The Structural Characteristics of Compounds Interacting with the Amantadine-Sensitive Drug Transport System at the Inner Blood–Retinal Barrier
Abstract
:1. Introduction
2. Results
2.1. Inhibitory Effects of Aliphatic Amines on Amantadine Uptake by TR-iBRB2 Cells
2.2. Effects of Compounds 9, 14, and 23 on Amantadine Uptake by TR-iBRB2 Cells
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Cell Culture and Uptake Analysis
/([3H]amantadine (dpm per µL) in the medium)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Diaz-Coranguez, M.; Ramos, C.; Antonetti, D.A. The inner blood-retinal barrier: Cellular basis and development. Vis. Res. 2017, 139, 123–137. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, F.; Campbell, M. The blood-retina barrier in health and disease. FEBS J. 2023, 290, 878–891. [Google Scholar] [CrossRef] [PubMed]
- Kubo, Y.; Akanuma, S.; Hosoya, K. Recent advances in drug and nutrient transport across the blood-retinal barrier. Expert Opin. Drug Metab. Toxicol. 2018, 14, 513–531. [Google Scholar] [CrossRef]
- Kubo, Y.; Shimizu, Y.; Kusagawa, Y.; Akanuma, S.; Hosoya, K. Propranolol transport across the inner blood-retinal barrier: Potential involvement of a novel organic cation transporter. J. Pharm. Sci. 2013, 102, 3332–3342. [Google Scholar] [CrossRef] [PubMed]
- Shinozaki, Y.; Akanuma, S.; Mori, Y.; Kubo, Y.; Hosoya, K. Comprehensive evidence of carrier-Mediated distribution of amantadine to the retina across the blood-retinal barrier in rats. Pharmaceutics 2021, 13, 1339. [Google Scholar] [CrossRef]
- Kornhuber, J.; Weller, M.; Schoppmeyer, K.; Riederer, P. Amantadine and memantine are NMDA receptor antagonists with neuroprotective properties. J. Neural Transm. Suppl. 1994, 43, 91–104. [Google Scholar] [PubMed]
- Sobolevsky, A.; Koshelev, S. Two blocking sites of amino-adamantane derivatives in open N-methyl-D-aspartate channels. Biophys. J. 1998, 74, 1305–1319. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Xia, P.; Cui, J.; Talantova, M.; Bodhinathan, K.; Li, W.; Saleem, S.; Holland, E.A.; Tong, G.; Pina-Crespo, J.; et al. Pharmacologically targeted NMDA receptor antagonism by NitroMemantine for cerebrovascular disease. Sci. Rep. 2015, 5, 14781. [Google Scholar] [CrossRef] [Green Version]
- Zengin, E.N.; Kayir, S.; Dogan, G.; Zengin, M.; Akdagli Ekici, A.; Yalvac, M.; Ayaz, E.; Ozcan, O.; Karaca, O.; Yagan, O.; et al. Neuroprotective effects of amantadine for experimental acute carbon monoxide poisoning. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 6919–6927. [Google Scholar]
- Fabbri, M.; Barbosa, R.; Rascol, O. Off-time treatment options for Parkinson’s disease. Neurol. Ther. 2023. [Google Scholar] [CrossRef]
- Huo, Z.; Lin, J.; Bat, B.K.K.; Chan, T.K.; Yip, B.H.K.; Tsoi, K.K.F. Cost-effectiveness of pharmacological therapies for people with Alzheimer’s disease and other dementias: A systematic review and meta-analysis. Cost Eff. Resour. Alloc. 2022, 20, 19. [Google Scholar] [CrossRef]
- Majidazar, R.; Rezazadeh-Gavgani, E.; Sadigh-Eteghad, S.; Naseri, A. Pharmacotherapy of Alzheimer’s disease: An overview of systematic reviews. Eur. J. Clin. Pharmacol. 2022, 78, 1567–1587. [Google Scholar] [CrossRef]
- Tani, J.; Wen, Y.T.; Hu, C.J.; Sung, J.Y. Current and potential pharmacologic therapies for traumatic brain injury. Pharmaceuticals 2022, 15, 838. [Google Scholar] [CrossRef] [PubMed]
- Almasieh, M.; Wilson, A.M.; Morquette, B.; Cueva Vargas, J.L.; Di Polo, A. The molecular basis of retinal ganglion cell death in glaucoma. Prog. Retin. Eye Res. 2011, 31, 152–181. [Google Scholar] [CrossRef] [PubMed]
- Seki, M.; Lipton, S.A. Targeting excitotoxic/free radical signaling pathways for therapeutic intervention in glaucoma. Prog. Brain Res. 2008, 173, 495–510. [Google Scholar]
- Marshall, J.; Wong, K.Y.; Rupasinghe, C.N.; Tiwari, R.; Zhao, X.; Berberoglu, E.D.; Sinkler, C.; Liu, J.; Lee, I.; Parang, K.; et al. Inhibition of N-methyl-D-aspartate-induced retinal neuronal death by polyarginine peptides is linked to the attenuation of stress-induced hyperpolarization of the inner mitochondrial membrane potential. J. Biol. Chem. 2015, 290, 22030–22048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abo El Gheit, R.E.; Soliman, N.A.; Badawi, G.A.; Madi, N.M.; El-Saka, M.H.; Badr, S.M.; Emam, M.N. Retinoprotective effect of agmatine in streptozotocin-induced diabetic rat model: Avenues for vascular and neuronal protection: Agmatine in diabetic retinopathy. J. Physiol. Biochem. 2021, 77, 305–320. [Google Scholar] [CrossRef]
- Schmidt, K.G.; Bergert, H.; Funk, R.H. Neurodegenerative diseases of the retina and potential for protection and recovery. Curr. Neuropharmacol. 2008, 6, 164–178. [Google Scholar] [CrossRef] [Green Version]
- Vishwaraj, C.R.; Kavitha, S.; Venkatesh, R.; Shukla, A.G.; Chandran, P.; Tripathi, S. Neuroprotection in glaucoma. Indian J. Ophthalmol. 2022, 70, 380–385. [Google Scholar]
- Maciulaitiene, R.; Pakuliene, G.; Kaja, S.; Pauza, D.H.; Kalesnykas, G.; Januleviciene, I. Glioprotection of Retinal Astrocytes After Intravitreal Administration of Memantine in the Mouse Optic Nerve Crush Model. Med. Sci. Monit. 2017, 23, 1173–1179. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Chen, X.; Tang, Y.; Zhao, J.; Li, Q.; Fan, X.; Xu, H.; Yin, Z.Q. Neuroprotective effect of memantine on the retinal ganglion cells of APPswe/PS1DeltaE9 mice and its immunomodulatory mechanisms. Exp. Eye Res. 2015, 135, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Hosoya, K.; Tomi, M.; Ohtsuki, S.; Takanaga, H.; Ueda, M.; Yanai, N.; Obinata, M.; Terasaki, T. Conditionally immortalized retinal capillary endothelial cell lines (TR-iBRB) expressing differentiated endothelial cell functions derived from a transgenic rat. Exp. Eye Res. 2001, 72, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Tega, Y.; Kubo, Y.; Yuzurihara, C.; Akanuma, S.; Hosoya, K. Carrier-mediated transport of nicotine across the inner blood-retinal barrier: Involvement of a novel organic cation transporter driven by an outward H+ Gradient. J. Pharm. Sci. 2015, 104, 3069–3075. [Google Scholar] [CrossRef] [PubMed]
- Henkel, J.G.; Hane, J.T.; Gianutsos, G. Structure-anti-Parkinson activity relationships in the aminoadamantanes. Influence of bridgehead substitution. J. Med. Chem. 1982, 25, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Jirgensons, A.; Kauss, V.; Kalvinsh, I.; Gold, M.R.; Danysz, W.; Parsons, C.G.; Quack, G. Synthesis and structure-affinity relationships of 1,3, 5-alkylsubstituted cyclohexylamines binding at NMDA receptor PCP site. Eur. J. Med. Chem. 2000, 35, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Goralski, K.B.; Lou, G.; Prowse, M.T.; Gorboulev, V.; Volk, C.; Koepsell, H.; Sitar, D.S. The cation transporters rOCT1 and rOCT2 interact with bicarbonate but play only a minor role for amantadine uptake into rat renal proximal tubules. J. Pharmacol. Exp. Ther. 2002, 303, 959–968. [Google Scholar] [CrossRef]
- Kooijmans, S.A.; Senyschyn, D.; Mezhiselvam, M.M.; Morizzi, J.; Charman, S.A.; Weksler, B.; Romero, I.A.; Couraud, P.O.; Nicolazzo, J.A. The involvement of a Na+- and Cl−-dependent transporter in the brain uptake of amantadine and rimantadine. Mol. Pharm. 2012, 9, 883–893. [Google Scholar] [CrossRef]
- Muller, F.; Weitz, D.; Derdau, V.; Sandvoss, M.; Mertsch, K.; Konig, J.; Fromm, M.F. Contribution of MATE1 to renal secretion of the NMDA receptor antagonist memantine. Mol. Pharm. 2017, 14, 2991–2998. [Google Scholar] [CrossRef]
- Danysz, W.; Parsons, C.G.; Kornhuber, J.; Schmidt, W.J.; Quack, G. Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents--preclinical studies. Neurosci. Biobehav. Rev. 1997, 21, 455–468. [Google Scholar] [CrossRef]
- Salabert, A.S.; Fonta, C.; Fontan, C.; Adel, D.; Alonso, M.; Pestourie, C.; Belhadj-Tahar, H.; Tafani, M.; Payoux, P. Radiolabeling of [18F]-fluoroethylnormemantine and initial in vivo evaluation of this innovative PET tracer for imaging the PCP sites of NMDA receptors. Nucl. Med. Biol. 2015, 42, 643–653. [Google Scholar] [CrossRef]
- Temme, L.; Schepmann, D.; Schreiber, J.A.; Frehland, B.; Wunsch, B. Comparative pharmacological study of common NMDA receptor open channel blockers regarding their affinity and functional activity toward GluN2A and GluN2B NMDA receptors. ChemMedChem 2018, 13, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Ndzibongwana, S.; Ngobese, S.; Sayed, A.; Shongwe, C.; White-Phillips, S.; Joubert, J. Structural analysis, molecular modelling and preliminary competition binding studies of AM-DAN as a NMDA receptor PCP-site fluorescent ligand. Molecules 2019, 24, 4092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turcu, A.L.; Companys-Alemany, J.; Phillips, M.B.; Patel, D.S.; Grinan-Ferre, C.; Loza, M.I.; Brea, J.M.; Perez, B.; Soto, D.; Sureda, F.X.; et al. Design, synthesis, and in vitro and in vivo characterization of new memantine analogs for Alzheimer’s disease. Eur. J. Med. Chem. 2022, 236, 114354. [Google Scholar] [CrossRef]
- Yamaoka, K.; Tanigawara, Y.; Nakagawa, T.; Uno, T. A pharmacokinetic analysis program (multi) for microcomputer. J. Pharmacobiodyn. 1981, 4, 879–885. [Google Scholar] [CrossRef] [PubMed]
Test Compounds | Formula | MW | pKa | Log P | [3H]Amantadine Uptake (% of Control) | ||
---|---|---|---|---|---|---|---|
Control | 100 | ± | 16 | ||||
Amantadine | C10H17N | 151.25 | 10.71 | 1.47 | 38.8 | ± | 13.8 ** |
1 | C10H17N | 151.25 | 10.54 | 1.55 | 28.2 | ± | 2.1 ** |
2 | C12H21N | 179.31 | 10.14 | 2.22 | 25.4 | ± | 0.9 ** |
3 | C11H19N | 165.27 | 9.90 | 1.80 | 14.2 | ± | 4.2 ** |
4 | C23H35N2 | 339.55 | - | 0.35 | 91.2 | ± | 7.4 |
5 | C10H17NO | 167.25 | 10.34 | 0.08 | 110 | ± | 11 |
6 | C10H18N2 | 166.27 | 8.92, 10.57 | −0.03 | 97.0 | ± | 31.6 |
7 | C17H25N3O2 | 302.42 | 8.79 | 1.27 | 116 | ± | 35 |
8 | C12H20O | 179.31 | 10.70 | 2.07 | 28.4 | ± | 2.8 ** |
9 | C12H22N2 | 194.32 | 7.27, 10.53 | 1.10 | 4.89 | ± | 1.28 ** |
10 | C10H17NO | 167.25 | 10.23 | 0.24 | 111 | ± | 13 |
11 | C3H7N | 57.10 | 9.36 | −0.16 | 69.5 | ± | 22.6 ** |
12 | C4H9N | 71.12 | 10.25 | 0.28 | 68.3 | ± | 3.3 ** |
13 | C5H11N | 85.15 | 10.45 | 0.73 | 58.3 | ± | 14.1 ** |
14 | C6H13N | 99.18 | 10.45 | 1.17 | 19.5 | ± | 2.2 ** |
15 | C7H15N | 113.20 | 10.45 | 1.62 | 47.3 | ± | 20.9 ** |
16 | C8H17N | 127.23 | 10.45 | 2.06 | 25.8 | ± | 5.7 ** |
17 | C10H21N | 155.29 | 10.45 | 2.49 | 29.9 | ± | 15.4 ** |
18 | C7H13NO2 | 143.19 | 10.46 | 0.40 | 87.0 | ± | 2.9 |
19 | C7H15N | 113.20 | 10.70 | 1.61 | 67.3 | ± | 13.5 ** |
20 | C8H17N | 127.23 | 10.22 | 1.99 | 68.4 | ± | 10.6 ** |
21 | C5H13N | 87.17 | 10.21 | 1.14 | 46.8 | ± | 7.5 ** |
22 | C6H15N | 101.19 | 10.21 | 1.59 | 32.8 | ± | 12.5 ** |
23 | C8H19N | 129.25 | 10.21 | 2.48 | 17.3 | ± | 3.0 ** |
24 | C10H14N2 | 162.24 | 8.58 | 1.16 | 58.7 | ± | 9.7 ** |
Control (1%DMSO) | 100 | ± | 11 | ||||
25 | C10H16 | 136.24 | - | 2.89 | 106 | ± | 3 |
26 | C12H19NO | 193.28 | - | 1.28 | 98.1 | ± | 13.2 |
ID | IC50 (µM) | Vmax (nmol/(min·mg Protein)) | Km app (µM) | Kd (µL/(min·mg Protein)) | Ki (µM) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | 1.04 | ± | 0.21 | 40.6 | ± | 11.5 | 2.73 | ± | 0.37 | ||||||
9 | 22.6 | ± | 8.9 | 0.795 | ± | 0.187 | 137 | ± | 35 ** | 2.51 | ± | 0.20 | 7.19 | ± | 0.61 |
14 | 67.0 | ± | 23.5 | 0.787 | ± | 0.171 | 63.2 | ± | 17.4 | 3.50 | ± | 0.29 ** | |||
23 | 55.3 | ± | 18.9 | 1.05 | ± | 0.24 | 135 | ± | 34 ** | 2.50 | ± | 0.24 | 27.3 | ± | 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shinozaki, Y.; Tega, Y.; Akanuma, S.-i.; Hosoya, K.-i. The Structural Characteristics of Compounds Interacting with the Amantadine-Sensitive Drug Transport System at the Inner Blood–Retinal Barrier. Pharmaceuticals 2023, 16, 435. https://doi.org/10.3390/ph16030435
Shinozaki Y, Tega Y, Akanuma S-i, Hosoya K-i. The Structural Characteristics of Compounds Interacting with the Amantadine-Sensitive Drug Transport System at the Inner Blood–Retinal Barrier. Pharmaceuticals. 2023; 16(3):435. https://doi.org/10.3390/ph16030435
Chicago/Turabian StyleShinozaki, Yusuke, Yuma Tega, Shin-ichi Akanuma, and Ken-ichi Hosoya. 2023. "The Structural Characteristics of Compounds Interacting with the Amantadine-Sensitive Drug Transport System at the Inner Blood–Retinal Barrier" Pharmaceuticals 16, no. 3: 435. https://doi.org/10.3390/ph16030435
APA StyleShinozaki, Y., Tega, Y., Akanuma, S. -i., & Hosoya, K. -i. (2023). The Structural Characteristics of Compounds Interacting with the Amantadine-Sensitive Drug Transport System at the Inner Blood–Retinal Barrier. Pharmaceuticals, 16(3), 435. https://doi.org/10.3390/ph16030435