Ocular and Plasma Pharmacokinetics of Enavogliflozin Ophthalmic Solution in Preclinical Species
Abstract
:1. Introduction
2. Results
2.1. Ocular Distribution of Enavogliflozin
2.2. Blood Exposure to Enavogliflozin
3. Discussion
4. Materials and Methods
4.1. Ocular Distribution Study
4.1.1. Test Formulation and Analytical Conditions for Ocular PK
4.1.2. Animals and [14C] Enavogliflozin Administration for Ocular PK
4.1.3. Ocular Distribution by Autoradiography
4.2. Plasma PK Study
4.2.1. Animals and DWRX2008 Administration for Plasma PKs
4.2.2. Determination of Plasma Enavogliflozin Concentration
4.3. PK Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Del Amo, E.M.; Urtti, A. Rabbit as an animal model for intravitreal pharmacokinetics: Clinical predictability and quality of the published data. Exp. Eye Res. 2015, 137, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Sha, W.; Wen, S.; Chen, L.; Xu, B.; Lei, T.; Zhou, L. The Role of SGLT2 Inhibitor on the Treatment of Diabetic Retinopathy. J. Diabetes Res. 2020, 2020, 8867875. [Google Scholar] [CrossRef]
- Bhagat, N.; Grigorian, R.A.; Tutela, A.; Zarbin, M.A. Diabetic macular edema: Pathogenesis and treatment. Surv. Ophthalmol. 2009, 54, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Lang, G.E. Diabetic macular edema. Ophthalmologica 2012, 227 (Suppl. 1), 21–29. [Google Scholar] [CrossRef] [PubMed]
- May, M.; Framke, T.; Junker, B.; Framme, C.; Pielen, A.; Schindler, C. How and why SGLT2 inhibitors should be explored as potential treatment option in diabetic retinopathy: Clinical concept and methodology. Ther. Adv. Endocrinol. Metab. 2019, 10, 2042018819891886. [Google Scholar] [CrossRef] [PubMed]
- Wakisaka, M.; Nagao, T. Sodium glucose cotransporter 2 in mesangial cells and retinal pericytes and its implications for diabetic nephropathy and retinopathy. Glycobiology 2017, 27, 691–695. [Google Scholar] [CrossRef]
- Takatsuna, Y.; Ishibashi, R.; Tatsumi, T.; Koshizaka, M.; Baba, T.; Yamamoto, S.; Yokote, K. Sodium-Glucose Cotransporter 2 Inhibitors Improve Chronic Diabetic Macular Edema. Case Rep. Ophthalmol. Med. 2020, 2020, 8867079. [Google Scholar] [CrossRef]
- Ferrannini, E. Sodium-Glucose Co-transporters and Their Inhibition: Clinical Physiology. Cell Metab. 2017, 26, 27–38. [Google Scholar] [CrossRef]
- Saw, M.; Wong, V.W.; Ho, I.V.; Liew, G. New anti-hyperglycaemic agents for type 2 diabetes and their effects on diabetic retinopathy. Eye 2019, 33, 1842–1851. [Google Scholar] [CrossRef]
- Pang, M.; Jeon, S.Y.; Choi, M.K.; Jeon, J.H.; Ji, H.Y.; Choi, J.S.; Song, I.S. Pharmacokinetics and Tissue Distribution of Enavogliflozin in Mice and Rats. Pharmaceutics 2022, 14, 1210. [Google Scholar] [CrossRef]
- Varela-Fernandez, R.; Diaz-Tome, V.; Luaces-Rodriguez, A.; Conde-Penedo, A.; Garcia-Otero, X.; Luzardo-Alvarez, A.; Fernandez-Ferreiro, A.; Otero-Espinar, F.J. Drug Delivery to the Posterior Segment of the Eye: Biopharmaceutic and Pharmacokinetic Considerations. Pharmaceutics 2020, 12, 269. [Google Scholar] [CrossRef] [PubMed]
- Agrahari, V.; Mandal, A.; Agrahari, V.; Trinh, H.M.; Joseph, M.; Ray, A.; Hadji, H.; Mitra, R.; Pal, D.; Mitra, A.K. A comprehensive insight on ocular pharmacokinetics. Drug Deliv. Transl. Res. 2016, 6, 735–754. [Google Scholar] [CrossRef]
- Geroski, D.H.; Edelhauser, H.F. Drug delivery for posterior segment eye disease. Investig. Ophthalmol. Vis. Sci. 2000, 41, 961–964. [Google Scholar]
- Singh, M.; Kumar, A. Risks Associated with SGLT2 Inhibitors: An Overview. Curr. Drug Saf. 2018, 13, 84–91. [Google Scholar] [CrossRef]
- Gaudana, R.; Ananthula, H.K.; Parenky, A.; Mitra, A.K. Ocular drug delivery. AAPS J. 2010, 12, 348–360. [Google Scholar] [CrossRef] [PubMed]
- Del Amo, E.M.; Rimpela, A.K.; Heikkinen, E.; Kari, O.K.; Ramsay, E.; Lajunen, T.; Schmitt, M.; Pelkonen, L.; Bhattacharya, M.; Richardson, D.; et al. Pharmacokinetic aspects of retinal drug delivery. Prog. Retin. Eye Res. 2017, 57, 134–185. [Google Scholar] [CrossRef] [PubMed]
- Fayyaz, A.; Vellonen, K.S.; Ranta, V.P.; Toropainen, E.; Reinisalo, M.; Valtari, A.; Puranen, J.; Ricci, G.D.; Heikkinen, E.M.; Gardner, I.; et al. Ocular pharmacokinetics of atenolol, timolol and betaxolol cocktail: Tissue exposures in the rabbit eye. Eur. J. Pharm. Biopharm. 2021, 166, 155–162. [Google Scholar] [CrossRef]
- Jakubiak, P.; Cantrill, C.; Urtti, A.; Alvarez-Sanchez, R. Establishment of an In Vitro-In Vivo Correlation for Melanin Binding and the Extension of the Ocular Half-Life of Small-Molecule Drugs. Mol. Pharm. 2019, 16, 4890–4901. [Google Scholar] [CrossRef]
- Horita, S.; Watanabe, M.; Katagiri, M.; Nakamura, H.; Haniuda, H.; Nakazato, T.; Kagawa, Y. Species differences in ocular pharmacokinetics and pharmacological activities of regorafenib and pazopanib eye-drops among rats, rabbits and monkeys. Pharmacol. Res. Perspect. 2019, 7, e00545. [Google Scholar] [CrossRef]
- Rodrigues, G.A.; Lutz, D.; Shen, J.; Yuan, X.; Shen, H.; Cunningham, J.; Rivers, H.M. Topical Drug Delivery to the Posterior Segment of the Eye: Addressing the Challenge of Preclinical to Clinical Translation. Pharm. Res. 2018, 35, 245. [Google Scholar] [CrossRef]
- del Amo, E.M.; Vellonen, K.S.; Kidron, H.; Urtti, A. Intravitreal clearance and volume of distribution of compounds in rabbits: In silico prediction and pharmacokinetic simulations for drug development. Eur. J. Pharm. Biopharm. 2015, 95, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zhang, G.; Mackie, B.; Yang, S.; Wang, J.; Shan, L. Comparison of the in vitro metabolism of psoralidin among different species and characterization of its inhibitory effect against UDP-glucuronosyltransferase (UGT) or cytochrome p450 (CYP450) enzymes. J. Chromatogr. B 2016, 1029–1030, 145–156. [Google Scholar] [CrossRef] [PubMed]
- EMA. European Medicines Agency. Guideline on the Conduct of Pharmacokinetic Studies in Target Animal Species 15 December 2023. Available online: https://www.ema.europa.eu/en/conduct-pharmacokinetic-studies-target-animal-species-scientific-guideline (accessed on 6 January 2024).
- FDA. Food and Drug Administration. Guidance for Industry: M10 Bioanalytical Method Validation and Study Sample Analysis. 2022. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/m10-bioanalytical-method-validation-and-study-sample-analysis (accessed on 6 January 2024).
Tmax (h) | t1/2 (h) | Cmax (ng eq./g) | AUC0–t (ng eq.·h/g) | AUCinf (ng eq.·h/g) | ||
---|---|---|---|---|---|---|
Ocular tissues | Conjunctiva | 0.5 | 20.7 | 29,794.0 | 445,986.1 | 553,328.1 |
Cornea | 0.5 | 18.0 | 10,725.8 | 104,518.8 | 128,946.2 | |
Aqueous humor | 4.0 | 32.7 | 85.0 | 1771.9 | 2550.0 | |
Iris | 4.0 | 204.9 | 255.8 | 5263.2 | 36974.5 | |
Lens | 2.0 | NC | 19.5 | 787.8 | NC | |
Sclera | 2.0 | 36.8 | 362.3 | 4102.3 | 6135.5 | |
Vitreous body | 2.0 | NC | 19.5 | 9.8 | NC | |
Retina | 2.0 | 32.5 | 99.5 | 1594.2 | 2392.0 | |
Plasma | 1.0 | 9.9 | 17.6 | 102.3 | 249.7 | |
Whole blood | 1.0 | 5.7 | 12.9 | 65.5 | 110.9 |
Dose (μg) | Tmax (h) | t1/2 (h) | Cmax (ng/mL) | AUC0–t (ng·h/mL) | AUCinf (ng·h/mL) | Vd/F (L) | CL/F (L/h) | |
---|---|---|---|---|---|---|---|---|
Rat (n = 3) | 25 | 4.0 [1.0, 4.0] | 5.4 ± 0.7 (12.9) | 28.2 ± 4.5 (16.1) | 208.2 ± 38.1 (18.3) | 217.5 ± 43.6 (20.0) | 0.9 ± 0.1 (7.2) | 0.12 ± 0.02 (20.2) |
Rabbit (Ocular administration) (n = 6) | 400 (both eye) | 0.5 [0.5, 0.5] | 3.6 ± 1.0 (27.2) | 19.3 ± 9.6 (49.7) | 29.5 ± 15.3 (52.0) | 31.4 ± 15.6 (49.6) | 83.5 ± 56.2 (67.3) | 15.0 ± 5.9 (39.8) |
Rabbit (Oral administration) (n = 6) | 400 | 0.8 [0.5, 4.0] | 6.8 ± 4.0 (58.4) | 1.6 ± 0.5 (28.4) | 8.7 ± 3.6 (42.2) | 12.7 ± 5.7 (45.1) | 297.0 ± 87.5 (29.5) | 35.5 ± 12.6 (35.3) |
Beagle dog (n = 3) | 100 | 1.0 [1.0, 1.0] | 10.6 ± 2.6 (24.8) | 11.6 ± 7.6 (65.9) | 87.9 ± 52.2 (59.4) | 108.6 ± 70.6 (65.0) | 20.7 ± 16.5 (79.7) | 1.5 ± 1.4 (92.1) |
Measurement | Species | Route of Administration | Number of Animals | Number of Time Points | Dose |
---|---|---|---|---|---|
Ocular and blood concentration of [14C] enavogliflozin | Rabbit | Ocular | 14 (2 per time point) | 7 | 1200 μg (600 μg/eye, both eyes) |
Plasma concentration of enavogliflozin | Rabbit | Ocular | 6 | 7 | 400 μg (200 μg/eye, both eyes) |
Rabbit | Oral | 6 | 7 | 400 μg | |
Rat | Ocular | 3 | 10 | 25 μg, left eye | |
Beagle dog | Ocular | 3 | 10 | 100 μg, left eye |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, M.; Kang, M.; Lee, E.; Shin, D. Ocular and Plasma Pharmacokinetics of Enavogliflozin Ophthalmic Solution in Preclinical Species. Pharmaceuticals 2024, 17, 111. https://doi.org/10.3390/ph17010111
Jang M, Kang M, Lee E, Shin D. Ocular and Plasma Pharmacokinetics of Enavogliflozin Ophthalmic Solution in Preclinical Species. Pharmaceuticals. 2024; 17(1):111. https://doi.org/10.3390/ph17010111
Chicago/Turabian StyleJang, Mingui, Minsung Kang, Eunseok Lee, and Dongseong Shin. 2024. "Ocular and Plasma Pharmacokinetics of Enavogliflozin Ophthalmic Solution in Preclinical Species" Pharmaceuticals 17, no. 1: 111. https://doi.org/10.3390/ph17010111
APA StyleJang, M., Kang, M., Lee, E., & Shin, D. (2024). Ocular and Plasma Pharmacokinetics of Enavogliflozin Ophthalmic Solution in Preclinical Species. Pharmaceuticals, 17(1), 111. https://doi.org/10.3390/ph17010111