Emodin, a Natural Anthraquinone, Increases Uric Acid Excretion in Rats with Potassium Oxonate-Induced Hyperuricemia
Abstract
:1. Introduction
2. Results
2.1. Effect of Emodin on the Concentration of Serum and Urinary Uric Acid, Serum and Urinary Creatinine and FEUA in Hyperuricemic Rats
2.2. Serum and Urinary Cytokine Levels in Hyperuricemic Rats
2.3. Changes in Liver Function and Serum and Urinary Urea Nitrogen Levels Induced by Emodin
2.4. Changes in Xanthine Oxidase Activity in the Liver after PO Injection
2.5. Paw perimeter and Histopathology of Rat Fourth Intermetatarsal Space after Monosodium Urate Injection
2.6. Histopathology of the Kidney in Hyperuricemic Rats
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Animals and Treatment
4.3. Biochemical Analyses
4.4. Histopathological Examination of Kidney
4.5. Outcome Assessment
4.6. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, T.; Gao, H.; Zhang, Y.; Wang, S.; Lu, M.; Dai, X.; Liu, Y.; Shi, H.; Xu, T.; Yin, J.; et al. Apigenin Ameliorates Hyperuricemia and Renal Injury through Regulation of Uric Acid Metabolism and JAK2/STAT3 Signaling Pathway. Pharmaceuticals 2022, 15, 1442. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.M.; Rahman, M.A.; Islam, M.S.; Hossen, M.A.; Ahmed, A.M.A.; Afroze, M.; Habib, A.H.; Mansoury, M.M.S.; Alharbi, H.F.; Algheshairy, R.M.; et al. Natural Compounds of Lasia spinosa (L.) Stem Potentiate Antidiabetic Actions by Regulating Diabetes and Diabetes-Related Biochemical and Cellular Indexes. Pharmaceuticals 2022, 15, 1466. [Google Scholar] [CrossRef] [PubMed]
- Dehlin, M.; Jacobsson, L.; Roddy, E. Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol. 2020, 16, 380–390. [Google Scholar] [CrossRef]
- Li, X.; Li, L.; Xing, Y.; Cheng, T.; Ren, S.; Ma, H. Diabetes Mellitus Is Associated with a Lower Risk of Gout: A Meta-Analysis of Observational Studies. J. Diabetes Res. 2020, 2020, 5470739. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Tanaka, A.; Node, K.; Kobayashi, Y. Uric acid and cardiovascular disease: A clinical review. J. Cardiol. 2021, 78, 51–57. [Google Scholar] [CrossRef]
- Hansildaar, R.; Vedder, D.; Baniaamam, M.; Tausche, A.K.; Gerritsen, M.; Nurmohamed, M.T. Cardiovascular risk in inflammatory arthritis: Rheumatoid arthritis and gout. Lancet Rheumatol. 2021, 3, E58–E70. [Google Scholar] [CrossRef] [PubMed]
- Pascart, T.; Liote, F. Gout: State of the art after a decade of developments. Rheumatology 2019, 58, 27–44. [Google Scholar] [CrossRef]
- Dalbeth, N.; Gosling, A.L.; Gaffo, A.; Abhishek, A. Gout. Lancet 2021, 397, 1843–1855. [Google Scholar] [CrossRef]
- Bohata, J.; Horvathova, V.; Pavlikova, M.; Stiburkova, B. Circulating microRNA alternations in primary hyperuricemia and gout. Arthritis Res. Ther. 2021, 23, 186. [Google Scholar] [CrossRef]
- Vadakedath, S.; Kandi, V. Probable Potential Role of Urate Transporter Genes in the Development of Metabolic Disorders. Cureus 2018, 10, e2382. [Google Scholar] [CrossRef]
- Maiuolo, J.; Oppedisano, F.; Gratteri, S.; Muscoli, C.; Mollace, V. Regulation of uric acid metabolism and excretion. Int. J. Cardiol. 2016, 213, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.C. Gout—An update of aetiology, genetics, co-morbidities and management. Maturitas 2018, 118, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Luo, Z.; Wang, M.; Cheng, J.; Li, F.; Lu, H.; He, Q.; You, Y.; Zhou, X.; Kwan, H.Y.; et al. The Efficacy and Mechanism of Chinese Herbal Medicines in Lowering Serum Uric Acid Levels: A Systematic Review. Front. Pharmacol. 2020, 11, 578318. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.H.; Huang, W.; Li, C.; Liu, Y.W.; Wang, S.F. Design, synthesis and molecular modeling of aloe-emodin derivatives as potent xanthine oxidase inhibitors. Eur. J. Med. Chem. 2014, 75, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Stompor-Goracy, M. The Health Benefits of Emodin, a Natural Anthraquinone Derived from Rhubarb—A Summary Update. Int. J. Mol. Sci. 2021, 22, 9522. [Google Scholar] [CrossRef] [PubMed]
- Ragab, G.; Elshahaly, M.; Bardin, T. Gout: An old disease in new perspective—A review. J. Adv. Res. 2017, 8, 495–511. [Google Scholar] [CrossRef]
- Abhishek, A.; Roddy, E.; Doherty, M. Gou—A guide for the general and acute physicians. Clin. Med. 2017, 17, 54–59. [Google Scholar] [CrossRef]
- Li, T.; Chen, Y.H.; Liu, T.J.; Jia, J.; Hampson, S.; Shan, Y.X.; Kibler, D.; Wang, P.H. Using DNA microarray to identify Sp1 as a transcriptional regulatory element of insulin-like growth factor 1 in cardiac muscle cells. Circ. Res. 2003, 93, 1202–1209. [Google Scholar] [CrossRef]
- Liu, Y.R.; Wang, J.Q.; Li, J. Role of NLRP3 in the pathogenesis and treatment of gout arthritis. Front. Immunol. 2023, 14, 1137822. [Google Scholar] [CrossRef]
- Tao, H.; Mo, Y.; Liu, W.; Wang, H. A review on gout: Looking back and looking ahead. Int. Immunopharmacol. 2023, 117, 109977. [Google Scholar] [CrossRef]
- Hasegawa, A.; Abe, R. Recent advances in managing and understanding Stevens-Johnson syndrome and toxic epidermal necrolysis. F1000Resarch 2020, 9, 612. [Google Scholar] [CrossRef] [PubMed]
- Stamp, L.K.; Chapman, P.T. Allopurinol hypersensitivity: Pathogenesis and prevention. Best Pract. Res. Clin. Rheumatol. 2020, 34, 101501. [Google Scholar] [CrossRef] [PubMed]
- White, W.B.; Saag, K.G.; Becker, M.A.; Borer, J.S.; Gorelick, P.B.; Whelton, A.; Hunt, B.; Castillo, M.; Gunawardhana, L. Cardiovascular Safety of Febuxostat or Allopurinol in Patients with Gout. N. Engl. J. Med. 2018, 378, 1200–1210. [Google Scholar] [CrossRef]
- Chi, X.; Zhang, H.; Zhang, S.; Ma, K. Chinese herbal medicine for gout: A review of the clinical evidence and pharmacological mechanisms. Chin. Med. 2020, 15, 17. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.G. Progress in Treatment of Gout Using Chinese and Western Medicine. Chin. J. Integr. Med. 2020, 26, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Monisha, B.A.; Kumar, N.; Tiku, A.B. Emodin and Its Role in Chronic Diseases. Adv. Exp. Med. Biol. 2016, 928, 47–73. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Fu, J.; Yin, X.; Cao, S.; Li, X.; Lin, L.; Ni, J. Emodin: A Review of its Pharmacology, Toxicity and Pharmacokinetics. Phytother. Res. 2016, 30, 1207–1218. [Google Scholar] [CrossRef]
- Fathallah-Shaykh, S.A.; Cramer, M.T. Uric acid and the kidney. Pediatr. Nephrol. 2014, 29, 999–1008. [Google Scholar] [CrossRef]
- Islam, R.; Mamat, Y.; Ismayil, I.; Yan, M.; Kadir, M.; Abdugheny, A.; Rapkat, H.; Niyaz, M.; Ali, Y.; Abay, S. Toxicity of anthraquinones: Differential effects of rumex seed extracts on rat organ weights and biochemical and haematological parameters. Phytother. Res. 2015, 29, 777–784. [Google Scholar] [CrossRef]
- Tang, D.H.; Ye, Y.S.; Wang, C.Y.; Li, Z.L.; Zheng, H.; Ma, K.L. Potassium oxonate induces acute hyperuricemia in the tree shrew (tupaia belangeri chinensis). Exp. Anim. 2017, 66, 209–216. [Google Scholar] [CrossRef]
- Chen, Y.; Li, C.; Duan, S.; Yuan, X.; Liang, J.; Hou, S. Curcumin attenuates potassium oxonate-induced hyperuricemia and kidney inflammation in mice. Biomed. Pharmacother. 2019, 118, 109195. [Google Scholar] [CrossRef] [PubMed]
- Firouzpour, H.; Shokrolahi, S.M.; Bourova-Flin, E.; Derakhshan, S.; Shahsavari, Z.; Karimi, A.; Sadeghi, H.M.M.; Goudarzi, A. The expression of ACAT1 in oral squamous cell carcinoma and the adjacent pre-tumour tissue. Biomedicine 2022, 12, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.W.; Lin, C.L.; Liao, K.F. Hyperuricemia might be an early manifestation of undiagnosed adult leukemia in a population-based cohort study. Biomedicine 2020, 10, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Sarlaki, F.; Shahsavari, Z.; Goshadrou, F.; Naseri, F.; Keimasi, M.; Sirati-Sabet, M. The effect of ghrelin on antioxidant status in the rat’s model of Alzheimer’s disease induced by amyloid-beta. Biomedicine 2022, 12, 44–54. [Google Scholar] [CrossRef]
- Mabwi, H.A.; Lee, H.J.; Hitayezu, E.; Mauliasari, I.R.; Pan, C.H.; Mwaikono, K.S.; Komba, E.V.G.; Lee, C.G.; Cha, K.H. Emodin modulates gut microbial community and triggers intestinal immunity. J. Sci. Food Agric. 2023, 103, 1273–1282. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Van de Wiele, T. Gut microbiota as a driver of the interindividual variability of cardiometabolic effects from tea polyphenols. Crit. Rev. Food Sci. Nutr. 2023, 63, 1500–1526. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.H.; Lin, S.J.; Chen, Y.H.; Lin, F.Y.; Shih, J.C.; Wu, C.C.; Wu, H.L.; Chen, Y.L. Late outgrowth endothelial cells derived from Wharton jelly in human umbilical cord reduce neointimal formation after vascular injury: Involvement of pigment epithelium-derived factor. Arter. Thromb. Vasc. Biol. 2009, 29, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.T.; Chong, I.W.; Chen, H.L.; Li, C.Y.; Hsieh, C.C.; Kuo, H.F.; Chang, C.Y.; Chen, Y.H.; Liu, Y.P.; Lu, C.Y.; et al. Pigment epithelium-derived factor inhibits lung cancer migration and invasion by upregulating exosomal thrombospondin 1. Cancer Lett. 2019, 442, 287–298. [Google Scholar] [CrossRef]
- Capdevila, S.; Giral, M.; de la Torre, J.L.R.; Russell, R.J.; Kramer, K. Acclimatization of rats after ground transportation to a new animal facility. Lab. Anim. 2007, 41, 255–261. [Google Scholar] [CrossRef]
- Hyndman, D.; Liu, S.; Miner, J.N. Urate Handling in the Human Body. Curr. Rheumatol. Rep. 2016, 18, 34. [Google Scholar] [CrossRef]
- Toghan, R.; Amin, Y.A.; Ali, R.A.; Fouad, S.S.; Ahmed, M.A.B.; Saleh, S.M.M. Protective effects of Folic acid against reproductive, hematological, hepatic, and renal toxicity induced by Acetamiprid in male Albino rats. Toxicology 2022, 469, 153115. [Google Scholar] [CrossRef] [PubMed]
- Jawa, R.S.; Anillo, S.; Huntoon, K.; Baumann, H.; Kulaylat, M. Interleukin-6 in surgery, trauma, and critical care part II: Clinical implications. J. Intensiv. Care Med. 2011, 26, 73–87. [Google Scholar] [CrossRef] [PubMed]
Groups | Treatments | Number of Rats | Dosage (mg/kg Body Weight) |
---|---|---|---|
Control | PBS + PBS | 6 | 0 |
Vehicle | PO + PBS | 6 | 0 |
Allopurinol | PO + ALL | 6 | 7 |
Emodin (low) | PO + EMO | 6 | 10 |
Emodin (medium) | PO + EMO | 6 | 30 |
Emodin (high) | PO + EMO | 6 | 50 |
CON | VEH | ALL | EMO10 | EMO30 | EMO50 | |
---|---|---|---|---|---|---|
SUA (mg/dL) | 1.16 ± 0.39 * | 1.80 ± 1.14 | 1.30 ± 0.59 | 1.25 ± 0.75 | 1.18 ± 0.23 * | 1.12 ± 0.57 * |
SCr (mg/dL) | 0.32 ± 0.82 * | 0.40 ± 1.26 | 0.35 ± 1.67 | 0.33 ± 1.63 | 0.32 ± 0.82 * | 0.32 ± 0.82 * |
UUA (mg/dL) | 5.72 ± 2.68 ** | 2.42 ± 0.75 | 2.10 ± 1.75 | 3.38 ± 2.18 | 4.60 ± 3.68 * | 4.42 ± 3.84 * |
UCr (mg/dL) | 47.30 ± 24.51 | 36.31 ± 7.47 | 34.66 ± 7.72 | 36.33 ± 18.99 | 33.82 ± 12.98 | 36.67 ± 22.42 |
FEUA (%) | 3.15 ± 1.12 ** | 1.61 ± 1.34 | 1.68 ± 1.55 | 3.14 ± 5.22 | 3.64 ± 2.09 ** | 3.72 ± 3.67 * |
CON | VEH | ALL | EMO10 | EMO30 | EMO50 | |
---|---|---|---|---|---|---|
S IL-1β (pg/mL) | 42.50 ± 55.14 | 40.10 ± 62.76 | 39.03 ± 58.44 | 33.88 ± 38.86 | 50.25 ± 56.96 | 64.80 ± 49.24 |
S IL-6 (pg/mL) | 1.74 ± 2.00 | 2.01 ± 1.44 | 5.77 ± 17.46 | 2.68 ± 2.54 | 2.42 ± 2.44 | 2.11 ± 1.84 |
S TNF-α (pg/mL) | 6.80 ± 4.66 | 7.03 ± 5.12 | 3.88 ± 4.48 * | 7.55 ± 5.12 | 5.77 ± 3.62 | 5.42 ± 5.12 |
U IL-1β (pg/mL) | 195.55 ± 89.18 | 168.27 ± 60.28 | 139.47 ± 31.76 | 149.02 ± 39.46 | 140.08 ± 60.80 | 171.32 ± 177.44 |
U IL-6 (pg/mL) | 2.69 ± 2.36 | 2.11 ± 2.32 | 2.70 ± 3.20 | 3.43 ± 2.98 | 3.16 ± 1.86 | 1.95 ± 2.54 |
U TNF-α (pg/mL) | 3.86 ± 2.20 | 4.44 ± 4.96 | 4.91 ± 4.38 | 5.42 ± 5.38 | 7.71 ± 3.84 * | 6.86 ± 8.16 |
CON | VEH | ALL | EMO10 | EMO30 | EMO50 | |
---|---|---|---|---|---|---|
GOT (U/L) | 122.83 ± 54.00 * | 163.00 ± 60.54 | 121.00 ± 27.68 * | 99.67 ± 31.42 ** | 101.00 ± 48.92 ** | 84.67 ± 15.48 ** |
GPT (U/L) | 39.17 ± 12.48 | 35.50 ± 19.62 | 36.50 ± 11.50 | 31.67 ± 12.94 | 30.83 ± 18.82 | 26.33 ± 10.48 |
S BUN (mg/dL) | 18.50 ± 3.70 * | 27.48 ± 13.42 | 25.25 ± 9.18 | 28.77 ± 20.14 | 24.63 ± 9.86 | 29.48 ± 12.36 |
U BUN (mg/dL) | 10.77 ± 11.46 * | 19.50 ± 14.06 | 13.93 ± 12.06 | 36.82 ± 140.60 | 57.03 ± 102.48 | 36.32 ± 102.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, S.-W.; Chen, S.-J.; Shen, J.-D.; Chen, H.-Y.; Wang, S.-J.; Wang, C.-H.; Man, K.-M.; Liu, P.-L.; Tsai, M.-Y.; Chen, Y.-H.; et al. Emodin, a Natural Anthraquinone, Increases Uric Acid Excretion in Rats with Potassium Oxonate-Induced Hyperuricemia. Pharmaceuticals 2023, 16, 789. https://doi.org/10.3390/ph16060789
Hou S-W, Chen S-J, Shen J-D, Chen H-Y, Wang S-J, Wang C-H, Man K-M, Liu P-L, Tsai M-Y, Chen Y-H, et al. Emodin, a Natural Anthraquinone, Increases Uric Acid Excretion in Rats with Potassium Oxonate-Induced Hyperuricemia. Pharmaceuticals. 2023; 16(6):789. https://doi.org/10.3390/ph16060789
Chicago/Turabian StyleHou, Shen-Wei, Szu-Ju Chen, Jing-Dung Shen, Huey-Yi Chen, Shih-Jing Wang, Chia-Han Wang, Kee-Ming Man, Po-Len Liu, Ming-Yen Tsai, Yung-Hsiang Chen, and et al. 2023. "Emodin, a Natural Anthraquinone, Increases Uric Acid Excretion in Rats with Potassium Oxonate-Induced Hyperuricemia" Pharmaceuticals 16, no. 6: 789. https://doi.org/10.3390/ph16060789
APA StyleHou, S. -W., Chen, S. -J., Shen, J. -D., Chen, H. -Y., Wang, S. -J., Wang, C. -H., Man, K. -M., Liu, P. -L., Tsai, M. -Y., Chen, Y. -H., & Chen, W. -C. (2023). Emodin, a Natural Anthraquinone, Increases Uric Acid Excretion in Rats with Potassium Oxonate-Induced Hyperuricemia. Pharmaceuticals, 16(6), 789. https://doi.org/10.3390/ph16060789