The Effects of Perilla frutescens Extracts on IgA Nephropathy: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
- Serum IgA levels (mg/dL);
- Proliferating cell nuclear antigen (PCNA)—the average number of PCNA positive-cells in a glomerular cross section;
- [3H]Thymidine incorporation (cpm).
5. Conclusions
6. Future Directions of Research
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Nicola, L.; Zoccali, C. Chronic kidney disease prevalence in the general population: Heterogeneity and concerns. Nephrol. Dial. Transplant. 2016, 31, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Ene-Iordache, B.; Perico, N.; Bikbov, B.; Carminati, S.; Remuzzi, A.; Perna, A.; Islam, N.; Bravo, R.F.; Aleckovic-Halilovic, M.; Zou, H.; et al. Chronic kidney disease and cardiovascular risk in six regions of the world (ISN-KDDC): A cross-sectional study. Lancet Glob. Health 2016, 4, e307–e319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Nicola, L.; Donfrancesco, C.; Minutolo, R.; Lo Noce, C.; Palmieri, L.; De Curtis, A.; Iacoviello, L.; Zoccali, C.; Gesualdo, L.; Conte, G.; et al. Prevalence and cardiovascular risk profile of chronic kidney disease in Italy: Results of the 2008-12 National Health Examination Survey. Nephrol. Dial. Transplant. 2015, 30, 806–814. [Google Scholar] [CrossRef]
- Ebert, N.; Jakob, O.; Gaedeke, J.; van der Giet, M.; Kuhlmann, M.K.; Martus, P.; Mielke, N.; Schuchardt, M.; Tölle, M.; Wenning, V.; et al. Prevalence of reduced kidney function and albuminuria in older adults: The Berlin Initiative Study. Nephrol. Dial. Transplant. 2017, 32, 997–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brück, K.; Stel, V.S.; Gambaro, G.; Hallan, S.; Völzke, H.; Ärnlöv, J.; Kastarinen, M.; Guessous, I.; Vinhas, J.; Stengel, B.; et al. CKD Prevalence Varies across the European General Population. J. Am. Soc. Nephrol. 2016, 27, 2135–2147. [Google Scholar] [CrossRef]
- Glassock, R.J.; Warnock, D.G.; Delanaye, P. The global burden of chronic kidney disease: Estimates, variability and pitfalls. Nat. Rev. Nephrol. 2017, 13, 104–114. [Google Scholar] [CrossRef]
- Mills, K.T.; Xu, Y.; Zhang, W.; Bundy, J.D.; Chen, C.S.; Kelly, T.N.; Chen, J.; He, J. A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. 2015, 88, 950–957. [Google Scholar] [CrossRef] [Green Version]
- Bourey, P.D. Renal disorders. Radiol. Technol. 2008, 79, 433–446; quiz 447–439. [Google Scholar]
- Bohle, A.; Wehrmann, M.; Bogenschütz, O.; Batz, C.; Vog, W.; Schmitt, H.; Müller, C.; Müller, G. The Long-Term Prognosis of the of the Primary Glomerulonephritides: A Morphological and Clinical Analysis of 1747 Cases. Pathol. Res. Pract. 1992, 188, 908–924. [Google Scholar] [CrossRef]
- Tipu, H.N.; Ahmed, T.A.; Bashir, M.M. Clinical, histopathological and immunofluorescent findings of IgA nephropathy. Iran. J. Immunol. 2011, 8, 104. [Google Scholar]
- Little, M.A.; Dorman, A.; Gill, D.; Walshe, J.J.; Walshe, J.J. Mesangioproliferative glomerulonephritis with IgM deposition: Clinical characteristics and outcome. Ren. Fail. 2000, 22, 445–457. [Google Scholar] [CrossRef] [PubMed]
- John, M.; Lam, M.; Latham, B.; Saker, B.; French, M.A. Nephrotic syndrome in a patient with IgA deficiency-associated mesangioproliferative glomerulonephritis. Pathology 2000, 32, 56–58. [Google Scholar] [CrossRef] [PubMed]
- Hassler, J.R. IgA nephropathy: A brief review. Semin. Diagn. Pathol. 2020, 37, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Woo, K.T.; Chan, C.M.; Lim, C.; Choo, J.; Chin, Y.M.; Teng, E.W.L.; Mok, I.; Kwek, J.L.; Loh, A.H.L.; Choong, H.L.; et al. A Global Evolutionary Trend of the Frequency of Primary Glomerulonephritis over the Past Four Decades. Kidney Dis. 2019, 5, 247–258. [Google Scholar] [CrossRef]
- Rajasekaran, A.; Julian, B.A.; Rizk, D.V. IgA Nephropathy: An Interesting Autoimmune Kidney Disease. Am. J. Med. Sci. 2021, 361, 176–194. [Google Scholar] [CrossRef]
- Floege, J.; Rauen, T.; Tang, S.C.W. Current treatment of IgA nephropathy. Semin. Immunopathol. 2021, 43, 717–728. [Google Scholar] [CrossRef]
- Peng, A.; Gu, Y.; Lin, S.Y. Herbal treatment for renal diseases. Ann. Acad. Med. Singap. 2005, 34, 44–51. [Google Scholar] [CrossRef]
- Isnard Bagnis, C.; Deray, G.; Baumelou, A.; Le Quintrec, M.; Vanherweghem, J.L. Herbs and the kidney. Am. J. Kidney Dis. 2004, 44, 1–11. [Google Scholar] [CrossRef]
- Schaal, J.P.; Riethmuller, D.; Martin, A.; Lemouel, A.; Quereux, C.; Maillet, R. Conduite à tenir au cours du travail et de l’accouchement. In Encycl Méd Chir; Elsevier: Amsterdam, The Netherlands, 1998; Paris Obstétrique; Volume 5-049-D-27, 35p. [Google Scholar]
- Xia, J.; He, L.Q.; Su, X. Interventional mechanisms of herbs or herbal extracts on renal interstitial fibrosis. J. Integr. Med. 2016, 14, 165–173. [Google Scholar] [CrossRef]
- Heo, J.C.; Nam, D.Y.; Seo, M.S.; Lee, S.H. Alleviation of atopic dermatitis-related symptoms by Perilla frutescens Britton. Int. J. Mol. Med. 2011, 28, 733–737. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Qiu, J.F.; Ma, L.J.; Hu, Y.J.; Li, P.; Wan, J.B. Phytochemical and phytopharmacological review of Perilla frutescens L. (Labiatae), a traditional edible-medicinal herb in China. Food Chem. Toxicol. 2017, 108, 375–391. [Google Scholar] [CrossRef]
- Ahmed, H.M. Ethnomedicinal, Phytochemical and Pharmacological Investigations of Perilla frutescens (L.) Britt. Molecules 2018, 24, 102. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, M.; Matsuzaki, K.; Maruyama, K.; Sumiyoshi, E.; Hossain, S.; Wakatsuki, H.; Kato, S.; Ohno, M.; Tanabe, Y.; Kuroda, Y.; et al. Perilla frutescens seed oil combined with Anredera cordifolia leaf powder attenuates age-related cognitive decline by reducing serum triglyceride and glucose levels in healthy elderly Japanese individuals: A possible supplement for brain health. Food Funct. 2022, 13, 7226–7239. [Google Scholar] [CrossRef] [PubMed]
- Saita, E.; Kishimoto, Y.; Tani, M.; Iizuka, M.; Toyozaki, M.; Sugihara, N.; Kondo, K. Antioxidant activities of Perilla frutescens against low-density lipoprotein oxidation in vitro and in human subjects. J. Oleo. Sci. 2012, 61, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Takano, H.; Osakabe, N.; Sanbongi, C.; Yanagisawa, R.; Inoue, K.; Yasuda, A.; Natsume, M.; Baba, S.; Ichiishi, E.; Yoshikawa, T. Extract of Perilla frutescens enriched for rosmarinic acid, a polyphenolic phytochemical, inhibits seasonal allergic rhinoconjunctivitis in humans. Exp. Biol. Med. 2004, 229, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Buchwald-Werner, S.; Fujii, H.; Reule, C.; Schoen, C. Perilla extract improves gastrointestinal discomfort in a randomized placebo controlled double blind human pilot study. BMC Complement. Altern. Med. 2014, 14, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schirrmacher, G.; Skurk, T.; Hauner, H.; Grassmann, J. Effect of Spinacia oleraceae L. and Perilla frutescens L. on antioxidants and lipid peroxidation in an intervention study in healthy individuals. Plant Foods Hum. Nutr. 2010, 65, 71–76. [Google Scholar] [CrossRef]
- Marseglia, G.L.; Licari, A.; Ciprandi, G. A polycentric, randomized, double blind, parallel-group, placebo-controlled study on Lertal®, a multicomponent nutraceutical, as add-on treatment in children with allergic rhinoconjunctivitis: Phase I during active treatment. J. Biol. Regul. Homeost. Agents 2019, 33, 617–622. [Google Scholar] [PubMed]
- Adam, G.; Robu, S.; Flutur, M.M.; Cioanca, O.; Vasilache, I.A.; Adam, A.M.; Mircea, C.; Nechita, A.; Harabor, V.; Harabor, A.; et al. Applications of Perilla frutescens Extracts in Clinical Practice. Antioxidants 2023, 12, 727. [Google Scholar] [CrossRef] [PubMed]
- Makino, T.; Ono, T.; Muso, E.; Honda, G.; Sasayama, S. Suppressive effects of Perilla frutescens on spontaneous IgA nephropathy in ddY mice. Nephron 1999, 83, 40–46. [Google Scholar] [CrossRef]
- Makino, T.; Nakamura, T.; Ono, T.; Muso, E.; Honda, G. Suppressive effects of Perilla frutescens on mesangioproliferative glomerulonephritis in rats. Biol. Pharm. Bull. 2001, 24, 172–175. [Google Scholar] [CrossRef] [Green Version]
- Makino, T.; Ono, T.; Liu, N.; Nakamura, T.; Muso, E.; Honda, G. Suppressive effects of rosmarinic acid on mesangioproliferative glomerulonephritis in rats. Nephron 2002, 92, 898–904. [Google Scholar] [CrossRef]
- Makino, T.; Ono, T.; Matsuyama, K.; Nogaki, F.; Miyawaki, S.; Honda, G.; Muso, E. Suppressive effects of Perilla frutescens on IgA nephropathy in HIGA mice. Nephrol. Dial. Transplant. 2003, 18, 484–490. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, K.; Asahi, K.; Kanesaki, Y.; Hayashi, Y.; Asai, J.; Yuza, T.; Watanabe, K.; Katoh, T.; Watanabe, T. Dietary Perilla seed oil supplement increases plasma omega-3 polyunsaturated fatty acids and ameliorates immunoglobulin A nephropathy in high immunoglobulin A strain of ddY mice. Nephron. Exp. Nephrol. 2011, 119, e33–e39. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.; Carroll, K.; Inker, L.A.; Floege, J.; Perkovic, V.; Boyer-Suavet, S.; Major, R.W.; Schimpf, J.I.; Barratt, J.; Cattran, D.C.; et al. Proteinuria Reduction as a Surrogate End Point in Trials of IgA Nephropathy. Clin. J. Am. Soc. Nephrol. 2019, 14, 469–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berthoux, F.; Mohey, H.; Laurent, B.; Mariat, C.; Afiani, A.; Thibaudin, L. Predicting the risk for dialysis or death in IgA nephropathy. J. Am. Soc. Nephrol. 2011, 22, 752–761. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Liu, J.; Duan, S.; Chen, P.; Tang, L.; Zhang, L.; Feng, Z.; Cai, G.; Wu, J.; Chen, X. Clinicopathological Features to Predict Progression of IgA Nephropathy with Mild Proteinuria. Kidney Blood Press. Res. 2018, 43, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Reich, H.N.; Troyanov, S.; Scholey, J.W.; Cattran, D.C. Remission of proteinuria improves prognosis in IgA nephropathy. J. Am. Soc. Nephrol. 2007, 18, 3177–3183. [Google Scholar] [CrossRef] [Green Version]
- Barbour, S.J.; Cattran, D.C.; Espino-Hernandez, G.; Hladunewich, M.A.; Reich, H.N. Identifying the ideal metric of proteinuria as a predictor of renal outcome in idiopathic glomerulonephritis. Kidney Int. 2015, 88, 1392–1401. [Google Scholar] [CrossRef] [Green Version]
- Adrian, E.K., Jr.; Walker, B.E. Incorporation of thymidine-H3 by cells in normal and injured mouse spinal cord. J. Neuropathol. Exp. Neurol. 1962, 21, 597–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, Y.; Lv, Y.; Qian, X.; Wang, S.; Chen, Z.; Jiang, Q.; Cao, C.; Song, Y. Inhibition of HHIP Promoter Methylation Suppresses Human Gastric Cancer Cell Proliferation and Migration. Cell. Physiol. Biochem. 2018, 45, 1840–1850. [Google Scholar] [CrossRef]
- Xie, J.; Li, Q.; Ding, X.; Gao, Y. Targeting mTOR by CZ415 Inhibits Head and Neck Squamous Cell Carcinoma Cells. Cell. Physiol. Biochem. 2018, 46, 676–686. [Google Scholar] [CrossRef]
- Zattara, E.E.; Özpolat, B.D. Quantifying Cell Proliferation During Regeneration of Aquatic Worms. Methods Mol. Biol. 2021, 2219, 163–180. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Kiryluk, K.; Novak, J.; Moldoveanu, Z.; Herr, A.B.; Renfrow, M.B.; Wyatt, R.J.; Scolari, F.; Mestecky, J.; Gharavi, A.G. The pathophysiology of IgA nephropathy. J. Am. Soc. Nephrol. 2011, 22, 1795–1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomana, M.; Novak, J.; Julian, B.A.; Matousovic, K.; Konecny, K.; Mestecky, J. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J. Clin. Investig. 1999, 104, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H.; Moldoveanu, Z.; Hall, S.; Brown, R.; Vu, H.L.; Novak, L.; Julian, B.A.; Tomana, M.; Wyatt, R.J.; Edberg, J.C. IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J. Clin. Investig. 2008, 118, 629–639. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H.; Fan, R.; Zhang, Z.; Brown, R.; Hall, S.; Julian, B.A.; Chatham, W.W.; Suzuki, Y.; Wyatt, R.J.; Moldoveanu, Z. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J. Clin. Investig. 2009, 119, 1668–1677. [Google Scholar] [CrossRef] [Green Version]
- Hastings, M.C.; Moldoveanu, Z.; Suzuki, H.; Berthoux, F.; Julian, B.A.; Sanders, J.T.; Renfrow, M.B.; Novak, J.; Wyatt, R.J. Biomarkers in IgA nephropathy: Relationship to pathogenetic hits. Expert Opin. Med Diagn. 2013, 7, 615–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, H. Biomarkers for IgA nephropathy on the basis of multi-hit pathogenesis. Clin. Exp. Nephrol. 2019, 23, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Takasaki, Y.; Deng, J.S.; Tan, E.M. A nuclear antigen associated with cell proliferation and blast transformation. J. Exp. Med. 1981, 154, 1899–1909. [Google Scholar] [CrossRef] [Green Version]
- Celis, J.E.; Celis, A. Cell cycle-dependent variations in the distribution of the nuclear protein cyclin proliferating cell nuclear antigen in cultured cells: Subdivision of S phase. Proc. Natl. Acad. Sci. USA 1985, 82, 3262–3266. [Google Scholar] [CrossRef]
- Nakopoulou, L.; Stefanaki, K.; Salpigidis, K.; Boletis, J.; Papadakis, J.; Zeiss, P.M.; Vosnides, G. The value of proliferating cell nuclear antigen (PCNA)/cyclin in the assessment of cell proliferation in glomerulonephritis. Histol. Histopathol. 1997, 12, 655–662. [Google Scholar]
- Trimarchi, H.; Haas, M.; Coppo, R. Crescents and IgA Nephropathy: A Delicate Marriage. J. Clin. Med. 2022, 11, 3569. [Google Scholar] [CrossRef]
- Maixnerova, D.; Reily, C.; Bian, Q.; Neprasova, M.; Novak, J.; Tesar, V. Markers for the progression of IgA nephropathy. J. Nephrol. 2016, 29, 535–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.S.; Lee, M.S.; Lee, S.M.; Lee, S.Y.; Lee, E.S.; Lee, E.Y.; Park, S.Y.; Han, J.S.; Kim, S.; Lee, J.S. Histological grading of IgA nephropathy predicting renal outcome: Revisiting H. S. Lee’s glomerular grading system. Nephrol. Dial. Transplant. 2004, 20, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, J.C.; Haas, M.; Reich, H.N. IgA Nephropathy. Clin. J. Am. Soc. Nephrol. 2017, 12, 677–686. [Google Scholar] [CrossRef] [Green Version]
- Moriyama, T. Clinical and histological features and therapeutic strategies for IgA nephropathy. Clin. Exp. Nephrol. 2019, 23, 1089–1099. [Google Scholar] [CrossRef]
- Working Group of the International IgA Nephropathy Network and the Renal Pathology Society; Network, I.N.; Cattran, D.C.; Coppo, R.; Cook, H.T.; Feehally, J.; Roberts, I.S.; Troyanov, S.; Alpers, C.E.; Amore, A.; et al. The Oxford classification of IgA nephropathy: Rationale, clinicopathological correlations, and classification. Kidney Int. 2009, 76, 534–545. [Google Scholar]
- Barbour, S.J.; Coppo, R.; Zhang, H.; Liu, Z.H.; Suzuki, Y.; Matsuzaki, K.; Katafuchi, R.; Er, L.; Espino-Hernandez, G.; Kim, S.J.; et al. Evaluating a New International Risk-Prediction Tool in IgA Nephropathy. JAMA Intern. Med. 2019, 179, 942–952. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Shi-Mei, Y.; Zhi-Wei, S.; Jing, X.; De-Gang, Z.; Hong-Bin, W.; Qi, S. Genome-Wide Analysis of the Fatty Acid Desaturase Gene Family Reveals the Key Role of PfFAD3 in α-Linolenic Acid Biosynthesis in Perilla Seeds. Front. Genet. 2021, 12, 735862. [Google Scholar] [CrossRef]
- Liput, K.P.; Lepczyński, A.; Ogłuszka, M.; Nawrocka, A.; Poławska, E.; Grzesiak, A.; Ślaska, B.; Pareek, C.S.; Czarnik, U.; Pierzchała, M. Effects of Dietary n-3 and n-6 Polyunsaturated Fatty Acids in Inflammation and Cancerogenesis. Int. J. Mol. Sci. 2021, 22, 6965. [Google Scholar] [CrossRef]
- Baggio, B.; Musacchio, E.; Priante, G. Polyunsaturated fatty acids and renal fibrosis: Pathophysiologic link and potential clinical implications. J. Nephrol. 2005, 18, 362–367. [Google Scholar] [PubMed]
- Sethi, S.; Fervenza, F.C. Membranoproliferative glomerulonephritis--a new look at an old entity. N. Engl. J. Med. 2012, 366, 1119–1131. [Google Scholar] [CrossRef] [Green Version]
- Yang, E.J.; Ku, S.K.; Lee, W.; Lee, S.; Lee, T.; Song, K.S.; Bae, J.S. Barrier protective effects of rosmarinic acid on HMGB1-induced inflammatory responses in vitro and in vivo. J. Cell. Physiol. 2013, 228, 975–982. [Google Scholar] [CrossRef]
- Sanbongi, C.; Takano, H.; Osakabe, N.; Sasa, N.; Natsume, M.; Yanagisawa, R.; Inoue, K.i.; Sadakane, K.; Ichinose, T.; Yoshikawa, T. Rosmarinic acid in perilla extract inhibits allergic inflammation induced by mite allergen, in a mouse model. Clin. Exp. Allergy 2004, 34, 971–977. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, H.J.; Lee, M.H.; Kim, J.; Jin, C.; Ryu, J.H. Luteolin inhibits LPS-stimulated inducible nitric oxide synthase expression in BV-2 microglial cells. Planta Med. 2006, 72, 65–68. [Google Scholar] [CrossRef]
- Jeong, Y.Y.; Park, H.S.; Choi, J.H.; Kim, S.H.; Min, K.U. Two cases of anaphylaxis caused by perilla seed. J. Allergy Clin. Immunol. 2006, 117, 1505–1506. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Lee, W.Y.; Yong, S.J.; Shin, K.; Kim, C.; Lee, J.-H.; Jung, Y.R.; Kim, H.; Yu, T.-S.; Kim, S.-H. Occupational asthma caused by inhaling smoke from roasting perilla seeds. Allergy Asthma Respir. Dis. 2013, 1, 90. [Google Scholar] [CrossRef] [Green Version]
- Abernathy, V.J.; Roselli, R.J.; Parker, R.E.; Pou, N.A. Effects of Perilla ketone on the in situ sheep lung. J. Appl. Physiol. 1992, 72, 505–514. [Google Scholar] [CrossRef]
- Kerr, L.A.; Johnson, B.J.; Burrows, G.E. Intoxication of cattle by Perilla frutescens (purple mint). Vet. Hum. Toxicol. 1986, 28, 412–416. [Google Scholar]
- Zhang, H.-x.; Guan, J.; Tian, Y.-h.; Su, G.-y.; Zhao, Y.-q. Acute and sub-chronic 90-day oral toxicity study of Perilla seed oil in rodents and Beagle dogs. Regul. Toxicol. Pharmacol. 2019, 103, 229–236. [Google Scholar] [CrossRef]
- Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.M.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef] [Green Version]
Author | Year | Number of Subjects Included | Animal Model/Cells | Parts Used | Extract | Treatment Groups |
---|---|---|---|---|---|---|
Makino et al. [31] | 1999 | 46 | HYGA mice | leaves | Perilla frutescens var, crispa, Labiatae | LD (50 mg/kg/day) HD (500 mg/kg/day) |
Makino et al. [32] | 2001 | 30 | Wistar rats | leaves | Perilla frutescens Britton var. crispa | LD (100 mg/kg/day) HD (500 mg/kg/day) |
Makino et al. [33] | 2002 | 24 | Wistar rats | leaves | Perilla frutescens | Rosmarinic acid (100 mg/kg/day) |
Makino et al. [34] | 2003 | 42 | HIGA mice | leaves | Perilla frutescens Britton var. crispa | LD (50 mg/kg/day) HD (500 mg/kg/day) |
Sakurai et al. [35] | 2011 | 16 | HIGA mice | seed oil | Perilla frutescens | Perilla seed oil (70 g/kg) |
Study | Selection Bias | Performance Bias | Detection Bias | Attrition Bias | Reporting Bias | Other | ||||
---|---|---|---|---|---|---|---|---|---|---|
Was the Allocation Sequence Adequately Generated and Applied? | Were the Groups Similar at Baseline or Were They Adjusted for Confounders in the Analysis? | Was the Allocation Adequately Concealed? | Were the Animals Randomly Housed during the Experiment? | Were the Caregivers and/or Investigators Blinded from Knowledge of Which Intervention Each Animal Received during the Experiment? | Were Animals Selected at Random for Outcome Assessment? | Was the Outcome Assessor Blinded? | Were Incomplete Outcome Data Adequately Addressed? | Are Reports of the Study Free of Selective Outcome Reporting? | Was the Study Apparently Free of Other Problems that could Result in High Risk of Bias? | |
Makino et al. [31] | Unclear | Yes | Unclear | Unclear | No | No | Unclear | Yes | Yes | Yes |
Makino et al. [32] | Unclear | Yes | Unclear | Unclear | No | No | Unclear | Yes | Yes | Yes |
Makino et al. [33] | Unclear | Yes | Unclear | Unclear | No | No | Unclear | Yes | Yes | Yes |
Makino et al. [34] | Unclear | Yes | Unclear | Unclear | No | No | Unclear | Yes | Yes | Yes |
Sakurai et al. [35] | Yes | Yes | Unclear | Unclear | Unclear | No | Unclear | Yes | Yes | Yes |
Outcome | Groups | Effect Size | Std. Error | Z | Sig. (Two-Tailed) | Lower Limit 95% CI | Upper Limit 95% CI |
---|---|---|---|---|---|---|---|
Proteinuria | LD vs. placebo | −0.85 | 0.866 | −1.040 | 0.30 | −2.45 | 0.75 |
HD vs. placebo | −1.91 | 0.499 | −4.081 | <0.001 | −2.91 | −0.91 | |
IgA | LD vs. placebo | −2.36 | 3.795 | −0.977 | 0.32 | −6.99 | 2.28 |
HD vs. placebo | −2.44 | 2.085 | −1.214 | 0.22 | −6.37 | 1.49 | |
PCNA | LD vs. placebo | −2.94 | 0.653 | −4.856 | <0.001 | −4.06 | −1.82 |
HD vs. placebo | −2.86 | 0.861 | −3.320 | <0.001 | −4.54 | −1.17 | |
[3H] thymodine | LD vs. placebo | −1.60 | 0.627 | −2.682 | <0.001 | −2.68 | −0.52 |
HD vs. placebo | −2.39 | 1.731 | −1.460 | 0.14 | −5.46 | 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adam, G.; Adam, A.-M.; Robu, S.; Harabor, V.; Harabor, A.; Nechita, A.; Marin, D.B.; Morariu, I.-D.; Cioanca, O.; Vasilache, I.-A.; et al. The Effects of Perilla frutescens Extracts on IgA Nephropathy: A Systematic Review and Meta-Analysis. Pharmaceuticals 2023, 16, 988. https://doi.org/10.3390/ph16070988
Adam G, Adam A-M, Robu S, Harabor V, Harabor A, Nechita A, Marin DB, Morariu I-D, Cioanca O, Vasilache I-A, et al. The Effects of Perilla frutescens Extracts on IgA Nephropathy: A Systematic Review and Meta-Analysis. Pharmaceuticals. 2023; 16(7):988. https://doi.org/10.3390/ph16070988
Chicago/Turabian StyleAdam, Gigi, Ana-Maria Adam, Silvia Robu, Valeriu Harabor, Anamaria Harabor, Aurel Nechita, Denisa Batir Marin, Ionela-Daniela Morariu, Oana Cioanca, Ingrid-Andrada Vasilache, and et al. 2023. "The Effects of Perilla frutescens Extracts on IgA Nephropathy: A Systematic Review and Meta-Analysis" Pharmaceuticals 16, no. 7: 988. https://doi.org/10.3390/ph16070988
APA StyleAdam, G., Adam, A. -M., Robu, S., Harabor, V., Harabor, A., Nechita, A., Marin, D. B., Morariu, I. -D., Cioanca, O., Vasilache, I. -A., & Hancianu, M. (2023). The Effects of Perilla frutescens Extracts on IgA Nephropathy: A Systematic Review and Meta-Analysis. Pharmaceuticals, 16(7), 988. https://doi.org/10.3390/ph16070988