Bioactive-Guided Phytochemical Investigations, In Vitro and In Silico Alpha-Glucosidase Inhibition of Two Vietnamese Medicinal Plants Dicranopteris linearis and Psychotria adenophylla
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Identification and Alpha-Glucosidase Inhibition of Isolated Compounds of D. linearis
2.2. Phytochemical Identification and Alpha-Glucosidase Inhibition of Isolated Compounds of P. adenophylla
2.3. Alpha-Glucosidase Inhibition of Extracts, Fractions, and Compounds from D. linearis and P. adenophylla
3. Discussion
3.1. Chemical Composition of D. linearis and P. adenophylla
3.2. Alpha-Glucosidase Inhibition of Extracts, Fractions, and Compounds from D. linearis and P. adenophylla
4. Materials and Methods
4.1. Source of the Plant Material
4.2. Isolation of Compounds DL1-DL13 from D. linearis
4.3. Isolation of Compounds PA1-PA7 from P. adenophylla
4.4. Alpha-Glucosidase Inhibition Assay
4.5. Molecular Docking Studies
4.6. Structure Elucidation of the Compounds
4.7. HPLC Experiments Detected the Presence of Lignins in P. adenophylla
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Chen, J.-J.; Gao, K. Chemical Constituents and Biological Activities of Dicranopteris linearis. Chem. Nat. Compd. 2014, 49, 1129–1131. [Google Scholar] [CrossRef]
- Li, X.-L.; Cheng, X.; Yang, L.-M.; Wang, R.-R.; Zheng, Y.-T.; Xiao, W.-L.; Zhao, Y.; Xu, G.; Lu, Y.; Chang, Y.; et al. Dichotomains A and B: Two New Highly Oxygenated Phenolic Derivatives from Dicranopteris dichotoma. Org. Lett. 2006, 8, 1937–1940. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-L.; Tu, L.; Zhao, Y.; Peng, L.-Y.; Xu, G.; Cheng, X.; Zhao, Q.-S. Terpenoids from Two Dicranopteris Species. Helv. Chim. Acta 2008, 91, 856–861. [Google Scholar] [CrossRef]
- Ponnusamy, Y.; Chear, N.J.-Y.; Ramanathan, S.; Lai, C.-S. Polyphenols Rich Fraction of Dicranopteris linearis Promotes Fibroblast Cell Migration and Proliferation in Vitro. J. Ethnopharmacol. 2015, 168, 305–314. [Google Scholar] [CrossRef]
- Zakaria, Z.A.; Kamisan, F.H.; Omar, M.H.; Mahmood, N.D.; Othman, F.; Abdul Hamid, S.S.; Abdullah, M.N.H. Methanol Extract of Dicranopteris linearis L. Leaves Impedes Acetaminophen-Induced Liver Intoxication Partly by Enhancing the Endogenous Antioxidant System. BMC Complement. Altern. Med. 2017, 17, 271. [Google Scholar] [CrossRef]
- Kamisan, F.H.; Yahya, F.; Mamat, S.S.; Kamarolzaman, M.F.F.; Mohtarrudin, N.; Kek, T.L.; Salleh, M.Z.; Hussain, M.K.; Zakaria, Z.A. Effect of Methanol Extract of Dicranopteris linearis against Carbon Tetrachloride- Induced Acute Liver Injury in Rats. BMC Complement. Altern. Med. 2014, 14, 123. [Google Scholar] [CrossRef]
- Sarker, S.K.; Hossain, A.B.M.E. Pteridophytes of Greater Mymensingh District of Bangladesh Used as Vegetables and Medicines. Bangladesh J. Plant Taxon. 1970, 16, 47–56. [Google Scholar] [CrossRef]
- Davis, A.P.; Bridson, D.; Jarvis, C.; Govaerts, R. The Typification and Characterization of the Genus Psychotria L. (Rubiaceae). Bot. J. Linn. Soc. 2001, 135, 35–42. [Google Scholar] [CrossRef]
- Calixto, N.O.; Pinto, M.E.F.; Ramalho, S.D.; Burger, M.C.M.; Bobey, A.F.; Young, M.C.M.; Bolzani, V.S.; Pinto, A.C. The Genus Psychotria: Phytochemistry, Chemotaxonomy, Ethnopharmacology and Biological Properties. J. Braz. Chem. Soc. 2016, 27, 1355–1378. [Google Scholar] [CrossRef]
- Benevides, P.J.C.; Young, M.C.M.; Bolzani, V.d.S. Biological Activities of Constituents from Psychotria spectabilis. Pharm. Biol. 2005, 42, 565–569. [Google Scholar] [CrossRef]
- Pimenta, A.T.A.; Uchôa, D.E.A.; Braz-Filho, R.; Silveira, E.R.; Lima, M.A.S. Alkaloid and Other Chemical Constituents from Psychotria stachyoides Benth. J. Braz. Chem. Soc. 2011, 22, 2216–2219. [Google Scholar] [CrossRef]
- De Carvalho, A.R.; De Carvalho, M.G.; Braz-Filho, R.; Vieira, I.J.C. Chapter 7—Psychotria Genus: Chemical Constituents, Biological Activities, and Synthetic Studies. Stud. Nat. Prod. Chem. 2016, 48, 231–261. [Google Scholar] [CrossRef]
- Dan, S.; Dan, S.S. Phytochemical Study of Adansonia digitata, Coccoloba excoriata, Psychotria adenophylla and Schleichera oleosa. Fitoterapia 1986, 57, 445–446. [Google Scholar]
- Chaturvedula, V.S.P.; Prakash, I. Isolation of Stigmasterol and β-Sitosterol from the Dichloromethane Extract of Rubus suavissimus. Int. Curr. Pharm. J. 2012, 1, 239–242. [Google Scholar] [CrossRef]
- Katja, D.G.; Harneti, D.; Mayanti, T.; Nurlelasari, N.; Maharani, R.; Shiono, Y.; Supratman, U. Cytotoxic Steroids From The Stembak of Chisocheton celebicus KOORD. J. Kim. Valensi 2019, 5, 143–148. [Google Scholar] [CrossRef]
- Wu, S.-Y.; Huang, G.-L.; Zhou, Z.-L.; Chen, Z.-M. Chemical Constituents from the Solid Culture of the Edible Mushroom Flammulina velutipes. Chem. Nat. Compd. 2022, 58, 981–983. [Google Scholar] [CrossRef]
- Olah, G.A.; Wu, A.; Farooq, O. Ring tert-Butylation of Benzophenones and Benzaldehyde with tert-Butyllithium and Thionyl Chloride. Synthesis 1991, 1991, 1179–1182. [Google Scholar] [CrossRef]
- Kim, K.H.; Clardy, J.; Senger, D.; Cao, S. Chakyunglupulins A and B, Two Novel 4,8,8-Trimethylcyclooct-2-Enone Derivatives from Barleria lupulina. Tetrahedron Lett. 2015, 56, 2732–2734. [Google Scholar] [CrossRef]
- Coward, L.; Barnes, N.C.; Setchell, K.D.R.; Barnes, S. Genistein, Daidzein, and Their Beta-Glycoside Conjugates: Antitumor Isoflavones in Soybean Foods from American and Asian Diets. J. Agric. Food Chem. 1993, 41, 1961–1967. [Google Scholar] [CrossRef]
- He, J.; Fan, P.; Feng, S.; Shao, P.; Sun, P. Isolation and Purification of Two Isoflavones from Hericium erinaceum Mycelium by High-Speed Counter-Current Chromatography. Molecules 2018, 23, 560. [Google Scholar] [CrossRef]
- Long, C.; Sauleau, P.; David, B.; Lavaud, C.; Cassabois, V.; Ausseil, F.; Massiot, G. Bioactive Flavonoids of Tanacetum parthenium Revisited. Phytochemistry 2003, 64, 567–569. [Google Scholar] [CrossRef]
- Hamed, A.R.; Mohamed, T.A.; Tawfik, W.A.; Hassan, E.M.; El-Toumy, S.A.; Dinkova-Kostova, A.T. Bioactive Polymethoxylated Flavonoids from Chiliadenus montanus. J. Chem. Pharm. Res. 2016, 8, 788–793. [Google Scholar]
- Lin, L.-C.; Pai, Y.-F.; Tsai, T.-H. Isolation of Luteolin and Luteolin-7-O-Glucoside from Dendranthema morifolium Ramat Tzvel and Their Pharmacokinetics in Rats. J. Agric. Food Chem. 2015, 63, 7700–7706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, D.; Yang, L.; Zhou, D.; Zhang, J. Purification and Characterization of Flavonoids from the Leaves of Zanthoxylum bungeanum and Correlation between Their Structure and Antioxidant Activity. PLoS ONE 2014, 9, e105725. [Google Scholar] [CrossRef] [PubMed]
- Kazuma, K. Malonylated Flavonol Glycosides from the Petals of Clitoria ternatea. Phytochemistry 2003, 62, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.P.; Wu, H.K.; Wu, T.; Shi, H.; Hang, B.; Aisa, H.A. Kaempferol and Quercetin Flavonoids from Rosa rugosa. Chem. Nat. Compd. 2006, 42, 736–737. [Google Scholar] [CrossRef]
- Yamauchi, K.; Mitsunaga, T.; Inagaki, M.; Suzuki, T. Synthesized Quercetin Derivatives Stimulate Melanogenesis in B16 Melanoma Cells by Influencing the Expression of Melanin Biosynthesis Proteins MITF and P38 MAPK. Bioorg. Med. Chem. 2014, 22, 3331–3340. [Google Scholar] [CrossRef]
- Zuo, H.L.; Yang, F.Q.; Zhang, X.M.; Xia, Z.N. Separation of Cis- and Trans-Asarone from Acorus tatarinowii by Preparative Gas Chromatography. J. Anal. Methods Chem. 2012, 2012, e402081. [Google Scholar] [CrossRef]
- Sinha, A.K.; Acharya, R.; Joshi, B.P. A mild and convenient procedure for the conversion of toxic β-asarone into rare phenylpropanoids: 2,4,5-Trimethoxycinnamaldehyde and γ-asarone. J. Nat. Prod. 2002, 65, 764–765. [Google Scholar] [CrossRef]
- Lim, E.-K.; Jackson, R.G.; Bowles, D.J. Identification and Characterisation of Arabidopsis Glycosyltransferases Capable of Glucosylating Coniferyl Aldehyde and Sinapyl Aldehyde. FEBS Lett. 2005, 579, 2802–2806. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, Z.; Wu, N.; Xu, W.; Han, L.; Li, N.; Han, Y. Two Novel Naphthalene Glucosides and an Anthraquinone Isolated from Rumex dentatus and Their Antiproliferation Activities in Four Cell Lines. Molecules 2012, 17, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Byun, E.; Jeong, G.-S.; An, R.-B.; Min, T.S.; Kim, Y.-C. Tribuli Fructus Constituents Protect against Tacrine-Induced Cytotoxicity in HepG2 Cells. Arch. Pharm. Res. 2010, 33, 67–70. [Google Scholar] [CrossRef]
- Li, Y.-X.; Li, Y.; Zhong, Q.; Kim, M.-M.; Kim, S.-K. In Vitro Antioxidant Activity of 5-HMF Isolated from Marine Red Alga Laurencia undulata in Free Radical Mediated Oxidative Systems. J. Microbiol. Biotechnol. 2009, 19, 1319–1327. [Google Scholar] [CrossRef] [PubMed]
- Eawsakul, K.; Panichayupakaranant, P.; Ongtanasup, T.; Warinhomhoun, S.; Noonong, K.; Bunluepuech, K. Computational Study and in Vitro Alpha-Glucosidase Inhibitory Effects of Medicinal Plants from a Thai Folk Remedy. Heliyon 2021, 7, e08078. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Yang, X.; Shang, C.; Thao, T.T.P.; Koyama, T. Inhibitory Properties of Saponin from Eleocharis dulcis Peel against α-Glucosidase. RSC Adv. 2021, 11, 15400–15409. [Google Scholar] [CrossRef]
- Seong, S.H.; Roy, A.; Jung, H.A.; Jung, H.J.; Choi, J.S. Protein Tyrosine Phosphatase 1B and α-Glucosidase Inhibitory Activities of Pueraria lobata Root and Its Constituents. J. Ethnopharmacol. 2016, 194, 706–716. [Google Scholar] [CrossRef] [PubMed]
- Kahksha; Alam, O.; Al-Keridis, L.A.; Khan, J.; Naaz, S.; Alam, A.; Ashraf, S.A.; Alshammari, N.; Adnan, M.; Beg, M.A. Evaluation of Antidiabetic Effect of Luteolin in STZ Induced Diabetic Rats: Molecular Docking, Molecular Dynamics, In Vitro and In Vivo Studies. J. Funct. Biomater. 2023, 14, 126. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.J.; Zhao, Y.M.; Lu, H.N.; Wang, X.E.; Jin, N.Z. Exploring Molecular Flexibility and the Interactions of Quercetin Derivatives in the Active Site of α-Glucosidase Using Molecular Docking and Charge Density Analysis. Comput. Theor. Chem. 2016, 1094, 55–68. [Google Scholar] [CrossRef]
- Hua, F.; Zhou, P.; Wu, H.-Y.; Chu, G.-X.; Xie, Z.-W.; Bao, G.-H. Inhibition of α-Glucosidase and α-Amylase by Flavonoid Glycosides from Lu’an GuaPian Tea: Molecular Docking and Interaction Mechanism. Food Funct. 2018, 9, 4173–4183. [Google Scholar] [CrossRef]
- Arvindekar, A.; More, T.; Payghan, P.V.; Laddha, K.; Ghoshal, N.; Arvindekar, A. Evaluation of Anti-Diabetic and Alpha Glucosidase Inhibitory Action of Anthraquinones from Rheum Emodi. Food Funct. 2015, 6, 2693–2700. [Google Scholar] [CrossRef]
- Zakaria, Z.A.; Sahmat, A.; Azmi, A.H.; Nur Zainol, A.S.; Omar, M.H.; Balan, T.; Sulistyorini, L.; Azizah, R.; Abdullah, M.N.H. Polyphenolics and Triterpenes Presence in Chloroform Extract of Dicranopteris linearis Leaves Attenuated Paracetamol-Induced Liver Intoxication in Rat. BMC Complement. Med. Ther. 2021, 21, 35. [Google Scholar] [CrossRef] [PubMed]
- Guéritte-Voegelein, F.; Sévenet, T.; Pusset, J.; Adeline, M.-T.; Gillet, B.; Beloeil, J.-C.; Guénard, D.; Potier, P.; Rasolonjanahary, R.; Kordon, C. Alkaloids from Psychotria oleoides with Activity on Growth Hormone Release. J. Nat. Prod. 1992, 55, 923–930. [Google Scholar] [CrossRef]
- Li, X.-N.; Zhang, Y.; Cai, X.-H.; Feng, T.; Liu, Y.-P.; Li, Y.; Ren, J.; Zhu, H.-J.; Luo, X.-D. Psychotripine: A New Trimeric Pyrroloindoline Derivative from Psychotria pilifera. Org. Lett. 2011, 13, 5896–5899. [Google Scholar] [CrossRef] [PubMed]
- Takayama, H.; Mori, I.; Kitajima, M.; Aimi, N.; Lajis, N.H. New Type of Trimeric and Pentameric Indole Alkaloids from Psychotria rostrata. Org. Lett. 2004, 6, 2945–2948. [Google Scholar] [CrossRef] [PubMed]
- Lajis, N.H.; Mahmud, Z.; Toia, R.F. The Alkaloids of Psychotria rostrata. Planta Med. 1993, 59, 383–384. [Google Scholar] [CrossRef]
- Mala, P.; Khan, G.A.; Gopalan, R.; Gedefaw, D.; Soapi, K. Fijian Medicinal Plants and Their Role in the Prevention of Type 2 Diabetes Mellitus. Biosci. Rep. 2022, 42, BSR20220461. [Google Scholar] [CrossRef]
- Nipun, T.S.; Khatib, A.; Ahmed, Q.U.; Redzwan, I.E.; Ibrahim, Z.; Khan, A.Y.F.; Primaharinastiti, R.; Khalifa, S.A.M.; El-Seedi, H.R. Alpha-Glucosidase Inhibitory Effect of Psychotria malayana Jack Leaf: A Rapid Analysis Using Infrared Fingerprinting. Molecules 2020, 25, 4161. [Google Scholar] [CrossRef]
- Chen, Q.; Toy, J.Y.H.; Seta, C.; Yeo, T.C.; Huang, D. Inhibition Effect of Extract of Psychotria viridiflora Stem on α-Amylase and α-Glucosidase and Its Application in Lowering the Digestibility of Noodles. Front. Nutr. 2021, 8, 701114. [Google Scholar] [CrossRef]
- Li, M.; Bao, X.; Zhang, X.; Ren, H.; Cai, S.; Hu, X.; Yi, J. Exploring the Phytochemicals and Inhibitory Effects against α-Glucosidase and Dipeptidyl Peptidase-IV in Chinese Pickled Chili Pepper: Insights into Mechanisms by Molecular Docking Analysis. LWT 2022, 162, 113467. [Google Scholar] [CrossRef]
- Park, M.-H.; Ju, J.-W.; Park, M.; Han, J. Daidzein Inhibits Carbohydrate Digestive Enzymes in Vitro and Alleviates Postprandial Hyperglycemia in Diabetic Mice. Eur. J. Pharmacol. 2013, 712, 48–52. [Google Scholar] [CrossRef]
- Şöhretoğlu, D.; Sari, S.; Barut, B.; Özel, A. Discovery of Potent α-Glucosidase Inhibitor Flavonols: Insights into Mechanism of Action through Inhibition Kinetics and Docking Simulations. Bioorg. Chem. 2018, 79, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Ning, Z.; Zhai, L.; Huang, T.; Peng, J.; Hu, D.; Xiao, H.; Wen, B.; Lin, C.; Zhao, L.; Bian, Z. Identification of α-Glucosidase Inhibitors from Cyclocarya paliurus Tea Leaves Using UF-UPLC-Q/TOF-MS/MS and Molecular Docking. Food Funct. 2019, 10, 1893–1902. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.; Duong, T.; Truong Nguyen, H.; Vu, Y.T.; Tran, T.; Ho, T.; Mai, C.; Mai, D.; Nguyen, H.; Thuy Le, H.; et al. New Halogenated Flavonoids from Adenosma bracteosum and Vitex negundo and Their α-Glucosidase Inhibition. Chem. Biodivers. 2023, 20, e202300390. [Google Scholar] [CrossRef]
- Qi, S.; Jiang, B.; Huang, C.; Jin, Y. Dual Regulation of Sulfonated Lignin to Prevent and Treat Type 2 Diabetes Mellitus. Biomacromolecules 2023, 24, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ma, Y.-T.; Sun, Q.-Y.; Zang, Z.; Yang, F.-M.; Liu, J.-P.; Jiang, J.-H.; Huang, S.-X.; Zhao, Y. A New Lathyrane Diterpenoid Ester from Euphorbia dracunculoides. Chem. Nat. Compd. 2016, 52, 1037–1040. [Google Scholar] [CrossRef]
- Nguyen, N.-H.; Tran, N.-M.-A.; Duong, T.-H.; Vo, G.V. α-Glucosidase Inhibitory Activities of Flavonoid Derivatives Isolated from Bouea macrophylla: In Vitro and in Silico Studies. RSC Adv. 2023, 13, 8190–8201. [Google Scholar] [CrossRef]
- Jacobson, M.P.; Pincus, D.L.; Rapp, C.S.; Day, T.J.F.; Honig, B.; Shaw, D.E.; Friesner, R.A. A Hierarchical Approach to All-Atom Protein Loop Prediction. Proteins Struct. Funct. 2004, 55, 351–367. [Google Scholar] [CrossRef]
- Wang, G.; Chen, M.; Wang, J.; Peng, Y.; Li, L.; Xie, Z.; Deng, B.; Chen, S.; Li, W. Synthesis, Biological Evaluation and Molecular Docking Studies of Chromone Hydrazone Derivatives as α-Glucosidase Inhibitors. Bioorg. Med. Chem. Lett. 2017, 27, 2957–2961. [Google Scholar] [CrossRef]
- Sherman, W.; Day, T.; Jacobson, M.P.; Friesner, R.A.; Farid, R. Novel Procedure for Modeling Ligand/Receptor Induced Fit Effects. J. Med. Chem. 2006, 49, 534–553. [Google Scholar] [CrossRef]
- Guimarães, C.R.W.; Cardozo, M. MM-GB/SA Rescoring of Docking Poses in Structure-Based Lead Optimization. J. Chem. Inf. Model. 2008, 48, 958–970. [Google Scholar] [CrossRef]
Bio-Source | Extracts | IC50 µg/mL |
---|---|---|
D. linearis | Crude MeOH | 31.1 ± 0.03 |
n-Hexane (Extract H) | >300 | |
n-Hexane: ethyl acetate (Extract HEA) | 195.0 ± 0.6 | |
Ethyl acetate (Extract EA) | 124.1 ± 2.4 | |
Methanol (Extract M) | >300 | |
Fraction HEA1 | >300 | |
Fraction HEA2 | 275.0 ± 4.6 | |
Fraction HEA3 | >300 | |
Fraction HEA4 | >300 | |
Fraction HEA5 | >300 | |
Fraction HEA6 | 243.0 ± 2.9 | |
Fraction EA1 | >300 | |
Fraction EA2 | 137.0 ± 2.9 | |
Fraction EA3 | 261.0 ± 8.7 | |
Fraction EA4 | 87.8 ± 1.1 | |
Fraction EA5 | >300 | |
P. adenophylla | Crude MeOH | 109.9 ± 1.2 |
n-Hexane (Extract H) | 56.6 ± 3.5 | |
n-Hexane: ethyl acetate (Extract HEA) | 16.6 ± 0.5 | |
Ethyl acetate (Extract EA) | 6.7 ± 0.4 | |
Methanol (Extract M) | 3.4 ± 0.1 | |
Fraction EA1 | 15.5 ± 0.5 | |
Fraction EA2 | 16.6 ± 0.5 | |
Fraction EA3 | 26.6 ± 1.2 | |
Fraction EA4 | 16.5 ± 0.4 | |
Fraction EA5 | 1.7 ± 0.04 | |
Acarbose (positive control) | 201.9 ± 2.2 |
Bio-Source | Compounds | IC50 µM |
---|---|---|
D. linearis | DL1 | >300 |
DL2 | >300 | |
DL3 | 177.3 ± 3.6 | |
DL4 | >300 | |
DL5 | 82.2 ± 2.2 | |
DL6 | 66.9 ± 1.7 | |
DL7 | 267.5 ± 3.4 | |
DL8 | 282.1 ± 9.2 | |
DL9 | >300 | |
DL10 | 67.1 ± 1.2 | |
DL11 | 117 ± 1.9 | |
DL12 | 99.8 ± 1.2 | |
DL13 | 230 ± 2.7 | |
P. adenophylla | PA1 | >300 |
PA2 + PA3 | >300 | |
PA4 | 249.7 ± 11.4 | |
PA5 | 98.2 ± 2.2 | |
PA6 | 76.2 ± 2.9 | |
PA7 | >300 | |
Acarbose (positive control) | 313.2 ± 3.4 |
Compounds | XP-IFD Docking Scores (kcal/mol) | Binding Affinity (kcal/mol) | Number of H-Bonds | H-Bonds Network | |
---|---|---|---|---|---|
MM-GBSA | Exp | ||||
Chakyuglupulin B (DL5) | −4.3 | −29.3 | −5.6 | 4 | Asp 214, Arg 212, Asp 349, Arg 439 |
Jaceidin (DL8) | −6.8 | −43.2 | −4.9 | 4 | Asp 214, Glu 304, Asn 241, Asn 241 |
Chrysophanol (PA5) | −5.2 | −24.0 | −5.5 | 2 | Asp 214, Glu 276 |
Tribulisimide D (PA6) | −7.4 | −43.6 | −5.7 | 2 | Asp 214, Arg 439 |
6-hydroxy stigmast-4-en-3-one (DL3) | −7.5 | −65.4 | −5.1 | 2 | Asp 349, Arg 212 |
Acarbose (positive control) | −17.3 | −128.2 | −4.8 | 11 | Asp 214, Glu 276, Asp 349, Asp 68, Hie 111, Phe 157, Glu 304, Thr 307 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duong, T.-H.; Vu, Y.T.; Long, N.P.; Phan, N.-H.-N.; Pham, N.-K.-T.; Sichaem, J.; Kieu, N.-K.-D.; Duong, C.-B.; Nguyen, T.-T.; Dang, V.-S.; et al. Bioactive-Guided Phytochemical Investigations, In Vitro and In Silico Alpha-Glucosidase Inhibition of Two Vietnamese Medicinal Plants Dicranopteris linearis and Psychotria adenophylla. Pharmaceuticals 2023, 16, 1253. https://doi.org/10.3390/ph16091253
Duong T-H, Vu YT, Long NP, Phan N-H-N, Pham N-K-T, Sichaem J, Kieu N-K-D, Duong C-B, Nguyen T-T, Dang V-S, et al. Bioactive-Guided Phytochemical Investigations, In Vitro and In Silico Alpha-Glucosidase Inhibition of Two Vietnamese Medicinal Plants Dicranopteris linearis and Psychotria adenophylla. Pharmaceuticals. 2023; 16(9):1253. https://doi.org/10.3390/ph16091253
Chicago/Turabian StyleDuong, Thuc-Huy, Y Thien Vu, Nguyen Phuoc Long, Nguyen-Hong-Nhi Phan, Nguyen-Kim-Tuyen Pham, Jirapast Sichaem, Nguyen-Khanh-Duy Kieu, Chi-Bao Duong, Thanh-Trung Nguyen, Van-Son Dang, and et al. 2023. "Bioactive-Guided Phytochemical Investigations, In Vitro and In Silico Alpha-Glucosidase Inhibition of Two Vietnamese Medicinal Plants Dicranopteris linearis and Psychotria adenophylla" Pharmaceuticals 16, no. 9: 1253. https://doi.org/10.3390/ph16091253
APA StyleDuong, T. -H., Vu, Y. T., Long, N. P., Phan, N. -H. -N., Pham, N. -K. -T., Sichaem, J., Kieu, N. -K. -D., Duong, C. -B., Nguyen, T. -T., Dang, V. -S., & Nguyen, H. T. (2023). Bioactive-Guided Phytochemical Investigations, In Vitro and In Silico Alpha-Glucosidase Inhibition of Two Vietnamese Medicinal Plants Dicranopteris linearis and Psychotria adenophylla. Pharmaceuticals, 16(9), 1253. https://doi.org/10.3390/ph16091253