In Vitro Hemocompatibility and Genotoxicity Evaluation of Dual-Labeled [99mTc]Tc-FITC-Silk Fibroin Nanoparticles for Biomedical Applications
Abstract
:1. Introduction
2. Results
2.1. Radiolabeling Optimization
2.2. Stability Assays
2.3. Cytokinesis Block Micronucleus (CBMN) Assay
2.4. Hemocompatibility Assay
2.5. Platelet Aggregation Assay
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Preparation of the Silk Fibroin Solution (SFN)
4.3. Preparation of the Silk Fibroin NPs (SFNs)
4.4. Fluorescent Labeling of SFNs
4.5. Radiolabeling of SFNs and FITC-SFNs with 99mTc
4.6. Nanoparticle Characterization
4.7. Radiolabeling Efficiency, Specific Activity, and Radiochemical Purity
4.8. In Vitro Stability Assays
4.9. Cytokinesis Block Micronucleus (CBMN) Assay
4.10. Hematological Response
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Sahylí, M.; Pijeira, O.; Viltres, H.; Kozempel, J.; Sakmár, M.; Vlk, M.; İlem-Özdemir, D.; Ekinci, M.; Srinivasan, S.; Rajabzadeh, A.R.; et al. Radiolabeled Nanomaterials for Biomedical Applications: Radiopharmacy in the Era of Nanotechnology. EJNMMI Radiopharm. Chem. 2022, 7, 8. [Google Scholar] [CrossRef]
- Yang, S.T.; Cao, L.; Luo, P.G.; Lu, F.; Wang, X.; Wang, H.; Meziani, M.J.; Liu, Y.; Qi, G.; Sun, Y.P. Carbon Dots for Optical Imaging in Vivo. J. Am. Chem. Soc. 2009, 131, 11308–11309. [Google Scholar] [CrossRef] [PubMed]
- Na, H.B.; Song, I.C.; Hyeon, T. Inorganic Nanoparticles for MRI Contrast Agents. Adv. Mater. 2009, 21, 2133–2148. [Google Scholar] [CrossRef]
- Lee, N.; Choi, S.H.; Hyeon, T. Nano-Sized CT Contrast Agents. Adv. Mater. 2013, 25, 2641–2660. [Google Scholar] [CrossRef]
- Han, X.; Xu, K.; Taratula, O.; Farsad, K. Applications of Nanoparticles in Biomedical Imaging. Nanoscale 2019, 11, 799–819. [Google Scholar] [CrossRef] [PubMed]
- Pellico, J.; Gawne, P.J.; De Rosales, T.M.R. Radiolabelling of Nanomaterials for Medical Imaging and Therapy. Chem. Soc. Rev. 2021, 50, 3355–3423. [Google Scholar] [CrossRef]
- Baetke, S.C.; Lammers, T.; Kiessling, F. Applications of Nanoparticles for Diagnosis and Therapy of Cancer. Br. J. Radiol. 2015, 88, 20150207. [Google Scholar] [CrossRef] [PubMed]
- Phua, V.J.X.; Yang, C.-T.; Xia, B.; Yan, S.X.; Liu, J.; Aw, S.E.; He, T.; Ng, D.C.E. Nanomaterial Probes for Nuclear Imaging. Nanomaterials 2022, 12, 582. [Google Scholar] [CrossRef] [PubMed]
- Martínez Martínez, T.; García Aliaga, Á.; López-González, I.; Abella Tarazona, A.; Ibáñez Ibáñez, M.J.; Cenis, J.L.; Meseguer-Olmo, L.; Lozano-Pérez, A.A. Fluorescent DTPA-Silk Fibroin Nanoparticles Radiolabeled with 111In: A Dual Tool for Biodistribution and Stability Studies. ACS Biomater. Sci. Eng. 2020, 6, 3299–3309. [Google Scholar] [CrossRef]
- Jeon, J. Review of Therapeutic Applications of Radiolabeled Functional Nanomaterials. Int. J. Mol. Sci. 2019, 20, 2323. [Google Scholar] [CrossRef] [PubMed]
- de la Harpe, K.; Kondiah, P.; Choonara, Y.; Marimuthu, T.; du Toit, L.; Pillay, V. The Hemocompatibility of Nanoparticles: A Review of Cell–Nanoparticle Interactions and Hemostasis. Cells 2019, 8, 1209. [Google Scholar] [CrossRef] [PubMed]
- Perugini, V.; Schmid, R.; Mørch, Ý.; Texier, I.; Brodde, M.; Santin, M. A Multistep in Vitro Hemocompatibility Testing Protocol Recapitulating the Foreign Body Reaction to Nanocarriers. Drug Deliv. Transl. Res. 2022, 12, 2089–2100. [Google Scholar] [CrossRef]
- Attarilar, S.; Yang, J.; Ebrahimi, M.; Wang, Q.; Liu, J.; Tang, Y.; Yang, J. The Toxicity Phenomenon and the Related Occurrence in Metal and Metal Oxide Nanoparticles: A Brief Review From the Biomedical Perspective. Front. Bioeng. Biotechnol. 2020, 8, 822. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zang, Y.; Qu, J.; Tang, M.; Zhang, T. The Toxicity Of Metallic Nanoparticles On Liver: The Subcellular Damages, Mechanisms, And Outcomes. Int. J. Nanomed. 2019, 14, 8787–8804. [Google Scholar] [CrossRef]
- Abdel-Halim, K.Y.; Osman, S.R.; Abuzeid, M.A.F.; Khozimy, A.M. Hematological Changes and Oxidative Stress Induction of Titanium Dioxide Nanoparticles in Male Mice after Intraperitoneal Injection of Different Doses for 28 Days: Study of Organ’s Responsibility. NanoWorld J. 2021, 7, 22–32. [Google Scholar] [CrossRef]
- Ng, C.-T.; Li, J.J.; Bay, B.-H.; Yung, L.-Y.L. Current Studies into the Genotoxic Effects of Nanomaterials. J. Nucleic Acids 2010, 2010, 947859. [Google Scholar] [CrossRef]
- Wenk, E.; Merkle, H.P.; Meinel, L. Silk Fibroin as a Vehicle for Drug Delivery Applications. J. Control. Release 2011, 150, 128–141. [Google Scholar] [CrossRef]
- Lozano-Pérez, A.A.; Gil, A.L.; Pérez, S.A.; Cutillas, N.; Meyer, H.; Pedreño, M.; Aznar-Cervantes, D.S.; Janiak, C.; Cenis, J.L.; Ruiz, J. Antitumor Properties of Platinum (IV) Prodrug-Loaded Silk Fibroin Nanoparticles. Dalt. Trans. 2015, 44, 13513–13521. [Google Scholar] [CrossRef]
- Psimadas, D.; Bouziotis, P.; Georgoulias, P.; Valotassiou, V.; Tsotakos, T.; Loudos, G. Radiolabeling Approaches of Nanoparticles with 99mTc. Contrast Media Mol. Imaging 2013, 8, 333–339. [Google Scholar] [CrossRef]
- Duatti, A. Review on 99mTc Radiopharmaceuticals with Emphasis on New Advancements. Nucl. Med. Biol. 2021, 92, 202–216. [Google Scholar] [CrossRef]
- Wester, H.-J.; Schottelius, M. PSMA-Targeted Radiopharmaceuticals for Imaging and Therapy. Semin. Nucl. Med. 2019, 49, 302–312. [Google Scholar] [CrossRef]
- Rasmussen, M.K.; Pedersen, J.N.; Marie, R. Size and Surface Charge Characterization of Nanoparticles with a Salt Gradient. Nat. Commun. 2020, 11, 2337. [Google Scholar] [CrossRef]
- Kamble, S.; Agrawal, S.; Cherumukkil, S.; Sharma, V.; Jasra, R.V.; Munshi, P. Revisiting Zeta Potential, the Key Feature of Interfacial Phenomena, with Applications and Recent Advancements. ChemistrySelect 2022, 7, e202103084. [Google Scholar] [CrossRef]
- İçhedef, Ç.; Aydın, B.; Hamurişçi, S.İ.; Teksöz, S.; Medine, E.İ. A Promising Radiolabeled Drug Delivery System for Methotrexate: Synthesis and in Vitro Evaluation of 99mTc Labeled Drug Loaded Uniform Mesoporous Silica Nanoparticles. J. Radioanal. Nucl. Chem. 2021, 330, 1113–1125. [Google Scholar] [CrossRef]
- Fenech, M. Cytokinesis-Block Micronucleus Cytome Assay. Nat. Protoc. 2007, 2, 1084–1104. [Google Scholar] [CrossRef]
- Fenech, M.; Morley, A.A. Measurement of Micronuclei in Lymphocytes. Mutat. Res. Mutagen. Relat. Subj. 1985, 147, 29–36. [Google Scholar] [CrossRef]
- Fenech, M. Cytokinesis-Block Micronucleus Cytome Assay Evolution into a More Comprehensive Method to Measure Chromosomal Instability. Genes 2020, 11, 1203. [Google Scholar] [CrossRef]
- Thomas, P.; Umegaki, K.; Fenech, M. Nucleoplasmic Bridges Are a Sensitive Measure of Chromosome Rearrangement in the Cytokinesis-Block Micronucleus Assay. Mutagenesis 2003, 18, 187–194. [Google Scholar] [CrossRef]
- Fröhlich, E. Action of Nanoparticles on Platelet Activation and Plasmatic Coagulation. Curr. Med. Chem. 2016, 23, 408–430. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Lai, W.; Cui, M.; Liang, L.; Lin, Y.; Fang, Q.; Liu, Y.; Xie, L. An Evaluation of Blood Compatibility of Silver Nanoparticles. Sci. Rep. 2016, 6, 25518. [Google Scholar] [CrossRef] [PubMed]
- Jesus, S.; Marques, A.P.; Duarte, A.; Soares, E.; Costa, J.P.; Colaço, M.; Schmutz, M.; Som, C.; Borchard, G.; Wick, P.; et al. Chitosan Nanoparticles: Shedding Light on Immunotoxicity and Hemocompatibility. Front. Bioeng. Biotechnol. 2020, 8, 100. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.; Steinle, H.; Golombek, S.; Hann, L.; Schlensak, C.; Wendel, H.P.; Avci-Adali, M. Blood-Contacting Biomaterials: In Vitro Evaluation of the Hemocompatibility. Front. Bioeng. Biotechnol. 2018, 6, 99. [Google Scholar] [CrossRef]
- António, M.; Nogueira, J.; Vitorino, R.; Daniel-da-Silva, A. Functionalized Gold Nanoparticles for the Detection of C-Reactive Protein. Nanomaterials 2018, 8, 200. [Google Scholar] [CrossRef]
- Cui, X.; Wen, J.; Zhao, X.; Chen, X.; Shao, Z.; Jiang, J.J. A Pilot Study of Macrophage Responses to Silk Fibroin Particles. J. Biomed. Mater. Res.—Part A 2013, 101A, 1511–1517. [Google Scholar] [CrossRef]
- Naserzadeh, P.; Mortazavi, S.A.; Ashtari, K.; Salimi, A.; Farokhi, M.; Pourahmad, J. Evaluation of the Toxicity Effects of Silk Fibroin on Human Lymphocytes and Monocytes. J. Biochem. Mol. Toxicol. 2018, 32, e22056. [Google Scholar] [CrossRef]
- Maitz, M.F.; Sperling, C.; Wongpinyochit, T.; Herklotz, M.; Werner, C.; Seib, F.P. Biocompatibility Assessment of Silk Nanoparticles: Hemocompatibility and Internalization by Human Blood Cells. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 2633–2642. [Google Scholar] [CrossRef]
- Gorenkova, N.; Maitz, M.F.; Böhme, G.; Alhadrami, H.A.; Jiffri, E.H.; Totten, J.D.; Werner, C.; Carswell, H.V.O.; Seib, F.P. The Innate Immune Response of Self-Assembling Silk Fibroin Hydrogels. Biomater. Sci. 2021, 9, 7194–7204. [Google Scholar] [CrossRef]
- Seib, F.P.; Maitz, M.F.; Hu, X.; Werner, C.; Kaplan, D.L. Impact of Processing Parameters on the Haemocompatibility of Bombyx Mori Silk Films. Biomaterials 2012, 33, 1017–1023. [Google Scholar] [CrossRef]
- Kim, D.-W.; Hwang, H.-S.; Kim, D.; Sheen, S.-H.; Heo, D.-H.; Hwang, G.; Kang, S.-H.; Kweon, H.-Y.; Jo, Y.-Y.; Kang, S.-W.; et al. Effect of Silk Fibroin Peptide Derived from Silkworm Bombyx Mori on the Anti-Inflammatory Effect of Tat-SOD in a Mice Edema Model. BMB Rep. 2011, 44, 787–792. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Nogales, A.; Lozano-Pérez, A.A.; Aznar-Cervantes, S.D.; Algieri, F.; Garrido-Mesa, J.; Garrido-Mesa, N.; Vezza, T.; Utrilla, M.P.; Cenis, J.L.; Rodríguez-Cabezas, M.E.; et al. Effect of Aqueous and Particulate Silk Fibroin in a Rat Model of Experimental Colitis. Int. J. Pharm. 2016, 511, 1–9. [Google Scholar] [CrossRef]
- Rodriguez-Nogales, A.; Algieri, F.; De Matteis, L.; Lozano-Perez, A.A.; Garrido-Mesa, J.; Vezza, T.; de la Fuente, J.M.; Cenis, J.L.; Gálvez, J.; Rodriguez-Cabezas, M.E. Intestinal Anti-Inflammatory Effects of RGD-Functionalized Silk Fibroin Nanoparticles in Trinitrobenzenesulfonic Acid-Induced Experimental Colitis in Rats. Int. J. Nanomed. 2016, 11, 5945. [Google Scholar] [CrossRef]
- Hudiță, A.; Radu, I.C.; Zaharia, C.; Ion, A.C.; Ginghină, O.; Gălățeanu, B.; Măruțescu, L.; Grama, F.; Tsatsakis, A.; Gurevich, L.; et al. Bio-and Hemo-Compatible Silk Fibroin Pegylated Nanocarriers for 5-Fluorouracil Chemotherapy in Colorectal Cancer: In Vitro Studies. Pharmaceutics 2021, 13, 755. [Google Scholar] [CrossRef]
- Carissimi, G.; Lozano-Pérez, A.A.; Montalbán, M.G.; Aznar-Cervantes, S.D.; Cenis, J.L.; Víllora, G. Revealing the Influence of the Degumming Process in the Properties of Silk Fibroin Nanoparticles. Polymers 2019, 11, 2045. [Google Scholar] [CrossRef]
- Aznar-Cervantes, S.D.; Vicente-Cervantes, D.; Meseguer-Olmo, L.; Cenis, J.L.; Lozano-Pérez, A.A. Influence of the Protocol Used for Fibroin Extraction on the Mechanical Properties and Fiber Sizes of Electrospun Silk Mats. Mater. Sci. Eng. C 2013, 33, 1945–1950. [Google Scholar] [CrossRef]
- Asensio Ruiz, M.A.; Fuster, M.G.; Martínez Martínez, T.; Montalbán, M.G.; Cenis, J.L.; Víllora, G.; Lozano-Pérez, A.A. The Effect of Sterilization on the Characteristics of Silk Fibroin Nanoparticles. Polymers 2022, 14, 498. [Google Scholar] [CrossRef]
- Gundogdu, E.; Ilem-Ozdemir, D.; Ekinci, M.; Ozgenc, E.; Asikoglu, M. Radiolabeling Efficiency and Cell Incorporation of Chitosan Nanoparticles. J. Drug Deliv. Sci. Technol. 2015, 29, 84–89. [Google Scholar] [CrossRef]
- Shokeen, M.; Fettig, N.M.; Rossin, R. Synthesis, in Vitro and in Vivo Evaluation of Radiolabeled Nanoparticles. Q. J. Nucl. Med. Mol. Imaging 2008, 52, 267–277. [Google Scholar] [PubMed]
- Theobald, T.; Maltby, P. (Eds.) Quality Control Methods for Radiopharmaceuticals. In Tony Theobald Sampson’s Textbook Radiopharmacy; Pharmaceutical Press: London, UK, 2010; p. 375. ISBN 9780853697893. [Google Scholar]
- Miñana, E.; Roldán, M.; Chivato, T.; Martínez, T.; Fuente, T. Quantification of the Chromosomal Radiation Damage Induced by Labelling of Leukocytes with [18F]FDG. Nucl. Med. Biol. 2015, 42, 720–723. [Google Scholar] [CrossRef]
- Yamamoto, M.; Motegi, A.; Seki, J.; Miyamae, Y. The Optimized Conditions for the in Vitro Micronucleus (MN) Test Procedures Using Chamber Slides. Environ. Mutagen Res. 2005, 27, 145–151. [Google Scholar] [CrossRef]
SnCl2 (µg/mL) | RLE (%) | Zave (d.nm) | Polydispersity | ζ (mV) |
---|---|---|---|---|
7 | 88.34 ± 1.11 a | 144.8 ± 1.6 a | 0.133± 0.010 a | –29.5 ± 2.3 a |
12 | 89.44 ± 0.87 a | 144.3 ± 1.3 a | 0.151 ± 0.001 b | –27.1 ± 1.3 a |
20 | 92.13 ± 0.96 b | 144.6 ± 2.6 a | 0.158 ± 0.016 b | –26.9 ± 0.9 a |
250 | 96.38 ± 0.29 c | 167.1 ± 4.6 b | 0.258 ± 0.007 c | –23.8 ± 0.5 b |
Sample | MNi (‰) | NBUDs (‰) | NPBs (‰) |
---|---|---|---|
Control + | 47.67 ± 9.07 a | 25.67 ± 2.89 a | 29.33 ± 8.33 a |
Control - | 7.67 ± 4.93 b | 6.00 ± 2.00 b | 6.00 ± 3.46 b |
FITC-SFN | 5.67 ± 2.89 b | 6.67 ± 3.06 b | 6.00 ± 1.41 b |
99mTc-FITC-SFN | 4.33 ± 2.08 b | 3.33 ± 0.58 b,c | 8.50 ± 0.71 b |
Donor #1 | Donor #2 | Donor #3 | ||||
---|---|---|---|---|---|---|
Sample | Platelet Count (×109/L) | Platelet Aggregation (%) | Platelet Count (×109/L) | Platelet Aggregation (%) | Platelet Count (×109/L) | Platelet Aggregation (%) |
† Control - | 207.3 ± 45.5 a | 0.0± 20.9 a | 200.6 ± 40.4 a | 0.0± 20.1 a | 226.6 ± 23.2 a | 0.0± 10.2 a |
§ Control + | 91.7 ± 10.4 b | 55.8 ± 5.0 b | 116.3 ± 12.3 b | 42.0 ± 6.3 b | 93.3 ± 16.7 b | 58.8 ± 7.3 b |
‡ SFN (t = 30 min) | 197.3 ± 46.5 a | 4.8 ± 22.4 a | 194.6 ± 8.6 a | 3.0 ± 3.2 a | 212.6 ± 18.1 a | 6.2 ± 8.0 a |
‡ SFN (t = 4 h) | 188.0 ± 15.9 a | 9.3 ± 7.6 a | 191.3 ± 10.3 a | 4.6 ± 5.1 a | 198.0 ± 13.1 a | 12.6 ± 5.8 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asensio Ruiz, M.A.; Alonso García, Á.; Bravo-Ferrer Moreno, M.d.l.L.; Cebreiros-López, I.; Noguera-Velasco, J.A.; Lozano-Pérez, A.A.; Martínez Martínez, T. In Vitro Hemocompatibility and Genotoxicity Evaluation of Dual-Labeled [99mTc]Tc-FITC-Silk Fibroin Nanoparticles for Biomedical Applications. Pharmaceuticals 2023, 16, 248. https://doi.org/10.3390/ph16020248
Asensio Ruiz MA, Alonso García Á, Bravo-Ferrer Moreno MdlL, Cebreiros-López I, Noguera-Velasco JA, Lozano-Pérez AA, Martínez Martínez T. In Vitro Hemocompatibility and Genotoxicity Evaluation of Dual-Labeled [99mTc]Tc-FITC-Silk Fibroin Nanoparticles for Biomedical Applications. Pharmaceuticals. 2023; 16(2):248. https://doi.org/10.3390/ph16020248
Chicago/Turabian StyleAsensio Ruiz, María Alejandra, Ángela Alonso García, María de la Luz Bravo-Ferrer Moreno, Iria Cebreiros-López, José Antonio Noguera-Velasco, Antonio Abel Lozano-Pérez, and Teresa Martínez Martínez. 2023. "In Vitro Hemocompatibility and Genotoxicity Evaluation of Dual-Labeled [99mTc]Tc-FITC-Silk Fibroin Nanoparticles for Biomedical Applications" Pharmaceuticals 16, no. 2: 248. https://doi.org/10.3390/ph16020248