Identifying Crude Drugs in Kampo Medicines Associated with Drug-Induced Liver Injury Using the Japanese Adverse Drug Event Report Database: A Comprehensive Survey
Abstract
:1. Introduction
2. Results
2.1. Construction of Datasets for Analysis
2.2. Adverse Events Included in the Report-Based Dataset
2.3. Characteristics of the Patient-Based Dataset
2.4. Characteristics of Patients Who Used Kampo Medicines and Experienced DILI
2.5. Association between Crude Drugs Contained in Kampo Medicines and DILI
2.6. ROR Focusing on Crude Drugs Contained in Kampo Medicines and DILI
3. Discussion
3.1. Crude Drugs Associated with DILI
3.2. Clinical and Practical Findings
3.3. Limitations
4. Materials and Methods
4.1. JADER and Data Management
4.2. Definition of Adverse Events
4.3. Definition of Crude Drugs Contained in Kampo Medicines
4.4. Descriptive Statistics
4.5. Association between Crude Drugs Contained in Kampo Medicines and DILI
4.6. Statistical Analysis Software
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shimada, Y. Adverse Effects of Kampo Medicines. Intern. Med. 2022, 61, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health, Labour and Welfare. The Approval Standards for OTC Kampo Products (Revised March 2019) (in Japanese). Available online: https://www.mhlw.go.jp/file/06-Seisakujouhou-11120000-Iyakushokuhinkyoku/0000160072.pdf (accessed on 15 April 2023).
- Japan Kampo Medicines Manufacturers Association. Kampo Medicines for Prescription 2022-Informations on Package Inserts of 148 Formulations-Usability Research Subcommittee, Ethical Kampo Products Committee, Japan Kampo Medicines Manufacturers Association (JKMA) (in Japanese). Available online: https://www.nikkankyo.org/seihin/seihin1.htm (accessed on 10 March 2023).
- Japan Kampo Medicines Manufacturers Association. Actual Condition Survey of Kampo Prescriptions on 18 October 2011 (in Japanese). Available online: https://www.nikkankyo.org/serv/pdf/jittaichousa2011.pdf (accessed on 10 March 2023).
- Shimada, Y.; Fujimoto, M.; Nogami, T.; Watari, H.; Kitahara, H.; Misawa, H.; Kimbara, Y.; Kita, K. Recurrent Drug-induced Liver Injury Caused by the Incidental Readministration of a Kampo Formula Containing Scutellariae Radix. Intern. Med. 2018, 57, 1733–1740. [Google Scholar] [CrossRef]
- Takikawa, H.; Murata, Y.; Horiike, N.; Fukui, H.; Onji, M. Drug-induced liver injury in Japan: An analysis of 1676 cases between 1997 and 2006. Hepatol. Res. 2009, 39, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Gono, Y.; Odaguchi, H.; Hayasaki, T.; Suzuki, K.; Oikawa, T.; Muranushi, A.; Akahoshi, T.; Hanawa, T. Clinical Analysis of Cases with Drug-induced Liver Injury for Kampo Medicine. Kampo Med. 2010, 61, 828–833. [Google Scholar] [CrossRef]
- Ministry of Health, Labour and Welfare. Serious Adverse Reaction Disease Manual Drug-Induced Liver Injury April 2008 (Revised September 2019) (in Japanese). Available online: https://www.mhlw.go.jp/topics/2006/11/dl/tp1122-1i01_r01.pdf (accessed on 10 March 2023).
- Arai, I.; Harada, Y.; Koda, H.; Tsutani, K.; Motoo, Y. Estimated incidence per population of adverse drug reactions to Kampo medicines from the Japanese adverse drug event report database (JADER). Tradit. Kampo Med. 2020, 7, 3–16. [Google Scholar] [CrossRef]
- Pharmaceuticals and Medical Devices Agency. Information on Case Reports of Suspected Side Effects (in Japanese). Available online: https://www.pmda.go.jp/safety/info-services/drugs/adr-info/suspected-adr/0005.html (accessed on 10 March 2023).
- Hussain, I. The Safety of Medicinal Plants Used in the Treatment of Vitiligo and Hypermelanosis: A Systematic Review of Use and Reports of Harm. Clin. Cosmet Investig. Dermatol. 2021, 14, 261–284. [Google Scholar] [CrossRef]
- Garg, A.; Chaturvedi, P.; Gupta, P.C. A review of the systemic adverse effects of areca nut or betel nut. Indian J. Med. Paediatr. Oncol. 2014, 35, 3–9. [Google Scholar] [CrossRef]
- Khasbage, S.B.D.; Bhowate, R.R.; Khatib, N. Risk of liver disease in areca nut habitual: A systematic review. J. Oral. Maxillofac. Pathol. 2022, 26, 128–129. [Google Scholar] [CrossRef]
- Wang, X.; Song, X.; Si, Y.; Xia, J.; Wang, B.; Wang, P. Effect of autophagy-associated proteins on the arecoline-induced liver injury in mice. Exp. Ther. Med. 2018, 16, 3041–3049. [Google Scholar] [CrossRef]
- Run-mei, X.; Jun-jun, W.; Jing-ya, C.; Li-juan, S.; Yong, C. Effects of arecoline on hepatic cytochrome P450 activity and oxidative stress. J. Toxicol. Sci. 2014, 39, 609–614. [Google Scholar] [CrossRef]
- Chen, M.Y.; Wang, Q.; Meng, Z.J.; Men, W.J.; Huang, J.Y.; Yu, B.; Zhou, K. Psoralen induces liver injury and affects hepatic bile acids metabolism in female and male C57BL/6J mice. Phytother. Res. 2023, in press. [Google Scholar] [CrossRef]
- Yu, R.; Yu, Y.; Su, S.; Zhao, L.; Wang, Q.; Zhang, Y.; Song, L.; Zhou, K. Psoralen induces liver injuries through endoplasmic reticulum stress signaling in female mice. Drug Chem. Toxicol. 2022, 45, 1818–1824. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Chen, X.; Zhao, G.; Xu, D.; Jiang, Z.; Zhang, L.; Wang, T. Psoralen Induced Liver Injury by Attenuating Liver Regenerative Capability. Front. Pharmacol. 2018, 9, 1179. [Google Scholar] [CrossRef] [PubMed]
- De Ataide, E.C.; Reges Perales, S.; de Oliveira Peres, M.A.; Bastos Eloy da Costa, L.; Quarella, F.; Valerini, F.G.; Chueiri Neto, F.; Silveira Bello Stucchi, R.; de Fátima Santana Ferreira Boin, I. Acute Liver Failure Induced by Carthamus tinctorius Oil: Case Reports and Literature Review. Transplant. Proc. 2018, 50, 476–477. [Google Scholar] [CrossRef]
- Ma, Z.; Li, C.; Qiao, Y.; Lu, C.; Li, J.; Song, W.; Sun, J.; Zhai, X.; Niu, J.; Ren, Q.; et al. Safflower yellow B suppresses HepG2 cell injury induced by oxidative stress through the AKT/Nrf2 pathway. Int. J. Mol. Med. 2016, 37, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, C.; Zhang, H. Hepatoprotective effects of kaempferol 3-O-rutinoside and kaempferol 3-O-glucoside from Carthamus tinctorius L. on CCl4-induced oxidative liver injury in mice. J. Food Drug Anal. 2015, 23, 310–317. [Google Scholar] [CrossRef]
- He, Y.; Liu, Q.; Li, Y.; Yang, X.; Wang, W.; Li, T.; Zhang, W.; Cui, Y.; Wang, C.; Lin, R. Protective effects of hydroxysafflor yellow A (HSYA) on alcohol-induced liver injury in rats. J. Physiol. Biochem. 2015, 71, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Shi, Z.; Li, C.; Ma, C.; Bai, X.; Wang, C. Hydroxysafflor yellow A attenuates ischemia/reperfusion-induced liver injury by suppressing macrophage activation. Int. J. Clin. Exp. Pathol. 2014, 7, 2595–2608. [Google Scholar]
- Nathan, V.K.; Rani, M.E. Natural dye from Caesalpinia sappan L. heartwood for eco-friendly coloring of recycled paper based packing material and its in silico toxicity analysis. Environ. Sci. Pollut. Res. 2021, 28, 28713–28719. [Google Scholar] [CrossRef] [PubMed]
- Nirmal, N.P.; Rajput, M.S.; Prasad, R.G.S.V.; Ahmad, M. Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: A review. Asian Pac. J. Trop. Med. 2015, 8, 421–430. [Google Scholar] [CrossRef]
- Sireeratawong, S.; Piyabhan, P.; Singhalak, T.; Wongkrajang, Y.; Temsiririrkkul, R.; Punsrirat, J.; Ruangwises, N.; Saraya, S.; Lerdvuthisopon, N.; Jaijoy, K. Toxicity evaluation of sappan wood extract in rats. J. Med. Assoc. Thail. 2010, 93 (Suppl. 7), S50–S57. [Google Scholar]
- Dong, Z.; Lu, X.; Tong, X.; Dong, Y.; Tang, L.; Liu, M. Forsythiae Fructus: A Review on its Phytochemistry, Quality Control, Pharmacology and Pharmacokinetics. Molecules 2017, 22, 1466. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.H.; Hwang, Y.H.; Kim, T.I.; Oh, Y.C.; Ma, J.Y. Forsythia Fruit Prevents Fulminant Hepatitis in Mice and Ameliorates Inflammation in Murine Macrophages. Nutrients 2021, 13, 2901. [Google Scholar] [CrossRef]
- Khojasteh, S.C.; Oishi, S.; Nelson, S.D. Metabolism and Toxicity of Menthofuran in Rat Liver Slices and in Rats. Chem. Res. Toxicol. 2010, 23, 1824–1832. [Google Scholar] [CrossRef]
- Yu, S.; Chen, Y.; Zhang, L.; Shan, M.; Tang, Y.; Ding, A. Quantitative Comparative Analysis of the Bio-Active and Toxic Constituents of Leaves and Spikes of Schizonepeta tenuifolia at Different Harvesting Times. Int. J. Mol. Sci. 2011, 12, 6635–6644. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, Y.G.; Wang, J.B.; Liu, S.H.; Wang, L.F.; Zhao, Y.L.; Bai, Y.F.; Wang, Z.X.; Li, J.Y.; Xiao, X.H. Causes, Features, and Outcomes of Drug-Induced Liver Injury in 69 Children from China. Gut Liver 2015, 9, 525–533. [Google Scholar] [CrossRef]
- Teschke, R.; Wolff, A.; Frenzel, C.; Schulze, J. Review article: Herbal hepatotoxicity—An update on traditional Chinese medicine preparations. Aliment. Pharmacol. Ther. 2014, 40, 32–50. [Google Scholar] [CrossRef]
- Frenzel, C.; Teschke, R. Herbal Hepatotoxicity: Clinical Characteristics and Listing Compilation. Int. J. Mol. Sci. 2016, 17, 588. [Google Scholar] [CrossRef]
- Teschke, R.; Zhang, L.; Long, H.; Schwarzenboeck, A.; Schmidt-Taenzer, W.; Genthner, A.; Wolff, A.; Frenzel, C.; Schulze, J.; Eickhoff, A. Traditional Chinese Medicine and herbal hepatotoxicity: A tabular compilation of reported cases. Ann. Hepatol. 2015, 14, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Kane, J.A.; Kane, S.P.; Jain, S. Hepatitis induced by traditional Chinese herbs; possible toxic components. Gut 1995, 36, 146–147. [Google Scholar] [CrossRef]
- Farah, H.M.; Khalid, H.E.; El Hussein, A.M.; Osman, H.M. Toxic Effect of Gardenia ternifolia Fruit on Rats. EJMP 2018, 24, 1–9. [Google Scholar] [CrossRef]
- Tian, J.; Zhu, J.; Yi, Y.; Li, C.; Zhang, Y.; Zhao, Y.; Pan, C.; Xiang, S.; Li, X.; Li, G.; et al. Dose-related liver injury of Geniposide associated with the alteration in bile acid synthesis and transportation. Sci. Rep. 2017, 7, 8938. [Google Scholar] [CrossRef]
- Aiba, T.; Takahashi, T.; Suzuki, K.; Okoshi, S.; Nomoto, M.; Uno, K.; Aoyagi, Y. Liver injury induced by a Japanese herbal medicine, sairei-to (TJ-114, Bupleurum and Hoelen Combination, Chai-Ling-Tang) R1. J. Gastroenterol. Hepatol. 2007, 22, 762–763. [Google Scholar] [CrossRef] [PubMed]
- Huu Tung, N.; Uto, T.; Morinaga, O.; Kim, Y.H.; Shoyama, Y. Pharmacological Effects of Ginseng on Liver Functions and Diseases: A Minireview. Evid. Based Complement. Altern. Med. 2012, 2012, 173297. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Lin, A.N.; Linn, S.; Hlaing, P.P.; Vasudevan, V.; Reddy, M. Ginseng-Related Drug-Induced Liver Injury. Case Rep. Gastroenterol. 2018, 12, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Yang, M.; Deng, Y.; Yu, H.; Wang, L.; Teng, F.; Cho, K.; Ma, H.; Wu, P.; Li, X.; et al. The Safety Evaluation of Salvianolic Acid B and Ginsenoside Rg1 Combination on Mice. Int. J. Mol. Sci. 2015, 16, 29345–29356. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Dong, X.; Yin, X.; Wang, W.; You, L.; Ni, J. Radix Bupleuri: A Review of Traditional Uses, Botany, Phytochemistry, Pharmacology, and Toxicology. BioMed Res. Int. 2017, 2017, 7597596. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.M.; Li, Z.Y.; Li, X.M.; Pan, R.L. Review on the Toxic Effects of Radix Bupleuri. Curr. Opin. Complement. Altern. Med. 2014, 1, 3–7. [Google Scholar]
- Lee, C.H.; Wang, J.D.; Chen, P.C. Risk of Liver Injury Associated with Chinese Herbal Products Containing Radix bupleuri in 639,779 Patients with Hepatitis B Virus Infection. PLoS ONE 2011, 6, e16064. [Google Scholar] [CrossRef]
- Nazari, S.; Rameshrad, M.; Hosseinzadeh, H. Toxicological Effects of Glycyrrhiza glabra (Licorice): A Review. Phytother. Res. 2017, 31, 1635–1650. [Google Scholar] [CrossRef]
- Hussein, E. Biochemical and histopathological studies on the liver of rats administrated with different concentrations of aqueous extract of Glycyrrhiza glabrous. Glob. Vet. 2013, 10, 491–495. [Google Scholar]
- Ji, M.Y.; Bo, A.; Yang, M.; Xu, J.F.; Jiang, L.L.; Zhou, B.C.; Li, M.H. The Pharmacological Effects and Health Benefits of Platycodon grandiflorus-A Medicine Food Homology Species. Foods 2020, 9, 142. [Google Scholar] [CrossRef]
- Takahashi, T.; Sugawara, W.; Takiguchi, Y.; Takizawa, K.; Nakabayashi, A.; Nakamura, M.; Nagano-Ito, M.; Ichikawa, S. Identification of Plants That Inhibit Lipid Droplet Formation in Liver Cells: Rubus suavissimus Leaf Extract Protects Mice from High-Fat Diet-Induced Fatty Liver by Directly Affecting Liver Cells. Evid. Based Complement. Altern. Med. 2016, 2016, 4282758. [Google Scholar] [CrossRef]
- Yang, L.; Yu, H.; Hou, A.; Man, W.; Wang, S.; Zhang, J.; Wang, X.; Zheng, S.; Jiang, H.; Kuang, H. A Review of the Ethnopharmacology, Phytochemistry, Pharmacology, Application, Quality Control, Processing, Toxicology, and Pharmacokinetics of the Dried Rhizome of Atractylodes macrocephala. Front. Pharmacol. 2021, 12, 727154. [Google Scholar] [CrossRef] [PubMed]
- Kiso, Y.; Tohkin, M.; Hikino, H. Antihepatotoxic Principles of Atractylodes Rhizomes. J. Nat. Prod. 1983, 46, 651–654. [Google Scholar] [CrossRef]
- Badawi, M.S. Histological study of the protective role of ginger on piroxicam-induced liver toxicity in mice. J. Chin. Med. Assoc. 2019, 82, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Heeba, G.H.; Abd-Elghany, M.I. Effect of combined administration of ginger (Zingiber officinale Roscoe) and atorvastatin on the liver of rats. Phytomedicine 2010, 17, 1076–1081. [Google Scholar] [CrossRef] [PubMed]
- Rafie, R.; Hosseini, S.A.; Hajiani, E.; Saki Malehi, A.; Mard, S.A. Effect of Ginger Powder Supplementation in Patients with Non-Alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Clin. Exp. Gastroenterol. 2020, 13, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Ruperti-Repilado, F.J.; Haefliger, S.; Rehm, S.; Zweier, M.; Rentsch, K.M.; Blum, J.; Jetter, A.; Heim, M.; Leuppi-Taegtmeyer, A.; Terracciano, L.; et al. Danger of Herbal Tea: A Case of Acute Cholestatic Hepatitis Due to Artemisia annua Tea. Front. Med. 2019, 6, 221. [Google Scholar] [CrossRef]
- Park, C.Y.; Choi, E.; Yang, H.J.; Ho, S.H.; Park, S.J.; Park, K.M.; Kim, S.H. Efficacy of Artemisia annua L. extract for recovery of acute liver failure. Food Sci. Nutr. 2020, 8, 3738–3749. [Google Scholar] [CrossRef]
- Jang, E.; Kim, B.J.; Lee, K.T.; Inn, K.S.; Lee, J.H. A Survey of Therapeutic Effects of Artemisia capillaris in Liver Diseases. Evid. Based Complement. Altern. Med. 2015, 2015, 728137. [Google Scholar] [CrossRef]
- Danan, G.; Benichou, C. Causality assessment of adverse reactions to drugs--I. A novel method based on the conclusions of international consensus meetings: Application to drug-induced liver injuries. J. Clin. Epidemiol. 1993, 46, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- Takikawa, H.; Takamori, Y.; Kumagi, T.; Onji, M.; Watanabe, M.; Shibuya, A.; Hisamochi, A.; Kumashiro, R.; Ito, T.; Mitsumoto, Y.; et al. Assessment of 287 Japanese cases of drug induced liver injury by the diagnostic scale of the International Consensus Meeting. Hepatol. Res. 2003, 27, 192–195. [Google Scholar] [CrossRef]
- Nutrivigilance. The French Agency for Food, Environment, Occupational Health and Safety (ANSES). Available online: https://www.nutrivigilance-anses.fr/nutri#! (accessed on 15 April 2023).
- Itoh, T.; Senda, S.; Inoue, H.; Saitoh, Y.; Kagami, M.; Matsubara, F.; Aoyagi, H. The Effect of Bofutsushosan on Weight Reduction in Humans. Kampo Med. 2005, 56, 933–939. [Google Scholar] [CrossRef]
- de Boer, A.; Geboers, L.; van de Koppel, S.; van Hunsel, F. Governance of nutrivigilance in the Netherlands: Reporting adverse events of non-registered products. Health Policy 2022, 126, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Maeda, R. JADER from Pharmacovigilance Point of View. Jpn. J. Pharmacoepidemiol. 2014, 19, 51–56. [Google Scholar] [CrossRef]
- MedDRA Japanese Maintenance Organization. Available online: https://www.pmrj.jp/jmo/php/indexj.php (accessed on 10 March 2023).
- Toriumi, S.; Kobayashi, A.; Sueki, H.; Yamamoto, M.; Uesawa, Y. Exploring the Mechanisms Underlying Drug-Induced Fractures Using the Japanese Adverse Drug Event Reporting Database. Pharmaceuticals 2021, 14, 1299. [Google Scholar] [CrossRef]
- Toriumi, S.; Kobayashi, A.; Uesawa, Y. Comprehensive Study of the Risk Factors for Medication-Related Osteonecrosis of the Jaw Based on the Japanese Adverse Drug Event Report Database. Pharmaceuticals 2020, 13, 467. [Google Scholar] [CrossRef]
- MedDRA Maintenance and Support Services Organization (MSSO). Standardised MedDRA Queries (SMQs). Available online: https://www.meddra.org/standardised-meddra-queries (accessed on 10 March 2023).
- Watanabe, H.; Matsushita, Y.; Watanabe, A.; Maeda, T.; Nukui, K.; Ogawa, Y.; Sawa, J.; Maeda, H. Early detection of important safety information. Jpn. J. Biomet. 2004, 25, 37–60. [Google Scholar] [CrossRef]
- Ohyama, K.; Sugiura, M. Evaluation of the association between topical prostaglandin F2αanalogs and asthma using the JADER database: Comparison with β-blockers. Yakugaku Zasshi 2018, 138, 559–564. [Google Scholar] [CrossRef]
- Urushibara, H. Basic Dos and Don’ts in Applying Signal Detection Methods to Spontaneous Reporting Systems Databases. Jpn. J. Drug Inform. 2020, 21, 135–141. [Google Scholar]
- Fujita, T. Signal Detection of Adverse Drug Reactions. Jpn. J. Pharmacoepidemiol. 2009, 14, 27–36. [Google Scholar] [CrossRef]
- Kurosaki, K.; Uesawa, Y. Molecular Initiating Events Associated with Drug-Induced Liver Malignant Tumors: An Integrated Study of the FDA Adverse Event Reporting System and Toxicity Predictions. Biomolecules 2021, 11, 944. [Google Scholar] [CrossRef]
- Chen, J.J.; Wang, S.J.; Tsai, C.A.; Lin, C.J. Selection of differentially expressed genes in microarray data analysis. Pharm. J. 2007, 7, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, H.; Uchida, M.; Suzuki, S.; Suga, Y.; Uesawa, Y.; Nakagawa, T.; Takase, H. Analyses of Respiratory Depression Associated with Opioids in Cancer Patients Based on the Japanese Adverse Drug Event Report Database. Biol. Pharm. Bull. 2019, 42, 1185–1191. [Google Scholar] [CrossRef] [PubMed]
Rank | Adverse Event | Reporting Times * |
---|---|---|
1 | Interstitial lung disease | 51,347 |
2 | Hepatic function abnormal | 33,663 |
3 | Platelet count | 32,904 |
4 | Neutrophil count decreased | 27,409 |
5 | Pyrexia | 25,662 |
6 | Pneumonia | 25,457 |
7 | White blood cell count decreased | 25,134 |
8 | Anemia | 22,024 |
9 | Neutropenia | 21,246 |
10 | Liver disorder | 20,746 |
11 | Anaphylactic shock | 20,616 |
12 | Renal impairment | 20,069 |
13 | Febrile neutropenia | 19,453 |
14 | Rash | 17,950 |
15 | Diarrhea | 17,246 |
16 | Drug eruption | 15,883 |
17 | Acute kidney injury | 14,622 |
18 | Decreased appetite | 14,227 |
19 | Anaphylactic reaction | 12,298 |
20 | Pancytopenia | 12,078 |
21 | Stevens–Johnson syndrome | 12,020 |
22 | Thrombocytopenia | 12,012 |
23 | Rhabdomyolysis | 11,998 |
24 | Nausea | 11,839 |
25 | Blood pressure decreased | 11,615 |
26 | Cerebral infarction | 10,860 |
27 | Cardiac failure | 10,824 |
28 | Myelosuppression | 10,552 |
29 | Sepsis | 10,549 |
30 | Erythema multiforme | 10,516 |
31 | Hypoglycemia | 10,309 |
32 | Vomiting | 10,190 |
33 | Hemoglobin decreased | 9930 |
34 | Altered state of consciousness | 9907 |
35 | Seizure | 9624 |
36 | Drug-induced liver injury | 9546 |
37 | Death | 9010 |
38 | Leukopenia | 8875 |
39 | Fatigue | 8785 |
40 | Toxic epidermal necrolysis | 8152 |
41 | Cerebral hemorrhage | 8063 |
42 | Loss of consciousness | 7890 |
43 | Erythema | 7711 |
44 | Dyspnea | 7671 |
45 | Neuroleptic malignant syndrome | 7597 |
46 | Drug reaction with eosinophilia and systemic symptoms | 7589 |
47 | Pneumocystis jirovecii pneumonia | 7405 |
48 | Disseminated intravascular coagulation | 7301 |
49 | Agranulocytosis | 7066 |
50 | Shock | 6741 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimura, K.; Kikegawa, M.; Kan, Y.; Uesawa, Y. Identifying Crude Drugs in Kampo Medicines Associated with Drug-Induced Liver Injury Using the Japanese Adverse Drug Event Report Database: A Comprehensive Survey. Pharmaceuticals 2023, 16, 678. https://doi.org/10.3390/ph16050678
Kimura K, Kikegawa M, Kan Y, Uesawa Y. Identifying Crude Drugs in Kampo Medicines Associated with Drug-Induced Liver Injury Using the Japanese Adverse Drug Event Report Database: A Comprehensive Survey. Pharmaceuticals. 2023; 16(5):678. https://doi.org/10.3390/ph16050678
Chicago/Turabian StyleKimura, Kyosuke, Mami Kikegawa, Yusuke Kan, and Yoshihiro Uesawa. 2023. "Identifying Crude Drugs in Kampo Medicines Associated with Drug-Induced Liver Injury Using the Japanese Adverse Drug Event Report Database: A Comprehensive Survey" Pharmaceuticals 16, no. 5: 678. https://doi.org/10.3390/ph16050678
APA StyleKimura, K., Kikegawa, M., Kan, Y., & Uesawa, Y. (2023). Identifying Crude Drugs in Kampo Medicines Associated with Drug-Induced Liver Injury Using the Japanese Adverse Drug Event Report Database: A Comprehensive Survey. Pharmaceuticals, 16(5), 678. https://doi.org/10.3390/ph16050678