Antibacterial Action of Protein Fraction Isolated from Rapana venosa Hemolymph against Escherichia coli NBIMCC 8785
Abstract
:1. Introduction
2. Results
2.1. Analysis and Physicochemical Characteristics of the Isolated Fractions
2.1.1. Isolation of Fraction Rv 50–100 from the Hemolymph of Marine Snail R. venosa
2.1.2. Analyses of Fraction the with MW 50–100 kDa from the R. venosa Hemolymph
2.2. Antibacterial Activity of Fraction Rv 50–100 kDa against E. coli
2.3. Comparison of the Antibacterial Activity of Fraction Rv 50–100 kDa and the Fraction with MW below 10 kDa from Cornu aspersum Mucus against of E. coli
3. Discussion
4. Materials and Methods
4.1. Isolation of Protein/Peptide Fractions
4.2. SDS-PAGE Electrophoresis
4.3. Image Analysis of 12% SDS-PAGE with ImageQuant™ TL v8.2.0 Software
4.4. Tryptic In-Gel Digestion and Peptide Extraction
4.5. Mass Spectrometry Analysis
4.6. Experimental Design
4.7. Test Microorganisms
4.8. Protein/Peptide Fractions
4.9. Fluorescence Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hernando-Amado, S.; Coque, T.M.; Baquero, F.; Martínez, J.L. Antibiotic Resistance: Moving From Individual Health Norms to Social Norms in One Health and Global Health. Front. Microbiol. 2020, 11, 1914. [Google Scholar] [CrossRef]
- World Bank, PRESS RELEASE, 20 September 2016. Available online: https://www.worldbank.org/en/news/press-release/2016/09/18/by-2050-drug-resistant-infections-could-cause-global-economic-damage-on-par-with-2008-financial-crisis (accessed on 18 December 2023).
- European Commission: A European One Health Action Plan against Antimicrobial Resistance (AMR), Brussels, Belgium, 2017, p. 24. Available online: http://www.who.int/entity/drugresistance/documents/surveillancereport/en/index.html%0A (accessed on 18 December 2023).
- World Health Organization. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. 2019. Available online: http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria (accessed on 18 December 2023).
- Guglielmi, P.; Pontecorvi, V.; Rotondi, G. Natural compounds and extracts as novel antimicrobial agents. Expert Opin. Ther. Pat. 2020, 30, 949–962. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Xin, K.; Yang, B.; Chen, Y.; Zhang, Q.; He, H.; Gao, S. Total Synthesis of Three Families of Natural Antibiotics: Anthrabenzoxocinones, Fasamycins/Naphthacemycins, and Benastatins. CCS Chem. 2020, 2, 800–812. [Google Scholar] [CrossRef]
- Shemchuk, O.; d’Agostino, S.; Fiore, C.; Sambri, V.; Zannoli, S.; Grepioni, F.; Braga, D. Natural Antimicrobials Meet a Synthetic Antibiotic: Carvacrol/Thymol and Ciprofloxacin Cocrystals as a Promising Solid-State Route to Activity Enhancement. Cryst. Growth Des. 2020, 20, 6796–6803. [Google Scholar] [CrossRef]
- Sharmin Vini, S.; Asha, A.; Viju, N.; Shankar, S.C.V.; Mary Josephine Punitha, S. Antibacterial activity of hemolymph of selected gastropods sps collected from kanyakumari coast against human pathogens. Int. J. Curr. Res. 2013, 5, 4066–4069. [Google Scholar]
- Amruthalakshmi, S.; Yogamoorthi, A. Evaluation of Antibacterial Property of Cell-free Hemolymph and Hemocytes of Marine Gastropod, Rapana Rapiformis from Inshore Waters of Pondicherry, Southeast Coast of India. Malays. J. Med. Biol. Res. 2017, 4, 39–46. [Google Scholar] [CrossRef]
- Berniyanti, T.; Waskito, E.B.; Suwarno, S. Biochemival Characterization of an Antibactrial Glycoprotein from Achatina fulica ferussac Snail Mucus Local Isolate and Their Implication on Bacterial Dental Infection. Indones. J. Biotechnol. 2015, 12, 943–951. [Google Scholar] [CrossRef]
- Chen, Z.-C.; Wu, S.-Y.S.; Su, W.-Y.; Lin, Y.-C.; Lee, Y.-H.; Wu, W.-H.; Chen, C.-H.; Wen, Z.-H. Anti-inflammatory and burn injury wound healing properties of the shell of Haliotis diversicolor. BMC Complement. Altern. Med. 2016, 16, 487. [Google Scholar] [CrossRef]
- Dolashki, A.; Velkova, L.; Daskalova, E.; Zheleva, N.; Topalova, Y.; Atanasov, V.; Voelter, W.; Dolashka, P. Antimicrobial Activities of Different Fractions from Mucus of the Garden Snail Cornu aspersum. Biomedicines 2020, 8, 315. [Google Scholar] [CrossRef]
- Smith, V.J.; Desbois, A.P.; Dyrynda, E.A. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar. Drugs 2010, 8, 1213–1262. [Google Scholar] [CrossRef]
- Tzou, P.; De Gregorio, E.; Lemaitre, B. How Drosophila combats microbial infections: A model to study innate immunity and host–pathogen interactions. Curr. Opin. Microbiol. 2002, 5, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Dunphy, G.B.; Oberholzer, U.; Whiteway, M.; Zakarian, R.J.; Boomer, I. Virulence of Candida albicans mutants toward larvae of Galleria mellonella (Insecta, Lepidoptera, Galleridae). Can. J. Microbiol. 2003, 49, 514–524. [Google Scholar] [CrossRef] [PubMed]
- Irving, P.; Troxler, L.; Hetru, C. Is innate enough? The innate immune response in Drosophila. CR Biol. 2004, 327, 557–570. [Google Scholar] [CrossRef] [PubMed]
- Dolashka, P.; Moshtanska, V.; Borisova, V.; Dolashki, A.; Stevanovic, S.; Dimanov, T.; Voelter, W. Antimicrobial proline-rich peptides from the hemolymph of marine snail Rapana venosa. Peptides 2011, 32, 1477. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.B.; Liu, L.; Kotiw, M.; Benkendorff, K. Review of anti-inflammatory, immune-modulatory and wound healing properties of molluscs. J. Ethnopharmacol. 2018, 210, 156–178. [Google Scholar] [CrossRef] [PubMed]
- Machałowski, T.; Jesionowski, T. Hemolymph of molluscan origin: From biochemistry to modern biomaterials science. Appl. Phys. A 2021, 127, 3. [Google Scholar] [CrossRef]
- Seppälä, O.; Jokela, J. Maintenance of genetic variation in immune defense of a freshwater snail: Role of environmental heterogeneity. Evolution 2010, 64, 2397–2407. [Google Scholar] [CrossRef] [PubMed]
- Tetreau, G.; Pinaud, S.; Portet, A.; Galinier, R.; Gourbal, B.; Duval, D. Specific Pathogen Recognition by Multiple Innate Immune Sensors in an Invertebrate. Front. Immunol. 2017, 8, 1249. [Google Scholar] [CrossRef]
- Yao, T.; Zhao, M.; He, J.; Han, T.; Peng, W.; Zhang, H. Gene expression and phenoloxidase activities of hemocyanin isoforms in response to pathogen infections in abalone Haliotis diversicolor. Int. J. Biol. Macromol. 2019, 129, 538–551. [Google Scholar] [CrossRef]
- Gianazza, E.; Eberini, I.; Palazzolo, L.; Miller, I. Hemolymph proteins: An overview across marine arthropods and molluscs. J. Proteom. 2021, 245, 104294. [Google Scholar] [CrossRef]
- Aweya, J.J.; Zhuang, K.; Liu, Y.; Fan, J.; Yao, D.; Wang, F.; Chen, X.; Li, S.; Ma, H.; Zhang, Y. The ARM repeat domain of hemocyanin interacts with MKK4 to modulate antimicrobial peptides expression. iScience 2022, 25, 103958. [Google Scholar] [CrossRef] [PubMed]
- Terwilliger, N.B. Hemocyanins and the immune response: Defense against the dark arts’, Integrative and comparative biology. Integr. Comp. Biol. 2007, 47, 662–665. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, F.; Chen, C.; Zheng, Z.; Aweya, J.J.; Zhang, Y. Glycosylation of hemocyanin in Litopenaeus vannamei is an antibacterial response feature. Immunol. Lett. 2017, 192, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Huang, H.; Wang, F.; Aweya, J.J.; Zheng, Z.; Zhang, Y. Prediction and characterization of a novel hemocyanin-derived antimicrobial peptide from shrimp Litopenaeus vannamei. Amino Acids 2018, 50, 995–1005. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Coates, C.J.; Zhu, H.; Zhu, P.; Wu, Z.; Xie, L. Identification of candidate antimicrobial peptides derived from abalone hemocyanin. Dev. Comp. Immunol. 2015, 49, 96–102. [Google Scholar] [CrossRef]
- Krumova, E.; Dolashka, P.; Abrashev, R.; Velkova, L.; Dolashki, A.; Daskalova, A.; Dishliyska, V.; Atanasov, V.; Kaynarov, D.; Angelova, M. Antifungal activity of separated fractions from the hemolymph of marine snail Rapana venosa. Bulg. Chem. Commun. 2021, 53, 42–48. [Google Scholar]
- Dolashka-Angelova, P.; Lieb, B.; Velkova, L.; Heilen, N.; Sandra, K.; Nikolaeva-Glomb, L.; Dolashki, A.; Galabov, A.S.; Van Beeumen, J.; Stevanovic, S.; et al. Identification of Glycosylated Sites in Rapana Hemocyanin by Mass Spectrometry and Gene Sequence, and Their Antiviral Effect. Bioconjug. Chem. 2009, 20, 1315–1322. [Google Scholar] [CrossRef]
- Petrova, M.; Vlahova, Z.; Schröder, M.; Todorova, J.; Tzintzarov, A.; Gospodinov, A.; Velkova, L.; Kaynarov, D.; Dolashki, A.; Dolashka, P.; et al. Antitumor Activity of Bioactive Compounds from Rapana venosa against Human Breast Cell Lines. Pharmaceuticals 2023, 16, 181. [Google Scholar] [CrossRef]
- Topalova, Y.; Belouhova, M.; Velkova, L.; Dolashki, A.; Zheleva, N.; Daskalova, E.; Kaynarov, D.; Voelter, W.; Dolashka, P. Effect and Mechanisms of Antibacterial Peptide Fraction from Mucus of C. aspersum against Escherichia coli NBIMCC 8785. Biomedicines 2022, 10, 672. [Google Scholar] [CrossRef]
- Ng, T.B.; Cheung, R.C.; Wong, J.H.; Ye, X.J. Antimicrobial activity of defensins and defensin-like peptides with special emphasis on those from fungi and invertebrate animals. Curr. Protein Pept. Sci. 2013, 14, 515–531. [Google Scholar] [CrossRef]
- Wu, J.; Sairi, M.F.; Cunningham, T.; Gomes, V.G.; Dehghani, F.; Valtchev, P. Study on novel antibacterial and antiviral compounds from abalone as an important marine mollusc. J. Aquac. Mar. Biol. 2018, 7, 138–140. [Google Scholar]
- Zeng, Y.; Hu, X.P.; Cao, G.; Suh, S.J. Hemolymph protein profiles of subterranean termite Reticulitermes flavipes challenged with methicillin resistant Staphylococcus aureus or Pseudomonas aeruginosa. Sci. Rep. 2018, 8, 13251. [Google Scholar] [CrossRef] [PubMed]
- Knutelski, S.; Awad, M.; Łukasz, N.; Bukowski, M.; Śmiałek, J.; Suder, P.; Dubin, G.; Mak, P. Isolation, Identification, and Bioinformatic Analysis of Antibacterial Proteins and Peptides from Immunized Hemolymph of Red Palm Weevil Rhynchophorus ferrugineus. Biomolecules 2021, 11, 83. [Google Scholar] [CrossRef] [PubMed]
- Pitt, S.J.; Graham, M.A.; Dedi, C.G.; Taylor-Harris, P.M.; Gunn, A. Antimicrobial properties of mucus from the brown garden snail Helix aspersa. Br. J. Biomed. Sci. 2015, 72, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Ulagesan, S.; Kim, H.J. Antibacterial and Antifungal Activities of Proteins Extracted from Seven Different Snails. Appl. Sci. 2018, 8, 1362. [Google Scholar] [CrossRef]
- Ebou, A.; Koua, D.; Addablah, A.; Kakou-Ngazoa, S.; Dutertre, S. Combined Proteotranscriptomic-Based Strategy to Discover Novel Antimicrobial Peptides from Cone Snails. Biomedicines 2021, 9, 344. [Google Scholar] [CrossRef]
- González García, M.; Rodríguez, A.; Alba, A.; Vázquez, A.A.; Morales Vicente, F.E.; Pérez-Erviti, J.; Spellerberg, B.; Stenger, S.; Grieshober, M.; Conzelmann, C.; et al. New Antibacterial Peptides from the Freshwater Mollusk Pomacea poeyana (Pilsbry, 1927). Biomolecules 2020, 10, 1473. [Google Scholar] [CrossRef]
- Ivanov, M.; Todorovska, E.; Radkova, M.; Georgiev, O.; Dolashki, A.; Dolashka, P. Molecular cloning, characterization and phylogenetic analysis of an actin gene from the marine mollusk Rapana venosa (class Gastropoda). Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 687–700. [Google Scholar]
- Marie, B.; Jackson, D.J.; Ramos-Silva, P.; Zanella-Cléon, I.; Guichard, N.; Marin, F. The shell-forming proteome of Lottia gigantea reveals both deep conservations and lineage-specific novelties. FEBS J. 2013, 280, 214–232. [Google Scholar] [CrossRef]
- Ghosh, M. Antifungal properties of haem peroxidase from Acorus calamus. Ann. Bot. 2006, 98, 1145–1153. [Google Scholar] [CrossRef]
- Tadesse, M.; Gulliksen, B.; Strøm, M.B.; Styrvold, O.B.; Haug, T. Screening for antibacterial and antifungal activities in marine benthic invertebrates from northern Norway. J. Invertebr. Pathol. 2008, 99, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Alexandrova, A.; Petrov, L.; Tsvetanova, E.; Georgieva, A.; Velkova, L.; Atanasov, V.; Dolashki, A.; Dolashka, P.; Mileva, M. Radical scavenging potential and metal-chelating activity of hemolymph from Rapana venosa inhabiting the Bulgarian Black Sea. J. Appl. Biomed. 2023; under review. [Google Scholar]
- Suwannapan, W.; Chumnanpuen, P.; E-Kobon, T. Amplification and bioinformatics analysis of conserved FAD-binding region of L-amino acid oxidase (LAAO) genes in gastropods compared to other organisms. Comput. Struct. Biotechnol. J. 2018, 16, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Derby, C.D. Escape by inking and secreting: Marine molluscs avoid predators through a rich array of chemicals and mechanisms. Biol. Bull. 2007, 213, 274–289. [Google Scholar] [CrossRef] [PubMed]
- Jimbo, M.; Nakanishi, F.; Sakai, R.; Muramoto, K.; Kamiya, H. Characterization of L-amino acid oxidase and antimicrobial activity of aplysianin A, a sea hare-derived antitumor-antimicrobial protein. Fish. Sci. 2003, 69, 1240–1246. [Google Scholar] [CrossRef]
- Ehara, T.; Kitajima, S.; Kanzawa, N.; Tamiya, T.; Tsuchiya, T. Antimicrobial action of achacin is mediated by L-amino acid oxidase activity. FEBS Lett. 2002, 531, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Nantarat, N.; Tragoolpua, Y.; Gunama, P. Antibacterial Activity of the Mucus Extract from the Giant African Snail (Lissachatina fulica) and Golden Apple Snail (Pomacea canaliculata) Against Pathogenic Bacteria Causing Skin Diseases. Trop. Nat. Hist. 2019, 19, 103–112. [Google Scholar]
- Dolashka, P.; Dolashki, A.; Van Beeumen, J.; Floetenmeyer, M.; Velkova, L.; Stevanovic, S.; Voelter, W. Antimicrobial Activity of Molluscan Hemocyanins from Helix and Rapana Snails. Curr. Pharm. Biotechnol. 2016, 17, 263–270. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Jaishankar, J.; Srivastava, P. Molecular Basis of Stationary Phase Survival and Applications. Front. Microbiol. 2017, 8, 2000. [Google Scholar] [CrossRef]
- Coates, C.J.; Decker, H. Immunological properties of oxygen-transport proteins: Hemoglobin, hemocyanin and hemerythrin. Cell Mol. Life Sci. 2017, 74, 293. [Google Scholar] [CrossRef]
- Viruly, L.; Andarwulan, N.; Suhartono, M.T.; Nurilmala, M. Protein profiles and DNA isolation of hemolymph gonggong snail (Strombus sp.) from Bintan. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 278, p. 12078. [Google Scholar]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Lincz, L.F.; Scorgie, F.E.; Garg, M.B.; Gilbert, J.; Sakoff, J.A. A simplified method to calculate telomere length from Southern blot images of terminal restriction fragment lengths. Biotechniques 2020, 68, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, J.; Capdevielle, J.; Guillemot, J.C.; Ferrara, P. In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal. Biochem. 1992, 203, 173–179. [Google Scholar] [CrossRef]
- Bathige, S.D.N.K.; Umasuthan, N.; Godahewa, G.I.; Whang, I.; Kim, C.; Park, H.-C.; Lee, J. Three novel clade B serine protease inhibitors from disk abalone, Haliotis discus discus: Molecular perspectives and responses to immune challenges and tissue injury. Fish. Shellfish. Immunol. 2015, 45, 334–341. [Google Scholar] [CrossRef]
- Daims, H.; Lücker, S.; Wagner, M. daime, a novel image analysis program for microbial ecology and biofilm research. Environ. Microbiol. 2006, 8, 200–213. [Google Scholar] [CrossRef]
Band | AAS of Peptide | Mass exp. [M + H]+ | Protein Name | UniProt ID | Identities |
---|---|---|---|---|---|
1 | HGDDCCDMDMR | 1297.41 | Peroxidase-like protein 2 [L. gigantea] | B3A0P3 | 100%, E = 0.14 |
DHGEPPYDDFR | 1347.56 | Peroxidase-like protein 2 [L. gigantea] Peroxidase-like protein 3 [L. gigantea] | B3A0P3 B3A0Q8 | 73%, E = 0.024 64%, E = 0.069 | |
LPGAFTGPTFNCIAR | 1635.83 | Peroxidase-like protein 3 [L. gigantea] Peroxidase-like protein 2 [L. gigantea] | B3A0Q8 B3A0P3 | 63%, E = 2 × 10−4 63%, E = 0.017 | |
2.1 | MPAQPVAGLFDR | 1301.58 | Peroxidase-like protein 2 [L. gigantea] | B3A0P3 | 100%, E = 0.014 |
LDWPVLFNDR | 1274.70 | Aplysianin-A [Aplysia kurodai] L-amino-acid oxidase LAAO [Aplysia californica] | Q17043 Q6IWZ0 | 83%, E = 0.67 70%, E = 0.16 | |
KLFWHMDWK | 1290.67 | L-amino-acid oxidase LAAO [A. califonica] | Q6IWZ0 | 63%, E = 1.6 | |
MFHFDELLDLPR | 1532.81 | L-amino-acid oxidase LAAO [A. californica] Aplysianin-A [A. kurodai] | Q6IWZ0 Q17043 | 86%, E = 0.24 86%, E = 0.35 | |
DYHFDELLDLMR | 1566.76 | Aplysianin-A [A. kurodai] L-amino-acid oxidase LAAO [A. californica] | Q17043 Q6IWZ0 | 55%, E = 0.059 55%, E = 0.12 | |
YDRWDVPEPEFVVLR | 1919.98 | Aplysianin-A [A. kurodai] | Q17043 | 63%, E = 9.6 | |
2.2 | TFAGFVLSGLGTSAR | 1483.79 | Hemocyanin type 2 unit-e; RvH2-e [Rapana venosa]; Hemocyanin 2, KLH-B [Megathura crenulata] Hemocyanin 1; KLH-A [M. crenulata] Hemocyanin type 2 unit a, RtH2-a [R. venosa] | P83040 Q10584 Q10583 P80960 | 85%, E = 2 × 10−5 92%, E = 2 × 10−5 85%, E = 3 × 10−5 77%, E = 1 × 10−4 |
EYRYYWDWQER | 1693.78 | Hemocyanin 1; Keyhole limpet hemocyanin A (KLH-A) [M. crenulata] Hemocyanin 2; KLH-B [M. crenulata] | Q10583 Q10584 | 83%, E = 0.024 83%, E = 0.024 | |
3 | GHKKRIRK | 1022.68 | Hemocyanin type 2 unit a, RtH2-a [Rapana venosa] | P80960 | 75%, E = 0.10 |
IWATWQTLQK | 1274.47 | Hemocyanin 2 KLH-B [M. crenulata] Hemocyanin 1; KLH-A [M. crenulata] Hemocyanin 2-c chain, KLH2-c [M. crenulata] Hemocyanin type 2 unit a, RtH2-a [R. venosa] | Q10584 Q10583 P81732 P80960 | 80%, E = 2 × 10−5 80%, E = 2 × 10−5 78%, E = 3 × 10−4 78%, E = 3 × 10−4 | |
DEVVPNPFVR | 1171.61 | Hemocyanin 1; KLH-A [M. crenulata] Hemocyanin type 2 unit a; RvH2-a [R. venosa] Hemocyanin 2; KLH-B [M. crenulata] | Q10583 P80960 Q10584 | 75%, E = 0.039 100%, E = 0.23 75%, E = 0.33 | |
VEITKALHKLGLR | 1477.92 | Hemocyanin 2, KLH-B [M. crenulata] Hemocyanin 2-c chain, KLH2-c [M. crenulata] | Q10584 P81732 | 64%, E = 0.002 64%, E = 0.20 | |
YHRQEHRRWWKD | 1796.90 | Hemocyanin 1; KLH-A [M. crenulata] | Q10583 | 83%, E = 0.58 |
Peptide/Protein Fraction | Peptide/Protein Concentration | Intensity of Fluorescence, % (CTC) | Circularity, % (DAPI) | Area per Cell, % (DAPI) | Live Cells, % |
---|---|---|---|---|---|
R. venosa 50–100 kDa | 1% | −25% | −2% | −24% | 2.41% |
5% | −28% | 5% | −47% | −58.29% | |
10% | −28% | 6% | −28% | −72.08% | |
50% | 17.65% | −17.65% | −34.15% | −99.20% | |
C. aspersum below 10 kDa | 1% | 3.93% | −9% | −13.58% | −5.07% |
5% | 0.00% | −8% | −20.71% | −16.69% | |
10% | −9.50% | −7% | 7.18% | 2.95% | |
50% | −19.35% | −4% | −34.63% | −59.12% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirilova, M.; Topalova, Y.; Velkova, L.; Dolashki, A.; Kaynarov, D.; Daskalova, E.; Zheleva, N. Antibacterial Action of Protein Fraction Isolated from Rapana venosa Hemolymph against Escherichia coli NBIMCC 8785. Pharmaceuticals 2024, 17, 68. https://doi.org/10.3390/ph17010068
Kirilova M, Topalova Y, Velkova L, Dolashki A, Kaynarov D, Daskalova E, Zheleva N. Antibacterial Action of Protein Fraction Isolated from Rapana venosa Hemolymph against Escherichia coli NBIMCC 8785. Pharmaceuticals. 2024; 17(1):68. https://doi.org/10.3390/ph17010068
Chicago/Turabian StyleKirilova, Mihaela, Yana Topalova, Lyudmila Velkova, Aleksandar Dolashki, Dimitar Kaynarov, Elmira Daskalova, and Nellie Zheleva. 2024. "Antibacterial Action of Protein Fraction Isolated from Rapana venosa Hemolymph against Escherichia coli NBIMCC 8785" Pharmaceuticals 17, no. 1: 68. https://doi.org/10.3390/ph17010068
APA StyleKirilova, M., Topalova, Y., Velkova, L., Dolashki, A., Kaynarov, D., Daskalova, E., & Zheleva, N. (2024). Antibacterial Action of Protein Fraction Isolated from Rapana venosa Hemolymph against Escherichia coli NBIMCC 8785. Pharmaceuticals, 17(1), 68. https://doi.org/10.3390/ph17010068