Evaluation of the Relationship between Baseline Autonomic Tone and Haemodynamic Effects of Dexmedetomidine
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reade, M.C.; Finfer, S. Sedation and delirium in the intensive care unit. N. Engl. J. Med. 2014, 370, 444–454. [Google Scholar] [CrossRef] [Green Version]
- Drug Approval Package: Precedex (Dexmedetomidine Hydrochloride) NDA# 21-038. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/99/21-038_Precedex.cfm (accessed on 3 August 2022).
- Weerink, M.A.S.; Struys, M.M.R.F.; Hannivoort, L.N.; Barends, C.R.M.; Absalom, A.R.; Colin, P. Clinical Pharmacokinetics and Pharmacodynamics of Dexmedetomidine. Clin. Pharmacokinet. 2017, 56, 893–913. [Google Scholar] [CrossRef] [Green Version]
- Reel, B.; Maani, C.V. Dexmedetomidine. 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK513303/ (accessed on 27 July 2022).
- Kirksey, M.A.; Haskins, S.C.; Cheng, J.; Liu, S.S. Local anesthetic peripheral nerve block adjuvants for prolongation of analgesia: A systematic qualitative review. PLoS ONE 2015, 10, e0137312. [Google Scholar] [CrossRef] [PubMed]
- Devlin, J.W.; Mallow-Corbett, S.; Riker, R.R. Adverse drug events associated with the use of analgesics, sedatives, and antipsychotics in the intensive care unit. Crit. Care Med. 2010, 38 (Suppl. S6), S231–S243. [Google Scholar] [CrossRef] [PubMed]
- Naaz, S.; Ozair, E. Dexmedetomidine in current anaesthesia practice—A review. J. Clin. Diagn. Res. 2014, 8, GE01–GE04. [Google Scholar] [CrossRef]
- Kang, R.; Jeong, J.S.; Ko, J.S.; Lee, S.Y.; Lee, J.H.; Choi, S.J.; Cha, S.; Lee, J.J. Intraoperative dexmedetomidine attenuates norepinephrine levels in patients undergoing transsphenoidal surgery: A randomized, placebo-controlled trial. BMC Anesthesiol. 2020, 20, 100. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Lee, K.Y.; Bae, S.J.; Jo, M.; Cho, J.S. Intraoperative dexmedetomidine attenuates stress responses in patients undergoing major spine surgery. Minerva Anestesiol. 2019, 85, 468–477. [Google Scholar] [CrossRef]
- Tarvainen, M.P.; Georgiadis, S.; Laitio, T.; Lipponen, J.A.; Karjalainen, P.A.; Kaskinoro, K.; Scheinin, H. Heart rate variability dynamics during low-dose propofol and dexmedetomidine anesthesia. Ann. Biomed. Eng. 2012, 40, 1802–1813. [Google Scholar] [CrossRef]
- Hunter, J.C.; Fontana, D.J.; Hedley, L.R.; Jasper, J.R.; Lewis, R.; Link, R.E.; Secchi., R.; Sutton, J.; Eglen, R.M. Assessment of the role of alpha2-adrenoceptor subtypes in the antinociceptive, sedative and hypothermic action of dexmedetomidine in transgenic mice. Br. J. Pharmacol. 1997, 122, 1339–1344. [Google Scholar] [CrossRef] [Green Version]
- Gertler, R.; Brown, H.C.; Mitchell, D.H.; Silvius, E.N. Dexmedetomidine: A novel sedative-analgesic agent. Proc. (Bayl. Univ. Med. Cent.) 2001, 14, 1413–1421. [Google Scholar] [CrossRef]
- Grape, S.; Kirkham, K.R.; Frauenknecht, J.; Albrecht, E. Intra-operative analgesia with remifentanil vs. dexmedetomidine: A systematic review and meta-analysis with trial sequential analysis. Anaesthesia 2019, 74, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Yu, Y.; Zhang, W.; Zhu, J. Comparison of dexmedetomidine and sufentanil as adjuvants to local anesthetic for epidural labor analgesia: A randomized controlled trial. Drug Des. Devel. Ther. 2019, 13, 1171–1175. [Google Scholar] [CrossRef] [Green Version]
- Fan, M.; Li, J.; Cao, R.; Hu, L.; Lu, S. Efficacy and safety of dexmedetomidine-ropivacaine versus sufentanil-ropivacaine for epidural labor analgesia: A randomized controlled trial. Ann. Palliat. Med. 2022, 11, 1410–1420. [Google Scholar] [CrossRef] [PubMed]
- Aguerreche, C.; Cadier, G.; Beurton, A.; Imbault, J.; Leuillet, S.; Remy, A.; Zaouter, C.; Ouattara, A. Feasibility and postoperative opioid sparing effect of an opioid-free anaesthesia in adult cardiac surgery: A retrospective study. BMC Anesthesiol. 2021, 21, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wang, G.; Liu, X.; Wang, T.L.; Chi, P. The opioid-sparing effect of perioperative dexmedetomidine combined with Oxycodone infusion during open hepatectomy: A randomized controlled trial. Front. Pharmacol. 2018, 8, 940. [Google Scholar] [CrossRef]
- Giovannitti, J.; Thoms, S.M.; Crawford, J.J. Alpha-2 adrenergic receptor agonists: A review of current clinical applications. Anesth. Prog. 2015, 62, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Tang, J.; Dong, J.; Zheng, J. Alpha2-adrenoceptor-independent inhibition of acetylcholine receptor channel and sodium channel by dexmedetomidine in rat superior cervical ganglion neurons. Neuroscience 2015, 289, 9–18. [Google Scholar] [CrossRef]
- Frandsen, M.N.; Mehlsen, J.; Foss, N.B.; Kehlet, H. Preoperative heart rate variability as a predictor of perioperative outcomes: A systematic review without meta-analysis. J. Clin. Monit. Comput. 2022, 36, 947–960. [Google Scholar] [CrossRef]
- Frandsen, M.N.; Mehlsen, J.; Bang Foss, N.; Kehlet, H. Pre-operative autonomic nervous system function—A missing link for post-induction hypotension? Anaesthesia 2022, 77, 139–142. [Google Scholar] [CrossRef]
- Kenwright, D.A.; Bernjak, A.; Draegni, T.; Dzeroski, S.; Entwistle, M.; Horvat, M.; Kvandal, P.; Landsverk, S.A.; McClintock, P.E.V.; Musizza, B.; et al. The discriminatory value of cardiorespiratory interactions in distinguishing awake from anaesthetised states: A randomised observational study. Anaesthesia 2015, 70, 1356–1368. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, Y.; Kurokawa, S.; Asakura, Y.; Wakao, Y.; Nishiwaki, K.; Komatsu, T. Correlation between heart rate variability and haemodynamic fluctuation during induction of general anaesthesia: Comparison between linear and non-linear analysis. Anaesthesia 2007, 62, 117–121. [Google Scholar] [CrossRef]
- Inagaki, Y.; Morita, K.; Ozaki, M.; Matsumoto, K.; Okayama, A.; Oya, N.; Hiraoka, T.; Takeda, J. The Efficacy and Safety of Dexmedetomidine for Procedural Sedation in Patients Receiving Local Anesthesia Outside the Intensive Care Unit: A Prospective, Double-Blind, Randomized Clinical Phase III Trial in Japan. Yonago Acta Med. 2000, 65, 26–43. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Fu, Y.; Deng, F.; Shao, Y.; Lu, Y.G.; Song, J.C. Median Effective Dose of Dexmedetomidine Inducing Bradycardia in Elderly Patients Determined by Up-and-Down Sequential Allocation Method. Int. J. Med. Sci. 2022, 19, 1065–1071. [Google Scholar] [CrossRef]
- Aikaterini, A.; Ioannis, D.; Dimitrios, G.; Konstantinos, S.; Vasilios, G.; George, P. Bradycardia Leading to Asystole Following Dexmedetomidine Infusion during Cataract Surgery: Dexmedetomidine-Induced Asystole for Cataract Surgery. Case Rep. Anesthesiol. 2018, 2896032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogue, C.W.; Talke, P.; Stein, P.K.; Richardson, C.; Domitrovich, P.P.; Sessler, D.I. Autonomic nervous system responses during sedative infusions of dexmedetomidine. Anesthesiology 2002, 97, 592–598. [Google Scholar] [CrossRef]
- Cho, J.S.; Kim, H.I.; Lee, K.Y.; An, J.Y.; Bai, S.J.; Cho, J.Y.; Yoo, Y.C. Effect of Intraoperative Dexmedetomidine Infusion on Postoperative Bowel Movements in Patients Undergoing Laparoscopic Gastrectomy A Prospective, Randomized, Placebo-Controlled Study. Medicine 2015, 94, e959. [Google Scholar] [CrossRef] [PubMed]
- Devlin, J.W.; Skrobik, Y.; Gélinas, C.; Needham, D.M.; Slooter, A.J.C.; Pandharipande, P.P.; Watson, P.L.; Weinhouse, G.L.; Nunnally, M.E.; Rochwerg, B.; et al. Clinical Practice Guidelines for the Prevention and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU. Crit. Care Med. 2018, 46, E825–E873. [Google Scholar] [CrossRef] [Green Version]
- Bahraini, A.; Banerjee, O.; Ra, J. Bradycardia resulting in cardiac arrest in a critically ill patient receiving dexmedetomidine. Trauma Case Rep. 2021, 36, 100548. [Google Scholar] [CrossRef]
- Huang, C.J.; Kuok, C.H.; Kuo, T.B.J.; Hsu, Y.W.; Tsai, P.S. Pre-operative measurement of heart rate variability predicts hypotension during general anesthesia. Acta Anaesthesiol. Scand. 2006, 50, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Padley, J.R.; Ben-Menachem, E. Low pre-operative heart rate variability and complexity are associated with hypotension after anesthesia induction in major abdominal surgery. J. Clin. Monit. Comput. 2018, 32, 245–252. [Google Scholar] [CrossRef]
- Sokhal, S.; Rath, G.P.; Sokhal, N.; Chouhan, R.S. Severe Hypertension with Dexmedetomidine Infusion during Awake Craniotomy. J. Neuroanaesth. Crit. Care 2018, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, X.F.; Poblete, M.I.; Boric, M.P.; Mendizábal, V.E.; Adler-Graschinsky, E.; Huidobro-Toro, J.P. Clonidine-induced nitric oxide-dependent vasorelaxation mediated by endothelial alpha(2)-adrenoceptor activation. Br. J. Pharmacol. 2001, 134, 957–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajwa, S.J.S.; Kaur, J.; Kulshrestha, A.; Haldar, R.; Sethi, R.; Singh, A. Nitroglycerine, esmolol and dexmedetomidine for induced hypotension during functional endoscopic sinus surgery: A comparative evaluation. J. Anaesthesiol. Clin. Pharmacol. 2016, 32, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Jouybar, R.; Nemati, M.; Asmarian, N. Comparison of the effects of remifentanil and dexmedetomidine on surgeon satisfaction with surgical field visualization and intraoperative bleeding during rhinoplasty. BMC Anesthesiol. 2022, 22, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lang, B.; Zhang, L.; Lin, Y.; Zhang, W.; Li, F.S.; Chen, S. Comparison of effects and safety in providing controlled hypotension during surgery between dexmedetomidine and magnesium sulphate: A meta-analysis of randomized controlled trials. PLoS ONE 2020, 15, e0227410. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulou, C.; Kondili, E.; Diamantaki, E.; Kokkini, S.; Bolaki, M.; Georgopoulos, D. Effects of dexmedetomidine on sleep quality in critically Ill patients: A pilot study. Anesthesiology 2014, 121, 801–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalabalik, J. Use of dexmedetomidine in the management of alcohol withdrawal syndrome in critically ill patients. Int. J. Crit. Care Emerg. Med. 2015, 1, 002. [Google Scholar] [CrossRef]
- Kaye, A.D.; Chernobylsky, D.J.; Thakur, P.; Siddaiah, H.; Kaye, R.J.; Eng, L.K.; Harbell, M.W.; Lajaunie, J.; Cornett, E.M. Dexmedetomidine in Enhanced Recovery After Surgery (ERAS) Protocols for Postoperative Pain. Curr. Pain Headache Rep. 2020, 24, 21. [Google Scholar] [CrossRef]
- Gerlach, A.T.; Blais, D.M.; Jones, G.M.; Burcham, P.K.; Stawicki, S.P.; Cook, C.H.; Murphy, C.V. Predictors of dexmedetomidine-associated hypotension in critically ill patients. Int. J. Crit. Illn. Inj. Sci. 2016, 6, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Holmes, A.; Hoth, L.; Kimmons, L.; Jones, M.; Parish, T.; Swiggart, B. 153: Predictors odof dexmedetomidine-associated hypotension in cardiovascular intensive care unit patients. Crit. Care Med. 2018, 46, 59. [Google Scholar] [CrossRef]
- Cioccari, L.; Luethi, N.; Bailey, M.; Shehabi, Y.; Howe, B.; Messmer, A.S.; Proimos, H.K.; Peck, L.; Young, H.; Eastwood, G.M.; et al. The effect of dexmedetomidine on vasopressor requirements in patients with septic shock: A subgroup analysis of the Sedation Practice in Intensive Care Evaluation [SPICE III] Trial. Crit. Care 2020, 24, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Cruickshank, M.; Henderson, L.; MacLennan, G.; Fraser, C.; Campbell, M.; Blackwood, B.; Gordon, A.; Brazzelli, M. Alpha-2 agonists for sedation of mechanically ventilated adults in intensive care units: A systematic review. Health Technol. Assess. 2016, 20, 1–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoud, M.; Mason, K.P. Dexmedetomidine: Review, update, and future considerations of paediatric perioperative and periprocedural applications and limitations. Br. J. Anaesth. 2015, 115, 171–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dexmedetomidine: Increased Risk of Mortality in Intensive Care Unit (ICU) Patients ≤65 Years | European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/dhpc/dexmedetomidine-increased-risk-mortality-intensive-care-unit-icu-patients-65-years (accessed on 3 August 2022).
- Szczepańska, A.J.; Pluta, M.P.; Krzych, Ł.J. Clinical practice in intraoperative haemodynamic monitoring in Poland: A point prevalence study in 31 Polish hospitals. Anaesthesiol. Intensive Ther. 2020, 52, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Guarracino, F.; Bertini, P. Perioperative hypotension: Causes and remedies. J. Anesth. Analg. Crit. Care 2022, 2, 17. [Google Scholar] [CrossRef]
- Wong, E.M.; Tablin, F.; Schelegle, E.S. Comparison of nonparametric and parametric methods for time-frequency heart rate variability analysis in a rodent model of cardiovascular disease. PLoS ONE 2020, 15, e0242147. [Google Scholar] [CrossRef] [PubMed]
- Pichon, A.; Roulaud, M.; Antoine-Jonville, S.; de Bisschop, C.; Denjean, A. Spectral analysis of heart rate variability: Interchangeability between autoregressive analysis and fast Fourier transform. J. Electrocardiol. 2006, 39, 31–37. [Google Scholar] [CrossRef]
- Harnod, T.; Yang, C.C.; Hsin, Y.L.; Shieh, K.R.; Wang, P.J.; Kuo, T.B. Heart rate variability in children with refractory generalized epilepsy. Seizure 2008, 17, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Deutschman, C.S.; Harris, A.P.; Fleisher, L.A. Changes in heart rate variability under propofol anesthesia: A possible explanation for propofol-induced bradycardia. Anaesth. Analg. 1994, 79, 373–377. [Google Scholar] [CrossRef]
- Hanss, R.; Bein, B.; Weseloh, H.; Bauer, M.; Cavus, E.; Steinfath, M.; Tonner, P.H. Heart rate variability predicts severe hypotension after spinal anesthesia. Anesthesiology 2006, 104, 537–545. [Google Scholar] [CrossRef]
- Sztajzel, J. Heart rate variability: A noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med. Wkly. 2004, 134, 514–522. [Google Scholar] [PubMed]
- Eckberg, D.L. Sympathovagal balance: A critical appraisal. Circulation 1997, 96, 3224–3232. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, F. Chaos theory, heart rate variability, and arrhythmic mortality. Circulation 2000, 101, 8–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Female sex | 31 |
Age; years | 54 (42–60 [25–65]) |
Height; cm | 171.4 (95% CI: 168.8–174.0) |
Body mass; kg | 77.8 (95% CI: 73.5–82.2) |
ASA physical status 1 | 50 |
Systolic Arterial Pressure; mmHg | 137 (95% CI: 133–141) |
Diastolic arterial pressure; mmHg | 81 (95% CI: 79–84) |
Mean arterial pressure; mmHg | 100 (95% CI: 97–102) |
Heart rate; beats min−1 | 69 (95% CI: 66–72) |
Low frequency; ms2 | 1206 (324–1617 [56–5093]) |
High frequency; ms2 | 421 (89–578 [8–2626]) |
Low frequency/high frequency ratio | 4.59 (2.19–5.91 [0.11–19.65]) |
LI 0 | LI 5 | LI 10 | MI 5 | MI 10 | MI 15 | |
---|---|---|---|---|---|---|
Heart rate; beats min−1 | 69 (67–72) | 63 * (60–67) | 59 * (56–62) | 60 * (58–63) | 60 * (58–63) | 59 * (57–62) |
SAP; mmHg | 137 (133–141) | 133 (129–136) | 131 ** (127–135) | 128 *** (124–132) | 124 *** (120–128) | 123 *** (119–127) |
DAP; mmHg | 81 (79–84) | 79 (76–81) | 77 † (74–80) | 76 †† (73–78) | 74 †† (71–76) | 74 †† (71–77) |
MAP; mmHg | 100 (91–102) | 97 (94–99) | 95 ‡ (92–98) | 90 ‡‡ (85–95) | 91 ‡‡ (88–94) | 90 ‡‡ (87–93) |
Variable | Odds Ratio (95% CI) | p Value |
---|---|---|
Low frequency | 0.999 (0.998–1.000) | 0.2233 |
High frequency | 1.001 (0.999–1.004) | 0.2215 |
Low frequency/high frequency ratio | 1.050 (0.887–1.266) | 0.5720 |
Heart rate | 1.064 (1.005–1.134) | 0.0385 * |
Mean arterial pressure | 0.942 (0.877–1.005) | 0.0788 |
Male sex | 0.930 (0.211–4.043) | 0.9216 |
Age | 0.981 (0.926–1.039) | 0.5148 |
Variable | Decrease MAP >15% from the Pre-Drug Value | MAP Decrease >15% from the Pre-Drug Value, Observed at More Than One Consecutive Time Point | ||
---|---|---|---|---|
Odds Ratio (95% CI) | p Value | Odds Ratio (95% CI) | p Value | |
Low frequency | 1.000 (0.999–1.001) | 0.6691 | 1.000 (0.999–1.000) | 0.1504 |
High frequency | 0.998 (0.995–0.999) | 0.0245 * | 0.997 (0.994–0.999) | 0.0388 * |
Low frequency/high frequency ratio | 1.186 (1.022–1.429) | 0.0433 * | 0.920 (0.682–0.999) | 0.4932 |
Heart rate | 0.995 (0.930–1.060) | 0.8714 | 1.018 (0.970–1.069) | 0.468 |
Systolic arterial pressure | 1.065 (1.024–1.115) | 0.0033 * | 1.057 (1.015–1.106) | 0.0107 * |
Diastolic arterial pressure | 1.046 (0.991–1.111) | 0.1173 | 1.017 (0.961–1.080) | 0.5528 |
Mean arterial pressure | 1.079 (1.020–1.154) | 0.0140 * | 1.052 (0.994–1.122) | 0.0926 |
Male sex | 0.9295 (0.2105–4.043) | 0.9216 | 0.924 (0.845–0.998) | 0.974 |
Age | 0.9814 (0.926–1.039) | 0.5149 | 0.993 (0.944–1.046) | 0.7956 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wujtewicz, M.; Twardowski, P.; Jasiński, T.; Michalska-Małecka, K.; Owczuk, R. Evaluation of the Relationship between Baseline Autonomic Tone and Haemodynamic Effects of Dexmedetomidine. Pharmaceuticals 2023, 16, 354. https://doi.org/10.3390/ph16030354
Wujtewicz M, Twardowski P, Jasiński T, Michalska-Małecka K, Owczuk R. Evaluation of the Relationship between Baseline Autonomic Tone and Haemodynamic Effects of Dexmedetomidine. Pharmaceuticals. 2023; 16(3):354. https://doi.org/10.3390/ph16030354
Chicago/Turabian StyleWujtewicz, Magdalena, Paweł Twardowski, Tomasz Jasiński, Katarzyna Michalska-Małecka, and Radosław Owczuk. 2023. "Evaluation of the Relationship between Baseline Autonomic Tone and Haemodynamic Effects of Dexmedetomidine" Pharmaceuticals 16, no. 3: 354. https://doi.org/10.3390/ph16030354
APA StyleWujtewicz, M., Twardowski, P., Jasiński, T., Michalska-Małecka, K., & Owczuk, R. (2023). Evaluation of the Relationship between Baseline Autonomic Tone and Haemodynamic Effects of Dexmedetomidine. Pharmaceuticals, 16(3), 354. https://doi.org/10.3390/ph16030354