Influence of Long-Term Anti-Seizure Medications on Redox Parameters in Human Blood
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Blood Sampling Collection, Isolation and Haemolysis of Erythrocytes
4.3. Preparation of Haemolyses for Determination of Antioxidant Enzyme Activity
4.4. Determination of Total and Methaemoglobin in Haemolyses
4.5. Determination of Plasma Parameters
4.6. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cárdenas-Rodríguez, N.; Coballase-Urrutia, E.; Rivera-Espinosa, L.; Romero-Toledo, A.; Sampieri, A.; Ortega-Cuellar, D.; Montesinos-Correa, H.; Floriano-Sánchez, E.; Carmona-Aparicio, L. Modulation of Antioxidant Enzymatic Activities by Certain Antiepileptic Drugs (Valproic Acid, Oxcarbazepine, and Topiramate): Evidence in Humans and Experimental Models. Oxid. Med. Cell. Longev. 2013, 2013, 598493. [Google Scholar] [CrossRef]
- Pitkänen, A.; Lukasiuk, K.; Dudek, F.E.; Staley, K.J. Epileptogenesis. Cold Spring Harb. Perspect. Med. 2015, 5, a022822. [Google Scholar] [CrossRef] [PubMed]
- Puttachary, S.; Sharma, S.; Stark, S.; Thippeswamy, T. Seizure-induced oxidative stress in temporal lobe epilepsy. BioMed Res. Int. 2015, 2015, 745613. [Google Scholar] [CrossRef] [PubMed]
- Borowicz-Reutt, K.K.; Czuczwar, S.J. Role of oxidative stress in epileptogenesis and potential implications for therapy. Pharmacol. Rep. 2020, 72, 1218–1226. [Google Scholar] [CrossRef] [PubMed]
- Łukawski, K.; Czuczwar, S.J. Oxidative Stress and Neurodegeneration in Animal Models of Seizures and Epilepsy. Antioxidants 2023, 12, 1049. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Armenta, M.; Nava-Ruíz, C.; Juárez-Rebollar, D.; Rodríguez-Martínez, E.; Gómez, P.Y. Oxidative stress associated with neuronal apoptosis in experimental models of epilepsy. Oxid. Med. Cell. Longev. 2014, 2014, 293689. [Google Scholar] [CrossRef] [PubMed]
- Nikolić-Kokić, A.; Blagojević, D.; Spasić, M.B. Complexity of free radical metabolism in human erythrocytes. J. Med. Biochem. 2010, 29, 189–195. [Google Scholar] [CrossRef]
- Halliwell, B. Oxidative stress and neurodegeneration: Where are we now? J. Neurochem. 2006, 97, 1634–1658. [Google Scholar] [CrossRef]
- Aycicek, A.; Iscan, A. The Effects of Carbamazepine, Valproic Acid and Phenobarbital on the Oxidative and Antioxidative Balance in Epileptic Children. Eur. Neurol. 2007, 57, 65–69. [Google Scholar] [CrossRef]
- Abou-Khalil, B.W. Update on Antiepileptic Drugs 2019. Continuum 2019, 25, 508–536. [Google Scholar] [CrossRef]
- Chadwick, D.W. Valproate in the treatment of partial epilepsies. Epilepsia 1994, 5, 96–98. [Google Scholar] [CrossRef]
- Marson, A.G.; Williamson, P.R.; Hutton, J.L.; Clough, H.E.; Chadwick, D.W. Carbamazepine versus valproate monotherapy for epilepsy. Cochrane Database Syst. Rev. 2000, 2000, CD001030. [Google Scholar] [CrossRef] [PubMed]
- McLean, M.J.; Macdonald, R.L. Carbamazepine and 10,11-epoxycarbamazepine produce use- and voltage-dependent limitation of rapidly firing action potentials of mouse central neurons in cell culture. J. Pharmacol. Exp. Ther. 1986, 238, 727–738. [Google Scholar] [PubMed]
- Farber, N.B.; Jiang, X.P.; Heinkel, C.; Nemmers, B. Antiepileptic drugs and agents that inhibit voltage-gated sodium channels prevent NMDA antagonist neurotoxicity. Mol. Psychiatry 2002, 7, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Costa, B.; Vale, N. Understanding Lamotrigine’s Role in the CNS and Possible Future Evolution. Int. J. Mol. Sci. 2023, 24, 6050. [Google Scholar] [CrossRef]
- Martinc, B.; Grabnar, I.; Vovk, T. The role of reactive species in epileptogenesis and influence of antiepileptic drug therapy on oxidative stress. Curr. Neuropharmacol. 2012, 10, 328–343. [Google Scholar] [CrossRef]
- Sarangi, S.C.; Kakkar, A.K.; Kumar, R.; Gupta, Y.K. Effect of lamotrigine, levetiracetam & topiramate on neurobehavioural parameters & oxidative stress in comparison with valproate in rats. Indian J. Med. Res. 2016, 144, 104–111. [Google Scholar] [CrossRef]
- Nazıroğlu, M.; Yürekli, V.A. Effects of antiepileptic drugs on antioxidant and oxidant molecular pathways: Focus on trace elements. Cell. Mol. Neurobiol. 2013, 33, 589–599. [Google Scholar] [CrossRef]
- Graf, W.D.; Oleinik, O.E.; Glauser, T.A.; Maertens, P.; Eder, D.N.; Pippenger, C.E. Altered antioxidant enzyme activities in children with a serious adverse experience related to valproic acid therapy. Neuropediatrics 1998, 29, 195–201. [Google Scholar] [CrossRef]
- Nordhoff, A.; Schirmer, R.H.; Mayatepek, E.; Becker, K. No evidence for inhibition of human glutathione reductase by valproic acid. Biochem. Pharmacol. 1994, 47, 1453–1456. [Google Scholar] [CrossRef]
- Płonka-Półtorak, E.; Zagrodzki, P.; Chłopicka, J.; Bartoń, H.; Westermarck, T.; Kaipainen, P.; Kaski, M.; Atroshi, F. Valproic acid modulates superoxide dismutase, uric acid-independent FRAP and zinc in blood of adult epileptic patients. Biol. Trace Elem. Res. 2011, 143, 1424–1434. [Google Scholar] [CrossRef] [PubMed]
- Peker, E.; Oktar, S.; Ari, M.; Kozan, R.; Doğan, M.; Çağan, E.; Söğüt, S. Nitric oxide, lipid peroxidation, and antioxidant enzyme levels in epileptic children using valproic acid. Brain Res. 2009, 1297, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Karabiber, H.; Yakinci, C.; Durmaz, Y.; Temel, I.; Mehmet, N. Serum nitrite and nitrate levels in epileptic children using valproic acid or carbamazepine. Brain Dev. 2004, 26, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Geronzi, U.; Lotti, F.; Grosso, S. Oxidative stress in epilepsy. Expert. Rev. Neurother. 2018, 18, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Cengiz, M.; Yüksel, A.; Seven, M. The effects of carbamazepine and valproic acid on the erythrocyte glutathione, glutathione peroxidase, superoxide dismutase and serum lipid peroxidation in epileptic children. Pharmacol. Res. 2000, 41, 423–425. [Google Scholar] [CrossRef]
- Huang, W.Y.; Liu, C.S.; Tsai, J.J.; Wu, H.M. Effects of lamotrigine monotherapy on lipid peroxidation and the antioxidant defense system in patients with newly diagnosed epilepsy. Changhua J. Med. 2014, 12, 9–16. [Google Scholar]
- Martinc, B.; Grabnar, I.; Vovk, T. Antioxidants as a preventive treatment for epileptic process: A review of the current status. Curr. Neuropharmacol. 2014, 12, 527–550. [Google Scholar] [CrossRef]
- Ambrogini, P.; Albertini, M.C.; Betti, M.; Galati, C.; Lattanzi, D.; Savelli, D. Neurobiological correlates of alpha-tocopherol antiepileptogenic effects and microRNA expression modulation in a rat model of kainate-induced seizures. Mol. Neurobiol. 2018, 55, 7822–7838. [Google Scholar] [CrossRef]
- Pearson, J.N.; Rowley, S.; Liang, L.-P.; White, A.M.; Day, B.J.; Patel, M. Reactive oxygen species mediate cognitive deficits in experimental temporal lobe epilepsy. Neurobiol. Dis. 2015, 82, 289–297. [Google Scholar] [CrossRef]
- Castro, O.W.; Upadhya, D.; Kodali, M.; Shetty, A.K. Resveratrol for easing status epilepti.cus induced brain injury, inflammation, epileptogenesis, and cognitive and memory dysfuction—Are we there yet? Front. Neurol. 2017, 13, 603. [Google Scholar] [CrossRef]
- Kovac, S.; Dinkova Kostova, A.T.; Herrmann, A.M.; Melzer, N.; Meuth, S.G.; Gorji, A. Metabolic and homeostatic changes in seizures and acquired epilepsy-mitochondria, calcium dynamics and reactive oxygen species. Int. J. Mol. Sci. 2017, 18, 1935. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Guo, M.; Shi, C.; Wang, H.; Yao, L.; Liu, L. Protection against cognitive impairment and modification of epileptogenesis with curcumin in a post-status epilepticus model of temporal lobe epilepsy. Neuroscience 2015, 310, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Waldbaum, S.; Patel, M. Mitochondrial dysfunction and oxidative stress: A contributing link to acquired epilepsy? J. Bioenerg. Biomembr. 2010, 42, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahab, A.F.; Afify, M.A.; Mahfouz, A.M.; Shahzad, N.; Bamagous, G.A.; Ghamdi, S.S. Vitamin D enhances antiepileptic and cognitive effects of lamotrigine in pentylenetetrazole-kindled rats. Brain Res. 2017, 1673, 78–85. [Google Scholar] [CrossRef]
- Fisher, R.S.; Acevedo, C.; Arzimanoglou, A.; Bogacz, A.; Cross, H.; Elger, C.E.; Engel, J., Jr.; Forsgren, L.; French, J.A.; Glynn, M.; et al. ILAE official report: A practical clinical definition of epilepsy. Epilepsia 2014, 55, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshe, S.L.; et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 512–521. [Google Scholar] [CrossRef]
- Tsuchihashi, M. Zur Kenntnis der Blutkatalase. Biochem. Z. 1923, 140, 65–74. [Google Scholar]
- Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar] [CrossRef]
- Beutler, E. Catalasealase: A Manual of biochemical methods. In Red Cell Metabolism; Beutler, E., Ed.; Grune and Stratton: New York, NY, USA, 1982; pp. 105–106. [Google Scholar]
- Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterisation of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar]
- Glatzle, D.; Vuilleumier, J.P.; Weber, F.; Decker, U. Glutathione reductase test with whole blood, a convenient procedure for the assessment of the riboflavin status in humans. Experientia 1974, 30, 665–667. [Google Scholar] [CrossRef]
- Drabkin, D.L.; Austin, J.H. Spectrophotometric studies. II Preparations from washed blood cells: Nitric oxide hemoglobin and sulfhemoglobin. J. Biol. Chem. 1935, 112, 51–55. [Google Scholar] [CrossRef]
- Szebeni, J.; Winterbourn, C.C.; Carrell, R.W. Oxidative interactions between haemoglobin and membrane lipid. A liposome model. Biochem. J. 1984, 220, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Weichselbaum, T.E. An accurate and rapid method for the determination of proteins in small amounts of blood serum and plasma. Am. J. Clin. Path. Tech. Suppl. 1946, 10, 40–49. [Google Scholar] [CrossRef]
- Ellman, G.I. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1952, 82, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Ellis, G.; Adatia, I.; Yazdanpanah, M.; Makela, S.K. Nitrite and nitrate analyses: A clinical biochemistry perspective. Clin. Biochem. 1998, 31, 195–220. [Google Scholar] [CrossRef] [PubMed]
- Yagi, K. Simple assay for the level of total lipid peroxides in serum or plasma. Methods Mol. Biol. 1998, 108, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Browne, R.W.; Armstrong, D. Reduced Glutathione and Glutathione Disulfide. Methods Mol. Biol. 1998, 108, 347–352. [Google Scholar] [CrossRef]
- Hinkle, E.D.; Wiersma, W.; Jurs, G.S. Applied Statistics for Behavioral Sciences, 2nd ed.; Houghton Mifflin Company: Boston, MA, USA, 1994. [Google Scholar]
- Manley, B.F.J. Multivariate Statistical Methods: A Primer; Chapman and Hall: London, UK, 1986. [Google Scholar]
- Blagojević, D.; Buzadzić, B.; Korać, B.; Saicić, Z.S.; Radojicić, R.; Spasić, M.B.; Petrović, V.M. Seasonal changes in the antioxidative defense in ground squirrels (Citellus citellus): Possible role of GSH-Px. J. Environ. Pathol. Toxicol. Oncol. 1998, 17, 241–250. [Google Scholar]
- Nikolić, L.A.; Stević, Z.; Blagojević, D.; Saičić, S.Z.; Spasić, B.M. Activities of antioxidant defense enzymes in the blood of individuals with Leu144Phe mutation. Jugoslov. Med. Biohem. 2005, 24, 111–114. [Google Scholar] [CrossRef]
- Nikolić-Kokić, A.; Stević, Z.; Blagojević, D.; Davidović, B.; Jones, D.R.; Spasić, M.B. Alterations in anti-oxidative defence enzymes in erythrocytes from sporadic amyotrophic lateral sclerosis (SALS) and familial ALS patients. Clin. Chem. Lab. Med. 2006, 44, 589–593. [Google Scholar] [CrossRef]
- Nikolić-Kokić, A.; Marinković, D.; Perić, S.; Stević, Z.; Spasić, M.B.; Blagojević, D.; Rakocević-Stojanović, V. Redox imbalance in peripheral blood of type 1 myotonic dystrophy patients. Redox Rep. 2016, 21, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Miljević, C.; Nikolić-Kokić, A.; Saicić, Z.S.; Milosavljević, M.; Blagojević, D.; Tosevski, D.L.; Jones, D.R.; Spasić, M.B. Correlation analysis confirms differences in antioxidant defence in the blood of types I and II schizophrenic male patients treated with antipsychotic medicatalaseion. Psychiatry Res. 2010, 178, 68–72. [Google Scholar] [CrossRef] [PubMed]
Group | Gender | Average Years (Mean ± SD) | Smokers | Other Medications | Comorbidity | |
---|---|---|---|---|---|---|
M | F | |||||
Controls | 4 | 6 | 44.9 ± 18.4 | 1/10 | 3/10 | 4/10 |
Lamotrigine | 7 | 15 | 64.2 ± 17.9 | 0/22 | 15/22 | 18/22 |
Carbamazepine | 12 | 11 | 42.1 ± 16.5 | 9/23 | 15/23 | 19/23 |
Valproate | 19 | 3 | 33.6 ± 19.7 | 5/22 | 5/22 | 6/22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakovljević, D.; Nikolić, M.; Jovanović, V.; Vidonja Uzelac, T.; Nikolić-Kokić, A.; Novaković, E.; Miljević, Č.; Milovanović, M.; Blagojević, D. Influence of Long-Term Anti-Seizure Medications on Redox Parameters in Human Blood. Pharmaceuticals 2024, 17, 130. https://doi.org/10.3390/ph17010130
Jakovljević D, Nikolić M, Jovanović V, Vidonja Uzelac T, Nikolić-Kokić A, Novaković E, Miljević Č, Milovanović M, Blagojević D. Influence of Long-Term Anti-Seizure Medications on Redox Parameters in Human Blood. Pharmaceuticals. 2024; 17(1):130. https://doi.org/10.3390/ph17010130
Chicago/Turabian StyleJakovljević, Danijel, Milan Nikolić, Vesna Jovanović, Teodora Vidonja Uzelac, Aleksandra Nikolić-Kokić, Emilija Novaković, Čedo Miljević, Maja Milovanović, and Duško Blagojević. 2024. "Influence of Long-Term Anti-Seizure Medications on Redox Parameters in Human Blood" Pharmaceuticals 17, no. 1: 130. https://doi.org/10.3390/ph17010130
APA StyleJakovljević, D., Nikolić, M., Jovanović, V., Vidonja Uzelac, T., Nikolić-Kokić, A., Novaković, E., Miljević, Č., Milovanović, M., & Blagojević, D. (2024). Influence of Long-Term Anti-Seizure Medications on Redox Parameters in Human Blood. Pharmaceuticals, 17(1), 130. https://doi.org/10.3390/ph17010130