The Therapeutic Potential of Glucagon-like Peptide 1 Receptor Agonists in Traumatic Brain Injury
Abstract
:1. Introduction
2. Search Strategy
3. Epidemiology and the Consequences of Traumatic Brain Injury
4. Pathophysiology of Traumatic Brain Injury
5. Current State of Traumatic Brain Injury Management
6. The Position of GLP-1RAs in Diabetes, Obesity, and Other Metabolic Fields
7. Molecular Mechanisms Underlying the Potential Neuroprotective Actions of GLP-1 Receptor Agonists in CNS Injuries
8. GLP-1 Receptor Agonists in Traumatic Brain Injury
9. GLP-1 Receptor Agonists in Various Central Nervous System Conditions
9.1. GLP-1 Receptor Modulation in Cerebral Ischemia
9.2. Potential of the Use of GLP-1 Receptor Agonists in the Spinal Cord Injury
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferrari, F.; Moretti, A.; Villa, R.F. Incretin-Based Drugs as Potential Therapy for Neurodegenerative Diseases: Current Status and Perspectives. Pharmacol. Ther. 2022, 239, 108277. [Google Scholar] [CrossRef] [PubMed]
- Labandeira, C.M.; Fraga-Bau, A.; Arias Ron, D.; Muñoz, A.; Alonso-Losada, G.; Koukoulis, A.; Romero-Lopez, J.; Rodriguez-Perez, A.I. Diabetes, Insulin and New Therapeutic Strategies for Parkinson’s Disease: Focus on Glucagon-like Peptide-1 Receptor Agonists. Front. Neuroendocrinol. 2021, 62, 100914. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, F.; Moretti, A.; Villa, R.F. The Treament of Hyperglycemia in Acute Ischemic Stroke with Incretin-Based Drugs. Pharmacol. Res. 2020, 160, 105018. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Qiang, Q.; Li, N.; Feng, P.; Wei, W.; Hölscher, C. Neuroprotective Mechanisms of Glucagon-Like Peptide-1-Based Therapies in Ischemic Stroke: An Update Based on Preclinical Research. Front. Neurol. 2022, 13, 844697. [Google Scholar] [CrossRef] [PubMed]
- Salameh, T.S.; Rhea, E.M.; Talbot, K.; Banks, W.A. Brain Uptake Pharmacokinetics of Incretin Receptor Agonists Showing Promise as Alzheimer’s and Parkinson’s Disease Therapeutics. Biochem. Pharmacol. 2020, 180, 114187. [Google Scholar] [CrossRef]
- Nowell, J.; Blunt, E.; Edison, P. Incretin and Insulin Signaling as Novel Therapeutic Targets for Alzheimer’s and Parkinson’s Disease. Mol. Psychiatry 2023, 28, 217–229. [Google Scholar] [CrossRef]
- Tu, X.; Chen, Q.; Chen, S.; Huang, B.; Ren, B.; Shi, S. GLP-1R Agonist Liraglutide Attenuates Inflammatory Reaction and Neuronal Apoptosis and Reduces Early Brain Injury After Subarachnoid Hemorrhage in Rats. Inflammation 2021, 44, 397–406. [Google Scholar] [CrossRef]
- DellaValle, B.; Hempel, C.; Johansen, F.F.; Kurtzhals, J.A.L. GLP-1 Improves Neuropathology after Murine Cold Lesion Brain Trauma. Ann. Clin. Transl. Neurol. 2014, 1, 721–732. [Google Scholar] [CrossRef]
- Zhang, J.; Yi, T.; Cheng, S.; Zhang, S. Glucagon-like Peptide-1 Receptor Agonist Exendin-4 Improves Neurological Outcomes by Attenuating TBI-Induced Inflammatory Responses and MAPK Activation in Rats. Int. Immunopharmacol. 2020, 86, 106715. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Glotfelty, E.J.; Namdar, I.; Tweedie, D.; Olson, L.; Hoffer, B.J.; DiMarchi, R.D.; Pick, C.G.; Greig, N.H. Neurotrophic and Neuroprotective Effects of a Monomeric GLP-1/GIP/Gcg Receptor Triagonist in Cellular and Rodent Models of Mild Traumatic Brain Injury. Exp. Neurol. 2020, 324, 113113. [Google Scholar] [CrossRef]
- Glotfelty, E.J.; Delgado, T.; Tovar-Y-Romo, L.B.; Luo, Y.; Hoffer, B.; Olson, L.; Karlsson, T.; Mattson, M.P.; Harvey, B.; Tweedie, D.; et al. Incretin Mimetics as Rational Candidates for the Treatment of Traumatic Brain Injury. ACS Pharmacol. Transl. Sci. 2019, 2, 66–91. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Qi, M.; Luo, X.; Guo, L.; Xu, M.; Zhang, Y.; Li, Z.; Li, M.; Wu, R.; Guan, T.; et al. GIP Attenuates Neuronal Oxidative Stress by Regulating Glucose Uptake in Spinal Cord Injury of Rat. CNS Neurosci. Ther. 2024, 30, e14806. [Google Scholar] [CrossRef]
- Ghosh, P.; Fontanella, R.A.; Scisciola, L.; Pesapane, A.; Taktaz, F.; Franzese, M.; Puocci, A.; Ceriello, A.; Prattichizzo, F.; Rizzo, M.R.; et al. Targeting Redox Imbalance in Neurodegeneration: Characterizing the Role of GLP-1 Receptor Agonists. Theranostics 2023, 13, 4872–4884. [Google Scholar] [CrossRef] [PubMed]
- Diz-Chaves, Y.; Mastoor, Z.; Spuch, C.; González-Matías, L.C.; Mallo, F. Anti-Inflammatory Effects of GLP-1 Receptor Activation in the Brain in Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 9583. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zheng, J.; Li, S.; Li, H.; Zhou, Y.; Zheng, W.; Zhang, M.; Liu, L.; Chen, Z. GLP-1 Improves the Neuronal Supportive Ability of Astrocytes in Alzheimer’s Disease by Regulating Mitochondrial Dysfunction via the cAMP/PKA Pathway. Biochem. Pharmacol. 2021, 188, 114578. [Google Scholar] [CrossRef]
- Peeters, W.; van den Brande, R.; Polinder, S.; Brazinova, A.; Steyerberg, E.W.; Lingsma, H.F.; Maas, A.I.R. Epidemiology of Traumatic Brain Injury in Europe. Acta Neurochir. 2015, 157, 1683–1696. [Google Scholar] [CrossRef]
- Brazinova, A.; Rehorcikova, V.; Taylor, M.S.; Buckova, V.; Majdan, M.; Psota, M.; Peeters, W.; Feigin, V.; Theadom, A.; Holkovic, L.; et al. Epidemiology of Traumatic Brain Injury in Europe: A Living Systematic Review. J. Neurotrauma 2021, 38, 1411–1440. [Google Scholar] [CrossRef] [PubMed]
- Harrison-Felix, C.; Whiteneck, G.; DeVivo, M.; Hammond, F.M.; Jha, A. Mortality Following Rehabilitation in the Traumatic Brain Injury Model Systems of Care. NeuroRehabilitation 2004, 19, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-K.; Lee, Y.-C.; Huang, C.-Y.; Liliang, P.-C.; Lu, K.; Chen, H.-J.; Li, Y.-C.; Tsai, K.-J. Traumatic Brain Injury Causes Frontotemporal Dementia and TDP-43 Proteolysis. Neuroscience 2015, 300, 94–103. [Google Scholar] [CrossRef]
- McKee, A.C.; Cantu, R.C.; Nowinski, C.J.; Hedley-Whyte, E.T.; Gavett, B.E.; Budson, A.E.; Santini, V.E.; Lee, H.-S.; Kubilus, C.A.; Stern, R.A. Chronic Traumatic Encephalopathy in Athletes: Progressive Tauopathy after Repetitive Head Injury. J. Neuropathol. Exp. Neurol. 2009, 68, 709–735. [Google Scholar] [CrossRef]
- Masel, B.E.; DeWitt, D.S. Traumatic Brain Injury Disease: Long-Term Consequences of Traumatic Brain Injury. In Understanding Traumatic Brain Injury: Current Research and Future Directions; Oxford University Press: New York, NY, USA, 2014; pp. 28–53. ISBN 978-0-19-973752-9. [Google Scholar]
- Faden, A.I.; Demediuk, P.; Panter, S.S.; Vink, R. The Role of Excitatory Amino Acids and NMDA Receptors in Traumatic Brain Injury. Science 1989, 244, 798–800. [Google Scholar] [CrossRef] [PubMed]
- Chamoun, R.; Suki, D.; Gopinath, S.P.; Goodman, J.C.; Robertson, C. Role of Extracellular Glutamate Measured by Cerebral Microdialysis in Severe Traumatic Brain Injury. J. Neurosurg. 2010, 113, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.-H.; Hazell, A.S. Excitotoxic Mechanisms and the Role of Astrocytic Glutamate Transporters in Traumatic Brain Injury. Neurochem. Int. 2006, 48, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Arundine, M.; Tymianski, M. Molecular Mechanisms of Glutamate-Dependent Neurodegeneration in Ischemia and Traumatic Brain Injury. Cell Mol. Life Sci. 2004, 61, 657–668. [Google Scholar] [CrossRef]
- Bano, D.; Ankarcrona, M. Beyond the Critical Point: An Overview of Excitotoxicity, Calcium Overload and the Downstream Consequences. Neurosci. Lett. 2018, 663, 79–85. [Google Scholar] [CrossRef]
- Cash, A.; Theus, M.H. Mechanisms of Blood-Brain Barrier Dysfunction in Traumatic Brain Injury. Int. J. Mol. Sci. 2020, 21, 3344. [Google Scholar] [CrossRef]
- Simon, D.W.; McGeachy, M.; Bayır, H.; Clark, R.S.B.; Loane, D.J.; Kochanek, P.M. Neuroinflammation in the Evolution of Secondary Injury, Repair, and Chronic Neurodegeneration after Traumatic Brain Injury. Nat. Rev. Neurol. 2017, 13, 171–191. [Google Scholar] [CrossRef]
- Ziebell, J.M.; Morganti-Kossmann, M.C. Involvement of Pro- and Anti-Inflammatory Cytokines and Chemokines in the Pathophysiology of Traumatic Brain Injury. Neurotherapeutics 2010, 7, 22–30. [Google Scholar] [CrossRef]
- Karve, I.P.; Taylor, J.M.; Crack, P.J. The Contribution of Astrocytes and Microglia to Traumatic Brain Injury. Br. J. Pharmacol. 2016, 173, 692–702. [Google Scholar] [CrossRef]
- Ho, M.S.; Verkhratsky, A.; Duan, S.; Parpura, V. Editorial: Glia in Health and Disease. Front. Mol. Neurosci. 2019, 12, 63. [Google Scholar] [CrossRef]
- Schönfeld, P.; Reiser, G. Why Does Brain Metabolism Not Favor Burning of Fatty Acids to Provide Energy? Reflections on Disadvantages of the Use of Free Fatty Acids as Fuel for Brain. J. Cereb. Blood Flow. Metab. 2013, 33, 1493–1499. [Google Scholar] [CrossRef] [PubMed]
- Karelina, K.; Sarac, B.; Freeman, L.M.; Gaier, K.R.; Weil, Z.M. Traumatic Brain Injury and Obesity Induce Persistent Central Insulin Resistance. Eur. J. Neurosci. 2016, 43, 1034–1043. [Google Scholar] [CrossRef] [PubMed]
- Sekar, S.; Viswas, R.S.; Miranzadeh Mahabadi, H.; Alizadeh, E.; Fonge, H.; Taghibiglou, C. Concussion/Mild Traumatic Brain Injury (TBI) Induces Brain Insulin Resistance: A Positron Emission Tomography (PET) Scanning Study. Int. J. Mol. Sci. 2021, 22, 9005. [Google Scholar] [CrossRef]
- Zhou, M.; Du, M.; Tang, R.; Liu, H.-Y.; Gao, Z.; Wang, Y.; You, H.-Y.; Hao, J.-W.; Ji, Z.-S.; Wang, D.; et al. Central GLP-1 Resistance Induced by Severe Traumatic Brain Injury Was Associated with Persistent Hyperglycemia in Humans. Neuroendocrinology 2023, 113, 625–640. [Google Scholar] [CrossRef]
- Maas, A.I.R.; Menon, D.K.; Manley, G.T.; Abrams, M.; Åkerlund, C.; Andelic, N.; Aries, M.; Bashford, T.; Bell, M.J.; Bodien, Y.G.; et al. Traumatic Brain Injury: Progress and Challenges in Prevention, Clinical Care, and Research. Lancet Neurol. 2022, 21, 1004–1060. [Google Scholar] [CrossRef] [PubMed]
- Meyfroidt, G.; Bouzat, P.; Casaer, M.P.; Chesnut, R.; Hamada, S.R.; Helbok, R.; Hutchinson, P.; Maas, A.I.R.; Manley, G.; Menon, D.K.; et al. Management of Moderate to Severe Traumatic Brain Injury: An Update for the Intensivist. Intensive Care Med. 2022, 48, 649–666. [Google Scholar] [CrossRef]
- Svedung Wettervik, T.M.; Lewén, A.; Enblad, P. Fine Tuning of Traumatic Brain Injury Management in Neurointensive Care—Indicative Observations and Future Perspectives. Front. Neurol. 2021, 12, 638132. [Google Scholar] [CrossRef]
- Stoica, B.; Byrnes, K.; Faden, A.I. Multifunctional Drug Treatment in Neurotrauma. Neurotherapeutics 2009, 6, 14–27. [Google Scholar] [CrossRef]
- Vink, R.; Nimmo, A.J. Multifunctional Drugs for Head Injury. Neurotherapeutics 2009, 6, 28–42. [Google Scholar] [CrossRef]
- Loane, D.J.; Stoica, B.A.; Faden, A.I. Neuroprotection for Traumatic Brain Injury. Handb. Clin. Neurol. 2015, 127, 343–366. [Google Scholar] [CrossRef]
- Belančić, A.; Klobučar, S.; Rahelić, D. Current Obstacles (With Solutions) in Type 2 Diabetes Management, Alongside Future Directions. Diabetology 2023, 4, 376–378. [Google Scholar] [CrossRef]
- Belančić, A.; Kresović, A.; Troskot Dijan, M. Glucagon-like Peptide-1 Receptor Agonists in the Era of COVID-19: Friend or Foe? Clin. Obes. 2021, 11, e12439. [Google Scholar] [CrossRef]
- Hinnen, D. Glucagon-Like Peptide 1 Receptor Agonists for Type 2 Diabetes. Diabetes Spectr. 2017, 30, 202–210. [Google Scholar] [CrossRef]
- Klobučar, S.; Belančić, A.; Bukša, I.; Morić, N.; Rahelić, D. Effectiveness of Oral versus Injectable Semaglutide in Adults with Type 2 Diabetes: Results from a Retrospective Observational Study in Croatia. Diabetology 2024, 5, 60–68. [Google Scholar] [CrossRef]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.E.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef]
- Gerstein, H.C.; Colhoun, H.M.; Dagenais, G.R.; Diaz, R.; Lakshmanan, M.; Pais, P.; Probstfield, J.; Riesmeyer, J.S.; Riddle, M.C.; Rydén, L.; et al. Dulaglutide and Cardiovascular Outcomes in Type 2 Diabetes (REWIND): A Double-Blind, Randomised Placebo-Controlled Trial. Lancet 2019, 394, 121–130. [Google Scholar] [CrossRef]
- Perkovic, V.; Tuttle, K.R.; Rossing, P.; Mahaffey, K.W.; Mann, J.F.E.; Bakris, G.; Baeres, F.M.M.; Idorn, T.; Bosch-Traberg, H.; Lausvig, N.L.; et al. Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes. N. Engl. J. Med. 2024, 391, 109–121. [Google Scholar] [CrossRef]
- Gabery, S.; Salinas, C.G.; Paulsen, S.J.; Ahnfelt-Rønne, J.; Alanentalo, T.; Baquero, A.F.; Buckley, S.T.; Farkas, E.; Fekete, C.; Frederiksen, K.S.; et al. Semaglutide Lowers Body Weight in Rodents via Distributed Neural Pathways. JCI Insight 2020, 5, e133429. [Google Scholar] [CrossRef]
- Chakhtoura, M.; Haber, R.; Ghezzawi, M.; Rhayem, C.; Tcheroyan, R.; Mantzoros, C.S. Pharmacotherapy of Obesity: An Update on the Available Medications and Drugs under Investigation. EClinicalMedicine 2023, 58, 101882. [Google Scholar] [CrossRef]
- Pi-Sunyer, X.; Astrup, A.; Fujioka, K.; Greenway, F.; Halpern, A.; Krempf, M.; Lau, D.C.W.; le Roux, C.W.; Violante Ortiz, R.; Jensen, C.B.; et al. A Randomized, Controlled Trial of 3.0 Mg of Liraglutide in Weight Management. N. Engl. J. Med. 2015, 373, 11–22. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.D.; Wadden, T.A.; et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N. Engl. J. Med. 2021, 384, 989–1002. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Aronne, L.J.; Ahmad, N.N.; Wharton, S.; Connery, L.; Alves, B.; Kiyosue, A.; Zhang, S.; Liu, B.; Bunck, M.C.; et al. Tirzepatide Once Weekly for the Treatment of Obesity. N. Engl. J. Med. 2022, 387, 205–216. [Google Scholar] [CrossRef]
- Nevola, R.; Epifani, R.; Imbriani, S.; Tortorella, G.; Aprea, C.; Galiero, R.; Rinaldi, L.; Marfella, R.; Sasso, F.C. GLP-1 Receptor Agonists in Non-Alcoholic Fatty Liver Disease: Current Evidence and Future Perspectives. Int. J. Mol. Sci. 2023, 24, 1703. [Google Scholar] [CrossRef]
- Drucker, D.J.; Holst, J.J. The Expanding Incretin Universe: From Basic Biology to Clinical Translation. Diabetologia 2023, 66, 1765–1779. [Google Scholar] [CrossRef]
- Seufert, J.; Gallwitz, B. The Extra-Pancreatic Effects of GLP-1 Receptor Agonists: A Focus on the Cardiovascular, Gastrointestinal and Central Nervous Systems. Diabetes Obes. Metab. 2014, 16, 673–688. [Google Scholar] [CrossRef]
- Barrera, J.G.; Sandoval, D.A.; D’Alessio, D.A.; Seeley, R.J. GLP-1 and Energy Balance: An Integrated Model of Short-Term and Long-Term Control. Nat. Rev. Endocrinol. 2011, 7, 507–516. [Google Scholar] [CrossRef]
- Holt, M.K.; Trapp, S. The Physiological Role of the Brain GLP-1 System in Stress. Cogent Biol. 2016, 2, 1229086. [Google Scholar] [CrossRef]
- Cabou, C.; Burcelin, R. GLP-1, the Gut-Brain, and Brain-Periphery Axes. Rev. Diabet. Stud. 2011, 8, 418–431. [Google Scholar] [CrossRef]
- Monney, M.; Jornayvaz, F.R.; Gariani, K. GLP-1 Receptor Agonists Effect on Cognitive Function in Patients with and without Type 2 Diabetes. Diabetes Metab. 2023, 49, 101470. [Google Scholar] [CrossRef]
- McLean, B.A.; Wong, C.K.; Campbell, J.E.; Hodson, D.J.; Trapp, S.; Drucker, D.J. Revisiting the Complexity of GLP-1 Action from Sites of Synthesis to Receptor Activation. Endocr. Rev. 2021, 42, 101–132. [Google Scholar] [CrossRef]
- Trapp, S.; Brierley, D.I. Brain GLP-1 and the Regulation of Food Intake: GLP-1 Action in the Brain and Its Implications for GLP-1 Receptor Agonists in Obesity Treatment. Br. J. Pharmacol. 2022, 179, 557–570. [Google Scholar] [CrossRef]
- Holst, J.J. The Incretin System in Healthy Humans: The Role of GIP and GLP-1. Metabolism 2019, 96, 46–55. [Google Scholar] [CrossRef]
- Hoosein, N.M.; Gurd, R.S. Human Glucagon-like Peptides 1 and 2 Activate Rat Brain Adenylate Cyclase. FEBS Lett. 1984, 178, 83–86. [Google Scholar] [CrossRef]
- Romano, A.D.; Villani, R.; Sangineto, M.; Cassano, T.; Serviddio, G. The GLP-1 Receptor Agonist Exendin-4 Modulates Hippocampal NMDA-Receptor Signalling in Aged Rats and Improves Cognitive Impairment in Diabetic Elderly Patients. J. Gerontol. Geriatr. 2022, 70, 113–119. [Google Scholar] [CrossRef]
- Adams, J.M.; Pei, H.; Sandoval, D.A.; Seeley, R.J.; Chang, R.B.; Liberles, S.D.; Olson, D.P. Liraglutide Modulates Appetite and Body Weight Through Glucagon-Like Peptide 1 Receptor-Expressing Glutamatergic Neurons. Diabetes 2018, 67, 1538–1548. [Google Scholar] [CrossRef]
- Iwai, T.; Sawabe, T.; Tanimitsu, K.; Suzuki, M.; Sasaki-Hamada, S.; Oka, J. Glucagon-like Peptide-1 Protects Synaptic and Learning Functions from Neuroinflammation in Rodents. J. Neurosci. Res. 2014, 92, 446–454. [Google Scholar] [CrossRef]
- Fang, X.; Zhou, X.; Miao, Y.; Han, Y.; Wei, J.; Chen, T. Therapeutic Effect of GLP-1 Engineered Strain on Mice Model of Alzheimer’s Disease and Parkinson’s Disease. AMB Express 2020, 10, 80. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, C.; Shi, R.; Zhou, S.; Shan, H.; Deng, L.; Chen, T.; Guo, Y.; Zhang, Z.; Yang, G.-Y.; et al. Blocking C3d+/GFAP+ A1 Astrocyte Conversion with Semaglutide Attenuates Blood-Brain Barrier Disruption in Mice after Ischemic Stroke. Aging Dis. 2022, 13, 943–959. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhang, Y.; Shi, Z.; Lu, D.; Li, T.; Ding, Y.; Ruan, Y.; Xu, A. The Neuroprotection of Liraglutide Against Ischaemia-Induced Apoptosis through the Activation of the PI3K/AKT and MAPK Pathways. Sci. Rep. 2016, 6, 26859. [Google Scholar] [CrossRef] [PubMed]
- Briyal, S.; Shah, S.; Gulati, A. Neuroprotective and Anti-Apoptotic Effects of Liraglutide in the Rat Brain Following Focal Cerebral Ischemia. Neuroscience 2014, 281, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Bader, M.; Li, Y.; Tweedie, D.; Shlobin, N.A.; Bernstein, A.; Rubovitch, V.; Tovar-y-Romo, L.B.; DiMarchi, R.D.; Hoffer, B.J.; Greig, N.H.; et al. Neuroprotective Effects and Treatment Potential of Incretin Mimetics in a Murine Model of Mild Traumatic Brain Injury. Front. Cell Dev. Biol. 2020, 7, 356. [Google Scholar] [CrossRef] [PubMed]
- Malik, I.O.; Petersen, M.C.; Klein, S. GLP-1, GIP and Glucagon Receptor Poly-Agonists: A New Era in Obesity Pharmacotherapy. Obesity 2022, 30, 1718–1721. [Google Scholar] [CrossRef]
- DellaValle, B.; Brix, G.S.; Brock, B.; Gejl, M.; Rungby, J.; Larsen, A. Oral Administration of Sitagliptin Activates CREB and Is Neuroprotective in Murine Model of Brain Trauma. Front. Pharmacol. 2016, 7, 450. [Google Scholar] [CrossRef]
- Jiang, S.; Sanders, S.; Gan, R.Z. Mitigation of Hearing Damage with Liraglutide Treatment in Chinchillas After Repeated Blast Exposures at Mild-TBI. Mil. Med. 2023, 188, 553–560. [Google Scholar] [CrossRef]
- Li, Y.; Bader, M.; Tamargo, I.; Rubovitch, V.; Tweedie, D.; Pick, C.G.; Greig, N.H. Liraglutide Is Neurotrophic and Neuroprotective in Neuronal Cultures and Mitigates Mild Traumatic Brain Injury in Mice. J. Neurochem. 2015, 135, 1203–1217. [Google Scholar] [CrossRef]
- Rachmany, L.; Tweedie, D.; Li, Y.; Rubovitch, V.; Holloway, H.W.; Miller, J.; Hoffer, B.J.; Greig, N.H.; Pick, C.G. Exendin-4 Induced Glucagon-like Peptide-1 Receptor Activation Reverses Behavioral Impairments of Mild Traumatic Brain Injury in Mice. Age 2013, 35, 1621–1636. [Google Scholar] [CrossRef] [PubMed]
- Bader, M.; Li, Y.; Lecca, D.; Rubovitch, V.; Tweedie, D.; Glotfelty, E.; Rachmany, L.; Kim, H.K.; Choi, H.-I.; Hoffer, B.J.; et al. Pharmacokinetics and Efficacy of PT302, a Sustained-Release Exenatide Formulation, in a Murine Model of Mild Traumatic Brain Injury. Neurobiol. Dis. 2019, 124, 439–453. [Google Scholar] [CrossRef]
- Chen, H.; Chan, Y.L.; Linnane, C.; Mao, Y.; Anwer, A.G.; Sapkota, A.; Annissa, T.F.; Herok, G.; Vissel, B.; Oliver, B.G.; et al. L-Carnitine and Extendin-4 Improve Outcomes Following Moderate Brain Contusion Injury. Sci. Rep. 2018, 8, 11201. [Google Scholar] [CrossRef]
- Rachmany, L.; Tweedie, D.; Rubovitch, V.; Li, Y.; Holloway, H.W.; Kim, D.S.; Ratliff, W.A.; Saykally, J.N.; Citron, B.A.; Hoffer, B.J.; et al. Exendin-4 Attenuates Blast Traumatic Brain Injury Induced Cognitive Impairments, Losses of Synaptophysin and in Vitro TBI-Induced Hippocampal Cellular Degeneration. Sci. Rep. 2017, 7, 3735. [Google Scholar] [CrossRef]
- Shojo, H.; Kibayashi, K. Changes in Localization of Synaptophysin Following Fluid Percussion Injury in the Rat Brain. Brain Res. 2006, 1078, 198–211. [Google Scholar] [CrossRef] [PubMed]
- Tweedie, D.; Rachmany, L.; Rubovitch, V.; Li, Y.; Holloway, H.W.; Lehrmann, E.; Zhang, Y.; Becker, K.G.; Perez, E.; Hoffer, B.J.; et al. Blast Traumatic Brain Injury–Induced Cognitive Deficits Are Attenuated by Preinjury or Postinjury Treatment with the Glucagon-like Peptide-1 Receptor Agonist, Exendin-4. Alzheimer’s Dement. 2016, 12, 34–48. [Google Scholar] [CrossRef]
- Krauss, Z.; Hintz, A.; Fisk, R. Tirzepatide: Clinical Review of the “Twincretin” Injectable. Am. J. Health Syst. Pharm. 2023, 80, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Tamargo, I.A.; Bader, M.; Li, Y.; Yu, S.-J.; Wang, Y.; Talbot, K.; DiMarchi, R.D.; Pick, C.G.; Greig, N.H. Novel GLP-1R/GIPR Co-Agonist “Twincretin” Is Neuroprotective in Cell and Rodent Models of Mild Traumatic Brain Injury. Exp. Neurol. 2017, 288, 176–186. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Lim, D.-M.; Moon, C.I.; Jo, K.-J.; Lee, S.-K.; Baik, H.-W.; Lee, K.-H.; Lee, K.-W.; Park, K.-Y.; Kim, B.-J. Exendin-4 Protects Oxidative Stress-Induced β-Cell Apoptosis through Reduced JNK and GSK3β Activity. J. Korean Med. Sci. 2010, 25, 1626–1632. [Google Scholar] [CrossRef] [PubMed]
- Wiciński, M.; Górski, K.; Walczak, M.; Wódkiewicz, E.; Słupski, M.; Pawlak-Osińska, K.; Malinowski, B. Neuroprotective Properties of Linagliptin: Focus on Biochemical Mechanisms in Cerebral Ischemia, Vascular Dysfunction and Certain Neurodegenerative Diseases. Int. J. Mol. Sci. 2019, 20, 4052. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, W.; Tian, X. The Pleiotropic of GLP-1/GLP-1R Axis in Central Nervous System Diseases. Int. J. Neurosci. 2023, 133, 473–491. [Google Scholar] [CrossRef]
- Grieco, M.; Giorgi, A.; Gentile, M.C.; d’Erme, M.; Morano, S.; Maras, B.; Filardi, T. Glucagon-Like Peptide-1: A Focus on Neurodegenerative Diseases. Front. Neurosci. 2019, 13, 1112. [Google Scholar] [CrossRef]
- Hu, X.; Xu, W.; Ren, Y.; Wang, Z.; He, X.; Huang, R.; Ma, B.; Zhao, J.; Zhu, R.; Cheng, L. Spinal Cord Injury: Molecular Mechanisms and Therapeutic Interventions. Sig Transduct. Target. Ther. 2023, 8, 245. [Google Scholar] [CrossRef]
- Qian, Z.; Chen, H.; Xia, M.; Chang, J.; Li, X.; Ye, S.; Wu, S.; Jiang, S.; Bao, J.; Wang, B.; et al. Activation of Glucagon-like Peptide-1 Receptor in Microglia Attenuates Neuroinflammation-Induced Glial Scarring via Rescuing Arf and Rho GAP Adapter Protein 3 Expressions after Nerve Injury. Int. J. Biol. Sci. 2022, 18, 1328–1346. [Google Scholar] [CrossRef]
- Anjum, A.; Yazid, M.D.; Fauzi Daud, M.; Idris, J.; Ng, A.M.H.; Selvi Naicker, A.; Ismail, O.H.R.; Athi Kumar, R.K.; Lokanathan, Y. Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. Int. J. Mol. Sci. 2020, 21, 7533. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Lv, G. Therapeutic Potential of Spinal GLP-1 Receptor Signaling. Peptides 2018, 101, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Li, Y.; Cheng, J.; Zhang, J.; Chen, D.; Fang, M.; Xiang, G.; Wu, Y.; Zhang, H.; Xu, K.; et al. Sitagliptin Improves Functional Recovery via GLP-1R-induced Anti-apoptosis and Facilitation of Axonal Regeneration after Spinal Cord Injury. J. Cell Mol. Med. 2020, 24, 8687–8702. [Google Scholar] [CrossRef] [PubMed]
- Nomura, S.; Katoh, H.; Yanagisawa, S.; Noguchi, T.; Okada, K.; Watanabe, M. Administration of the GLP-1 Receptor Agonist Exenatide in Rats Improves Functional Recovery after Spinal Cord Injury by Reducing Endoplasmic Reticulum Stress. IBRO Neurosci. Rep. 2023, 15, 225–234. [Google Scholar] [CrossRef]
- Li, H.; Jia, Z.; Li, G.; Zhao, X.; Sun, P.; Wang, J.; Fan, Z.; Lv, G. Neuroprotective Effects of Exendin-4 in Rat Model of Spinal Cord Injury via Inhibiting Mitochondrial Apoptotic Pathway. Int. J. Clin. Exp. Pathol. 2015, 8, 4837. [Google Scholar]
- Cirnigliaro, C.; Lafountaine, M.; Sauer, S.; Cross, G.; Kirshblum, S.; Bauman, W. Preliminary Observations on the Administration of a Glucagon-like Peptide-1 Receptor Agonist on Body Weight and Select Carbohydrate Endpoints in Persons with Spinal Cord Injury: A Controlled Case Series. J. Spinal Cord Med. 2023, 47, 597–604. [Google Scholar] [CrossRef]
Glasgow Coma Scale (GCS) | Duration of Loss of Consciousness (LOC) | Post-Traumatic Amnesia (PTA) | Neuroimaging | |
---|---|---|---|---|
Severity | A numerical assessment tool utilized to evaluate a patient’s consciousness and neurological status following a brain injury. Scoring is based on the best eye-opening response (1–4 points), motor response (1–6 points), and verbal response (1–5 points). | The length of time a person remains unconscious following TBI. | The period following a brain injury during which a patient experiences a gap in their memory, not being able to form continuous memories of events occurring around them. | Computerized tomography (CT) is frequently primary imaging modality in the acute phase, but magnetic resonance imaging (MRI) has better sensitivity and specificity, particularly in the identification of diffusion axonal injury. |
Mild | 13–15 | <20 min to 1 h | A few mins to less than 24 h | Normal |
Moderate | 9–12 | 1 h to 24 h | 1–7 days | Normal or abnormal |
Severe | 3–8 | >24 h | >7 days | Abnormal |
GLP-1 Receptor Agonist | Model | Outcomes | References |
---|---|---|---|
In Vitro Studies | |||
Exendin-4 | Oxidative stress in β cells | Decrease in apoptosis | Kim et al. [86] |
Slow-release exenatide PT-302 | Glial cells | Anti-inflammation | Bader et al. [79] |
Liraglutide | SH-SY5Y cells and SH-SY5Y cells overexpressing GLP-1 receptors | Dose-dependent proliferation in SH-SY5Y cells and a GLP-1R overexpressing cell line, pre-treatment effectively protected neuronal cells from cell death induced by oxidative stress and glutamate excitotoxicity | Li et al. [77] |
Exendin-4 | SH-SY5Y cells, primary neuron cultures, rodent primary cerebral cortical neurons | In neuronal cultures, exendin-4 ameliorated H2O2-induced oxidative stress and glutamate toxicity | Rachmany et al. [78] |
Exendin-4 | HT22 cells (neuronal-derived cell line) | Attenuated cytotoxic effect of biaxial stretch damage, preserved neurite length, protected against neurite shrinkage and cell-death-maintained neurite length | Rachmany et al. [81] |
Twincretin | SH-SY5Y cells | Increased levels of intermediates in the neurotrophic CREB pathway and enhanced viability of human neuroblastoma cells exposed to toxic concentrations of glutamate and hydrogen peroxide | Tamargo et al. [85] |
In Vivo Studies | |||
Sitagliptin | mTBI in mouse model | Increased manganese superoxide dismutase (MnSOD) production and overall improved outcomes | DellaValle et al. [75] |
Liraglutide | mTBI in chinchillas | Mitigated hearing loss and auditory damage | Jiang et al. [76] |
Liraglutide | mTBI in mouse model | Improved memory function | Li et al. [77] |
Exendin-4 | mTBI in mouse model | Fully ameliorated mTBI-induced deficits in novel object recognition | Rachmany et al. [81] |
Exendin-4 | CCI in rats | Recovery of neurological and cognitive functions, improved cerebral blood flow, reduced both neural degeneration and inflammatory cytokine levels significantly diminished the TBI-induced overexpression of TNFα and IL-1β | Zhang et al. [9] |
Exenatide | mTBI in mouse model | Mitigation of short- and longer-term cognitive impairments (visual and spatial deficits) | Bader et al. [79] |
Exendin-4 L-carnitine | mTBI in rat model | Improved sensory and motor functions, improved memory, oxidative stress decrease ameliorated | Chen et al. [80] |
Exendin-4 | B-TBI in mouse model | Neurodegeneration and memory deficits | Tweedie et al. [83] |
Exendin-4 | B-TBI in mouse model | Prevented cognitive deficits | Rachmany et al. [81] |
Twincretin | mTBI in mouse model | Restored the visual and spatial memory deficits induced by mTBI | Tamargo et al. [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harej Hrkać, A.; Pilipović, K.; Belančić, A.; Juretić, L.; Vitezić, D.; Mršić-Pelčić, J. The Therapeutic Potential of Glucagon-like Peptide 1 Receptor Agonists in Traumatic Brain Injury. Pharmaceuticals 2024, 17, 1313. https://doi.org/10.3390/ph17101313
Harej Hrkać A, Pilipović K, Belančić A, Juretić L, Vitezić D, Mršić-Pelčić J. The Therapeutic Potential of Glucagon-like Peptide 1 Receptor Agonists in Traumatic Brain Injury. Pharmaceuticals. 2024; 17(10):1313. https://doi.org/10.3390/ph17101313
Chicago/Turabian StyleHarej Hrkać, Anja, Kristina Pilipović, Andrej Belančić, Lea Juretić, Dinko Vitezić, and Jasenka Mršić-Pelčić. 2024. "The Therapeutic Potential of Glucagon-like Peptide 1 Receptor Agonists in Traumatic Brain Injury" Pharmaceuticals 17, no. 10: 1313. https://doi.org/10.3390/ph17101313
APA StyleHarej Hrkać, A., Pilipović, K., Belančić, A., Juretić, L., Vitezić, D., & Mršić-Pelčić, J. (2024). The Therapeutic Potential of Glucagon-like Peptide 1 Receptor Agonists in Traumatic Brain Injury. Pharmaceuticals, 17(10), 1313. https://doi.org/10.3390/ph17101313