J. Clin. Med. 2020, 9, 912. [Google Scholar] [CrossRef] [PubMed]
- Giglio, R.V.; Pantea Stoian, A.; Al-Rasadi, K.; Banach, M.; Patti, A.M.; Ciaccio, M.; Rizvi, A.A.; Rizzo, M. Novel Therapeutical Approaches to Managing Atherosclerotic Risk. Int. J. Mol. Sci. 2021, 22, 4633. [Google Scholar] [CrossRef]
- Salmen, T.; Pietrosel, V.-A.; Reurean-Pintilei, D.; Iancu, M.A.; Cimpeanu, R.C.; Bica, I.-C.; Dumitriu-Stan, R.-I.; Potcovaru, C.-G.; Salmen, B.-M.; Diaconu, C.-C.; et al. Assessing Cardiovascular Target Attainment in Type 2 Diabetes Mellitus Patients in Tertiary Diabetes Center in Romania. Pharmaceuticals 2024, 17, 1249. [Google Scholar] [CrossRef]
- Cardio-Metabolic Academy Europe East. Adoption of the ADA/EASD guidelines in 10 Eastern and Southern European countries: Physician survey and good clinical practice recommendations from an international expert panel. Diabetes Res. Clin. Pract. 2021, 172, 108535. [Google Scholar] [CrossRef]
First Author, Year of Publication | Trial Phase | Duration of the Study | Sample Size | Mean Age | Treatment Arm Comparator | Clinical Outcome | Statistical Power |
---|---|---|---|---|---|---|---|
Doggrell et al. [31], 2023 | 2 | 24 weeks | 281 | 56.2 | Retatrutide 12 mg | HbA1c = −2.02% | |
Dulaglutide 1.5 mg | HbA1c = −1.41% | ||||||
Placebo group | HbA1c = −0.01% | ||||||
Retatrutide 12 mg | BWR = NR, but differences were registered | ||||||
Dulaglutide 1.5 mg | No effect of BWR | ||||||
Placebo group | BWR NR | ||||||
Retatrutide 12 mg | SBP (−8.3, −12.1)/DBP (−4.6, −8.1) mmHg | ||||||
Dulaglutide 1.5 mg | SBP/DBP reduction NR | ||||||
Placebo group | SBP/DBP reduction NR | ||||||
Retatrutide 12 mg | HR = −6.7 beat/min | ||||||
Dulaglutide 1.5 mg | HR reduction NR | ||||||
Placebo group | HR reduction NR | ||||||
Retatrutide 12 mg | ↓ LDL-C ↓ VLDL-C ↓ TG ↑ HDL-C | ||||||
Dulaglutide 1.5 mg | LDL-C, VLDL-C, TG, HDL-C differences NR | ||||||
Placebo group | LDL-C, VLDL-C, TG, HDL-C differences NR | ||||||
Doggrell et al. [32], 2023 | 1b | 78 days | 34 | NR | Retatrutide 12 mg | HbA1c = −1.9% | |
Dulaglutide 1.5 mg | HbA1c = −1% | ||||||
Retatrutide 12 mg | BWR = −9kg | ||||||
Dulaglutide 1.5 mg | BWR NR | ||||||
Retatrutide 12 mg | ↓ LDL-C ↓ VLDL-C ↓ TG ↓ HDL-C | ||||||
Dulaglutide 1.5 mg | LDL-C, VLDL-C, TG, HDL-C differences NR | ||||||
Retatrutide 12 mg | ↓ SBP ↓ DBP ↑ HR | ||||||
Dulaglutide 1.5 mg | SBP, DBP, HR differences NR | ||||||
Rosenstock et al. [33], 2023 | 2 | 36 weeks | 281 | 56.2 | Retatrutide 12 mg | HbA1c = −2.16% | p < 0.0001 |
Dulaglutide 1.5 mg | HbA1c = −1.36% | p < 0.0001 | |||||
Placebo group | HbA1c = −0.3% | p = 0.2091 | |||||
Retatrutide 12 mg | FPG = −67.87 mg/dL | p < 0.0001 | |||||
Dulaglutide 1.5 mg | FPG = −27.53 mg/dL | p = 0.0024 | |||||
Placebo group | FPG = −17.26 mg/dL | p = 0.1126 | |||||
Retatrutide 12 mg | BWR = −17.18 kg | p < 0.0001 | |||||
Dulaglutide 1.5 mg | BWR = −1.97 kg | p = 0.0242 | |||||
Placebo group | BWR = −3.28 kg | p = 0.0004 | |||||
Hankosky et al. [34], 2023 | 72 weeks | 2539 | 44.5 ± 12.3 | Tirzepatide 15 mg | 10-year predicted ASCVD risk score variability = −22.4% | OR 2.4, 95% CI (1.7, 3.5), p < 0.001 | |
Placebo | 10-year predicted ASCVD risk score variability = 12.7% | ||||||
Garvey et al. [35], 2023 | 3 | 72 weeks | 938 | 54.2 | Tirzepatide 15 mg | BWR = −14.8 kg | −11.6%, 95% CI (−13, −10.1, p < 0.0001) |
Placebo | BWR = −3.2 kg | ||||||
Tirzepatide 15 mg | HbA1c = −2.1% ± 0.07 | p < 0.0001 | |||||
Placebo | HbA1c = –0.5% ± 0.07 | ||||||
Tirzepatide 15 mg | SBP = −6.3 mmHg | p < 0.0001 | |||||
Placebo | SBP = −1.2 mmHg | ||||||
Tirzepatide 15 mg | DBP = −2.5 mmHg | p = 0.0012 | |||||
Placebo | DBP = −0.3 mmHg | ||||||
Tirzepatide 15 mg | Fasting TG = −27.2% | p < 0.0001 | |||||
Placebo | Fasting TG = −3.3% | ||||||
Tirzepatide 15 mg | HDL-C = −9% | p < 0.0001 | |||||
Placebo | HDL-C = −0.2% | ||||||
Tirzepatide 15 mg | Non-HDL-C = −5.9% | p < 0.0001 | |||||
Placebo | Non-HDL-C = 3.7% | ||||||
Heerspink et al. [36], 2022 | 3 | 52 weeks | 1995 | 63.6 | Tirzepatide 15 mg | eGFR decline per year = −1.4 mL/min/1.73 m2 ± 0.2 | 2.2 mL/min/1.73 m2, 95% CI (1.6, 2.8, p = 0.55) |
Glargin insulin | eGFR decline per year = −3.6 mL/min/1.73 m2 ± 0.2 | ||||||
Tirzepatide 15 mg | uACR change from baseline = −6.8%, 95% CI (−14.1, 1.1) | −31.9%, 95% CI (−37.7, −25.7, p = 0.99) | |||||
Glargin insulin | uACR change from baseline = 36.9%, 95% CI (26, 48.7) | ||||||
Del Prato et al. [30], 2021 | 3 | 52 weeks | 1995 | 63.6 | Tirzepatide 15 mg | HbA1c = −2.58 ± 0.05% | |
Glargin insulin | HbA1c = −1.44 ± 0.03% | ||||||
Tirzepatide 15 mg | BWR = −11.7 ± 0.33 | ||||||
Glargin insulin | BWR = −1.9 ± 0.19 | ||||||
Tirzepatide 15 mg | FPG = −3.29 ± 0.115 | ||||||
Glargin insulin | FPG = −2.84 ± 0.066 | ||||||
Tirzepatide 15 mg | SBP = −4.8 ± 0.74 | ||||||
Glargin insulin | SBP = −1.3 ± 0.44 | ||||||
Tirzepatide 15 mg | DBP = −1 ± 0.44 | ||||||
Glargin insulin | DBP = −0.7 ± 0.26 | ||||||
Tirzepatide 15 mg | HR = −4.1 ± 0.48 | ||||||
Glargin insulin | HR = −1.2 ± 0.29 |
Author (Reference) | Selection | Comparability | Outcome | Total Score | Quality | |||||
---|---|---|---|---|---|---|---|---|---|---|
Representativeness of the Exposed Cohort | Selection of the Non-Exposed Cohort | Ascertainment of Exposure | Demonstration That Outcome of Interest Was Not Present at the Start of the Study | Comparability of Cohorts Based on the Design or Analysis | Assessment of Outcome | Was Follow-Up Long Enough for Outcomes to Occur | Adequacy of Follow-Up of Cohorts | |||
Doggrell et al. [31], 2023 | * | - | * | * | - | * | * | * | 6 | good |
Doggrell et al. [32], 2023 | * | - | * | * | - | * | * | * | 6 | good |
Rosenstock et al. [33], 2023 | - | * | * | * | * | * | * | * | 7 | good |
Hankosky et al. [34], 2023 | - | -* | * | * | * | * | * | * | 7 | good |
Garvey et al. [35], 2023 | - | * | * | * | * | * | * | * | 7 | good |
Heerspink et al. [36], 2022 | - | * | * | * | * | * | * | * | 7 | good |
Del Prato et al. [30], 2021 | - | * | * | * | * | * | * | * | 7 | good |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salmen, T.; Potcovaru, C.-G.; Bica, I.-C.; Giglio, R.V.; Patti, A.M.; Stoica, R.-A.; Ciaccio, M.; El-Tanani, M.; Janež, A.; Rizzo, M.; et al. Evaluating the Impact of Novel Incretin Therapies on Cardiovascular Outcomes in Type 2 Diabetes: An Early Systematic Review. Pharmaceuticals 2024, 17, 1322. https://doi.org/10.3390/ph17101322
Salmen T, Potcovaru C-G, Bica I-C, Giglio RV, Patti AM, Stoica R-A, Ciaccio M, El-Tanani M, Janež A, Rizzo M, et al. Evaluating the Impact of Novel Incretin Therapies on Cardiovascular Outcomes in Type 2 Diabetes: An Early Systematic Review. Pharmaceuticals. 2024; 17(10):1322. https://doi.org/10.3390/ph17101322
Chicago/Turabian StyleSalmen, Teodor, Claudia-Gabriela Potcovaru, Ioana-Cristina Bica, Rosaria Vincenza Giglio, Angelo Maria Patti, Roxana-Adriana Stoica, Marcello Ciaccio, Mohamed El-Tanani, Andrej Janež, Manfredi Rizzo, and et al. 2024. "Evaluating the Impact of Novel Incretin Therapies on Cardiovascular Outcomes in Type 2 Diabetes: An Early Systematic Review" Pharmaceuticals 17, no. 10: 1322. https://doi.org/10.3390/ph17101322
APA StyleSalmen, T., Potcovaru, C. -G., Bica, I. -C., Giglio, R. V., Patti, A. M., Stoica, R. -A., Ciaccio, M., El-Tanani, M., Janež, A., Rizzo, M., Gherghiceanu, F., & Stoian, A. P. (2024). Evaluating the Impact of Novel Incretin Therapies on Cardiovascular Outcomes in Type 2 Diabetes: An Early Systematic Review. Pharmaceuticals, 17(10), 1322. https://doi.org/10.3390/ph17101322