Identification of Pinosylvin in Pinus nigra subsp. laricio: A Naturally Occurring Stilbenoid Suppressing LPS-Induced Expression of Pro-Inflammatory Cytokines and Mediators and Inhibiting the JAK/STAT Signaling Pathway
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC Analysis
2.2. Effects on LPS-Induced Release of Pro-Inflammatory, Anti-Inflammatory Cytokines and NO Mediator and Assessment of Cell Viability in RAW 264.7 Cells
2.3. Effects on LPS-Activated JAK/STAT Signaling Pathway in RAW 264.7 Cells
2.4. Molecular Docking
3. Materials and Methods
3.1. Chemicals
3.2. Plant Material and Extraction Procedure
3.3. HPLC Analysis
3.4. Cell Culture
3.5. Cell Viability (SRB) Assay
3.6. Cytokine Measurements and Nitrite Analysis
3.7. Western Blot Analyses
3.8. Molecular Docking Studies
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pecyna, P.; Wargula, J.; Murias, M.; Kucinska, M. More Than Resveratrol: New Insights into Stilbene-Based Compounds. Biomolecules 2020, 10, 10081111. [Google Scholar] [CrossRef]
- Rivière, C.; Pawlus, A.D.; Mérillon, J.M. Natural Stilbenoids: Distribution in the Plant Kingdom and Chemotaxonomic Interest in Vitaceae. Nat. Prod. Rep. 2012, 29, 1317–1333. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.W.C.; Wong, C.W.; Tan, Y.H.; Foo, J.P.Y.; Wong, S.K.; Chan, H.T. Resveratrol and Pterostilbene: A Comparative Overview of Their Chemistry, Biosynthesis, Plant Sources and Pharmacological Properties. J. Appl. Pharm. Sci. 2019, 9, 124–129. [Google Scholar]
- Dvorakova, M.; Landa, P. Anti-Inflammatory Activity of Natural Stilbenoids: A Review. Pharmacol. Res. 2017, 124, 126–145. [Google Scholar] [CrossRef] [PubMed]
- De Filippis, B.; Ammazzalorso, A.; Fantacuzzi, M.; Giampietro, L.; Maccallini, C.; Amoroso, R. Anticancer Activity of Stilbene-Based Derivatives. ChemMedChem 2017, 12, 558–570. [Google Scholar] [CrossRef]
- van Summeren-Wesenhagen, P.V.; Marienhagen, J. Metabolic Engineering of Escherichia Coli for the Synthesis of the Plant Polyphenol Pinosylvin. Appl. Environ. Microbiol. 2015, 81, 840–849. [Google Scholar] [CrossRef]
- Park, E.J.; Min, H.Y.; Ahn, Y.H.; Bae, C.M.; Pyee, J.H.; Lee, S.K. Synthesis and Inhibitory Effects of Pinosylvin Derivatives on Prostaglandin E2 Production in Lipopolysaccharide-Induced Mouse Macrophage Cells. Bioorg. Med. Chem. Lett. 2004, 14, 5895–5898. [Google Scholar] [CrossRef]
- Kivimäki, K.; Leppänen, T.; Hämäläinen, M.; Vuolteenaho, K.; Moilanen, E. Pinosylvin Shifts Macrophage Polarization to Support Resolution of Inflammation. Molecules 2021, 26, 26092772. [Google Scholar] [CrossRef]
- Koushki, M.; Amiri-Dashatan, N.; Ahmadi, N.; Abbaszadeh, H.A.; Rezaei-Tavirani, M. Resveratrol: A Miraculous Natural Compound for Diseases Treatment. Food Sci. Nutr. 2018, 6, 2473–2490. [Google Scholar] [CrossRef]
- Spampinato, S.F.; Caruso, G.I.; De Pasquale, R.; Sortino, M.A.; Merlo, S. The Treatment of Impaired Wound Healing in Diabetes: Looking among Old Drugs. Pharmaceuticals 2020, 13, 13040060. [Google Scholar] [CrossRef]
- Bousoik, E.; Montazeri Aliabadi, H. “Do We Know Jack” About JAK? A Closer Look at JAK/STAT Signaling Pathway. Front. Oncol. 2018, 8, 00287. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT Signaling Pathway: From Bench to Clinic. Signal Transduct. Target. Ther. 2021, 6, 402. [Google Scholar] [CrossRef] [PubMed]
- Xin, P.; Xu, X.; Deng, C.; Liu, S.; Wang, Y.; Zhou, X.; Ma, H.; Wei, D.; Sun, S. The Role of JAK/STAT Signaling Pathway and Its Inhibitors in Diseases. Int. Immunopharmacol. 2020, 80, 106210. [Google Scholar] [CrossRef]
- Garcia-Oliveira, P.; Otero, P.; Pereira, A.G.; Chamorro, F.; Carpena, M.; Echave, J.; Fraga-Corral, M.; Simal-Gandara, J.; Prieto, M.A. Status and Challenges of Plant-Anticancer Compounds in Cancer Treatment. Pharmaceuticals 2021, 14, 14020157. [Google Scholar] [CrossRef]
- Bose, S.; Banerjee, S.; Mondal, A.; Chakraborty, U.; Pumarol, J.; Croley, C.R.; Bishayee, A. Targeting the JAK/STAT Signaling Pathway Using Phytocompounds for Cancer Prevention and Therapy. Cells 2020, 9, 01451. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Zhou, J.; Zhao, C.N.; Gan, R.Y.; Li, H. Bin Health Benefits and Molecular Mechanisms of Resveratrol: A Narrative Review. Foods 2020, 9, 9030340. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, K.; Melliou, E.; Alizoti, P.; Magiatis, P. Identification of Black Pine (Pinus Nigra Arn.) Heartwood as a Rich Source of Bioactive Stilbenes by QNMR. J. Sci. Food Agric. 2017, 97, 1708–1716. [Google Scholar] [CrossRef]
- Bergström, B.; Gustafsson, G.; Gref, R.; Ericsson, A. Seasonal Changes of Pinosylvin Distribution in the Sapwood/Heartwood Boundary of Pinus sylvestris. Trees 1999, 14, 65–71. [Google Scholar] [CrossRef]
- Fkiri, S.; Mezni, F.; Rigane, G.; Ben Salem, R.; Ghazghazi, H.; Khouja, M.L.; Nasr, Z.; Khaldi, A. Chemotaxonomic Study of Four Subspecies of Pinus nigra Arn. Grown in Common Garden Based on Essential Oil Composition. J. Food Qual. 2021, 2021, 5533531. [Google Scholar] [CrossRef]
- Rezzi, S.; Bighelli, A.; Castola, V.; Casanova, J. Composition and Chemical Variability of the Oleoresin of Pinus nigra Ssp. laricio from Corsica. Ind. Crop. Prod. 2005, 21, 71–79. [Google Scholar] [CrossRef]
- Nicolaci, A.; Travaglini, D.; Menguzzato, G.; Nocentini, S.; Veltri, A.; Iovino, F. Ecological and Anthropogenic Drivers of Calabrian Pine (Pinus nigra J.F. Arn. Ssp. laricio (Poiret) Maire) Distribution in the Sila Mountain Range. IForest 2014, 8, 497. [Google Scholar] [CrossRef]
- Rezzi, S.; Bighelli, A.; Mouillot, D.; Casanova, J. Composition and Chemical Variability of the Needle Essential Oil of Pinus nigra Subsp. laricio from Corsica. Flavour Fragr. J. 2001, 16, 379–383. [Google Scholar] [CrossRef]
- Vek, V.; Poljanšek, I.; Humar, M.; Willför, S.; Oven, P. In Vitro Inhibition of Extractives from Knotwood of Scots Pine (Pinus sylvestris) and Black Pine (Pinus nigra) on Growth of Schizophyllum Commune, Trametes Versicolor, Gloeophyllum Trabeum and Fibroporia Vaillantii. Wood Sci. Technol. 2020, 54, 1645–1662. [Google Scholar] [CrossRef]
- Hovelstad, H.; Leirset, I.; Oyaas, K.; Fiksdahl, A. Screening Analyses of Pinosylvin Stilbenes, Resin Acids and Lignans in Norwegian Conifers. Molecules 2006, 11, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Hemming, J.; Reunanen, M.; Eklund, P.; Pineiro, E.C.; Poljansek, I.; Oven, P.; Willför, S. Evaluation of Selective Extraction Methods for Recovery of Polyphenols from Pine. Holzforschung 2013, 67, 843–851. [Google Scholar] [CrossRef]
- Salim, T.; Sershen, C.L.; May, E.E. Investigating the Role of TNF-α and IFN-γ Activation on the Dynamics of INOS Gene Expression in LPS Stimulated Macrophages. PLoS ONE 2016, 11, e0153289. [Google Scholar] [CrossRef]
- Park, E.J.; Park, H.J.; Chung, H.J.; Shin, Y.; Min, H.Y.; Hong, J.Y.; Kang, Y.J.; Ahn, Y.H.; Pyee, J.H.; Kook Lee, S. Antimetastatic Activity of Pinosylvin, a Natural Stilbenoid, Is Associated with the Suppression of Matrix Metalloproteinases. J. Nutr. Biochem. 2012, 23, 946–952. [Google Scholar] [CrossRef]
- Eräsalo, H.; Hämäläinen, M.; Leppänen, T.; Mäki-Opas, I.; Laavola, M.; Haavikko, R.; Yli-Kauhaluoma, J.; Moilanen, E. Natural Stilbenoids Have Anti-Inflammatory Properties in Vivo and Down-Regulate the Production of Inflammatory Mediators NO, IL6, and MCP1 Possibly in a PI3K/Akt-Dependent Manner. J. Nat. Prod. 2018, 81, 1131–1142. [Google Scholar] [CrossRef]
- Park, E.J.; Min, H.Y.; Chung, H.J.; Ahn, Y.H.; Pyee, J.H.; Lee, S.K. Pinosylvin Suppresses LPS-Stimulated Inducible Nitric Oxide Synthase Expression via the MyD88-Independent, but TRIF-Dependent Downregulation of IRF-3 Signaling Pathway in Mouse Macrophage Cells. Cell Physiol. Biochem. 2011, 27, 353–362. [Google Scholar] [CrossRef]
- Ma, C.; Wang, Y.; Dong, L.; Li, M.; Cai, W. Anti-Inflammatory Effect of Resveratrol through the Suppression of NF-ΚB and JAK/STAT Signaling Pathways. Acta Biochim. Biophys. Sin. 2015, 47, 207–213. [Google Scholar] [CrossRef]
- Chung, E.Y.; Kim, B.H.; Hong, J.T.; Lee, C.K.; Ahn, B.; Nam, S.Y.; Han, S.B.; Kim, Y. Resveratrol Down-Regulates Interferon-γ-Inducible Inflammatory Genes in Macrophages: Molecular Mechanism via Decreased STAT-1 Activation. J. Nutr. Biochem. 2011, 22, 902–909. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Lyu, L.; Wang, X.; Bao, L.; Lyu, B.; Lin, Z. Systemic Treatment with Resveratrol Alleviates Adjuvant Arthritis-Interstitial Lung Disease in Rats via Modulation of JAK/STAT/RANKL Signaling Pathway. Pulm. Pharmacol. Ther. 2019, 56, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Ghoreschi, K.; Laurence, A.; O’Shea, J.J. Janus Kinases in Immune Cell Signaling. Immunol. Rev. 2009, 228, 273–287. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.E.; HuangFu, W.C.; Chao, M.W.; Sung, T.Y.; Di Chang, C.; Chen, Y.Y.; Hsieh, J.H.; Tu, H.J.; Huang, H.L.; Pan, S.L.; et al. A Novel Selective JAK2 Inhibitor Identified Using Pharmacological Interactions. Front. Pharmacol. 2018, 9, 1379. [Google Scholar] [CrossRef] [PubMed]
- Lucet, I.S.; Fantino, E.; Styles, M.; Bamert, R.; Patel, O.; Broughton, S.E.; Walter, M.; Burns, C.J.; Treutlein, H.; Wilks, A.F.; et al. The Structural Basis of Janus Kinase 2 Inhibition by a Potent and Specific Pan-Janus Kinase Inhibitor. Blood 2006, 107, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Alicea-Velazquez, N.L.; Boggon, T.J. The Use of Structural Biology in Janus Kinase Targeted Drug Discovery. Curr. Drug Targets 2011, 12, 546–555. [Google Scholar] [CrossRef]
- Ambili, U.P.; Pillai, G.G.; Sajitha, L.S. Integrated Ligand and Structure Based Approaches towards Developing Novel Janus Kinase 2 Inhibitors for the Treatment of Myeloproliferative Neoplasms. bioRxiv 2020. [Google Scholar] [CrossRef]
- Dugan, B.J.; Gingrich, D.E.; Mesaros, E.F.; Milkiewicz, K.L.; Curry, M.A.; Zulli, A.L.; Dobrzanski, P.; Serdikoff, C.; Jan, M.; Angeles, T.S.; et al. A Selective, Orally Bioavailable 1,2,4-Triazolo[1,5-a]Pyridine-Based Inhibitor of Janus Kinase 2 for Use in Anticancer Therapy: Discovery of CEP-33779. J. Med. Chem. 2012, 55, 5243–5254. [Google Scholar] [CrossRef]
- Perri, M.R.; Pellegrino, M.; Aquaro, S.; Cavaliere, F.; Lupia, C.; Uzunov, D.; Marrelli, M.; Conforti, F.; Statti, G. Cachrys spp. from Southern Italy: Phytochemical Characterization and JAK/STAT Signaling Pathway Inhibition. Plants 2022, 11, 2913. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeerschd, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem. 1639, 19, 16391662. [Google Scholar] [CrossRef]
- Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: Fully Automated Protein-Ligand Interaction Profiler. Nucleic Acids Res. 2015, 43, W443–W447. [Google Scholar] [CrossRef] [PubMed]
Ligand | Structure | Binding Energy kcal/mol | INTERACTIONS | ||||
---|---|---|---|---|---|---|---|
Hydrogen Bonds | Hydrophobic Bonds | ||||||
Residues | Distance Å | Don-Angle | Residues | ||||
H-A | D-A | ||||||
Pinosylvin | −7.9 | Arg980 | 2.02 | 2.97 | 166.10 | Leu855 Val863 Ala880 Leu983 | |
Asp994 | 2.77 | 3.47 | 128.82 | ||||
Resveratrol | −8.2 | Leu932 | 1.93 | 2.82 | 148.94 | Leu855 Val863 Ala880 Leu983 | |
Arg980 | 2.26 | 3.02 | 134.20 | ||||
Asp994 | 2.98 | 3.59 | 121.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perri, M.R.; Pellegrino, M.; Marrelli, M.; Aquaro, S.; Cavaliere, F.; Grande, F.; Occhiuzzi, M.A.; Lupia, C.; Toma, C.-C.; Conforti, F.; et al. Identification of Pinosylvin in Pinus nigra subsp. laricio: A Naturally Occurring Stilbenoid Suppressing LPS-Induced Expression of Pro-Inflammatory Cytokines and Mediators and Inhibiting the JAK/STAT Signaling Pathway. Pharmaceuticals 2023, 16, 718. https://doi.org/10.3390/ph16050718
Perri MR, Pellegrino M, Marrelli M, Aquaro S, Cavaliere F, Grande F, Occhiuzzi MA, Lupia C, Toma C-C, Conforti F, et al. Identification of Pinosylvin in Pinus nigra subsp. laricio: A Naturally Occurring Stilbenoid Suppressing LPS-Induced Expression of Pro-Inflammatory Cytokines and Mediators and Inhibiting the JAK/STAT Signaling Pathway. Pharmaceuticals. 2023; 16(5):718. https://doi.org/10.3390/ph16050718
Chicago/Turabian StylePerri, Maria Rosaria, Michele Pellegrino, Mariangela Marrelli, Stefano Aquaro, Fabiola Cavaliere, Fedora Grande, Maria Antonietta Occhiuzzi, Carmine Lupia, Claudia-Crina Toma, Filomena Conforti, and et al. 2023. "Identification of Pinosylvin in Pinus nigra subsp. laricio: A Naturally Occurring Stilbenoid Suppressing LPS-Induced Expression of Pro-Inflammatory Cytokines and Mediators and Inhibiting the JAK/STAT Signaling Pathway" Pharmaceuticals 16, no. 5: 718. https://doi.org/10.3390/ph16050718
APA StylePerri, M. R., Pellegrino, M., Marrelli, M., Aquaro, S., Cavaliere, F., Grande, F., Occhiuzzi, M. A., Lupia, C., Toma, C. -C., Conforti, F., & Statti, G. (2023). Identification of Pinosylvin in Pinus nigra subsp. laricio: A Naturally Occurring Stilbenoid Suppressing LPS-Induced Expression of Pro-Inflammatory Cytokines and Mediators and Inhibiting the JAK/STAT Signaling Pathway. Pharmaceuticals, 16(5), 718. https://doi.org/10.3390/ph16050718