Renin–Angiotensin System Antagonism Protects the Diabetic Heart from Ischemia/Reperfusion Injury in Variable Hyperglycemia Duration Settings by a Glucose Transporter Type 4-Mediated Pathway
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Ischemia Reperfusion Study
4.2. Induction of Diabetes
4.3. Study Protocol and Study Groups
4.4. Data Collection and Processing
4.5. Sample Collection and Storage
4.6. Infarct Size Evaluation
4.7. Protein Extraction from the Hearts
4.8. Western Blot Analysis
4.9. Estimation of the Inflammatory Cytokines
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S.; et al. Heart disease and stroke statistics—2013 update: A report from the American Heart Association. Circulation 2013, 127, e6–e245. [Google Scholar] [CrossRef] [PubMed]
- Lecour, S.; Botker, H.E.; Condorelli, G.; Davidson, S.M.; Garcia-Dorado, D.; Engel, F.B.; Ferdinandy, P.; Heusch, G.; Madonna, R.; Ovize, M.; et al. ESC working group cellular biology of the heart: Position paper: Improving the preclinical assessment of novel cardioprotective therapies. Cardiovasc. Res. 2014, 104, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Neumar, R.W.; Nolan, J.P.; Adrie, C.; Aibiki, M.; Berg, R.A.; Bottiger, B.W.; Callaway, C.; Clark, R.S.; Geocadin, R.G.; Jauch, E.C.; et al. Post-cardiac arrest syndrome: Epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation 2008, 118, 2452–2483. [Google Scholar] [CrossRef] [PubMed]
- Cung, T.T.; Morel, O.; Cayla, G.; Rioufol, G.; Garcia-Dorado, D.; Angoulvant, D.; Bonnefoy-Cudraz, E.; Guerin, P.; Elbaz, M.; Delarche, N.; et al. Cyclosporine before PCI in Patients with Acute Myocardial Infarction. New Engl. J. Med. 2015, 373, 1021–1031. [Google Scholar] [CrossRef]
- Freixa, X.; Bellera, N.; Ortiz-Perez, J.T.; Jimenez, M.; Pare, C.; Bosch, X.; De Caralt, T.M.; Betriu, A.; Masotti, M. Ischaemic postconditioning revisited: Lack of effects on infarct size following primary percutaneous coronary intervention. Eur. Hear. J. 2012, 33, 103–112. [Google Scholar] [CrossRef]
- Limalanathan, S.; Andersen, G.O.; Klow, N.E.; Abdelnoor, M.; Hoffmann, P.; Eritsland, J. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI results of the POSTEMI (POstconditioning in ST-Elevation Myocardial Infarction) randomized trial. J. Am. Heart Assoc 2014, 3, e000679. [Google Scholar] [CrossRef]
- Li, H.; Liu, Z.; Wang, J.; Wong, G.T.; Cheung, C.W.; Zhang, L.; Chen, C.; Xia, Z.; Irwin, M.G. Susceptibility to myocardial ischemia reperfusion injury at early stage of type 1 diabetes in rats. Cardiovasc. Diabetol. 2013, 12, 133. [Google Scholar] [CrossRef]
- Brown, J.R.; Edwards, F.H.; O’Connor, G.T.; Ross, C.S.; Furnary, A.P. The diabetic disadvantage: Historical outcomes measures in diabetic patients undergoing cardiac surgery—The pre-intravenous insulin era. Semin. Thorac. Cardiovasc. Surg. 2006, 18, 281–288. [Google Scholar] [CrossRef]
- Miki, T.; Miura, T.; Hotta, H.; Tanno, M.; Yano, T.; Sato, T.; Terashima, Y.; Takada, A.; Ishikawa, S.; Shimamoto, K. Endoplasmic reticulum stress in diabetic hearts abolishes erythropoietin-induced myocardial protection by impairment of phospho-glycogen synthase kinase-3beta-mediated suppression of mitochondrial permeability transition. Diabetes 2009, 58, 2863–2872. [Google Scholar] [CrossRef]
- Badalzadeh, R.; Azimi, A.; Alihemmati, A.; Yousefi, B. Chronic type-I diabetes could not impede the anti-inflammatory and anti-apoptotic effects of combined postconditioning with ischemia and cyclosporine A in myocardial reperfusion injury. J. Physiol. Biochem. 2017, 73, 111–120. [Google Scholar] [CrossRef]
- Drenger, B.; Ostrovsky, I.A.; Barak, M.; Nechemia-Arbely, Y.; Ziv, E.; Axelrod, J.H. Diabetes blockade of sevoflurane postconditioning is not restored by insulin in the rat heart: Phosphorylated signal transducer and activator of transcription 3- and phosphatidylinositol 3-kinase-mediated inhibition. Anesthesiology 2011, 114, 1364–1372. [Google Scholar] [CrossRef]
- Ghaboura, N.; Tamareille, S.; Ducluzeau, P.H.; Grimaud, L.; Loufrani, L.; Croue, A.; Tourmen, Y.; Henrion, D.; Furber, A.; Prunier, F. Diabetes mellitus abrogates erythropoietin-induced cardioprotection against ischemic-reperfusion injury by alteration of the RISK/GSK-3beta signaling. Basic Res. Cardiol. 2011, 106, 147–162. [Google Scholar] [CrossRef] [PubMed]
- Blake, D.R.; Meigs, J.B.; Muller, D.C.; Najjar, S.S.; Andres, R.; Nathan, D.M. Impaired glucose tolerance, but not impaired fasting glucose, is associated with increased levels of coronary heart disease risk factors: Results from the Baltimore Longitudinal Study on Aging. Diabetes 2004, 53, 2095–2100. [Google Scholar] [CrossRef] [PubMed]
- Deedwania, P.; Kosiborod, M.; Barrett, E.; Ceriello, A.; Isley, W.; Mazzone, T.; Raskin, P. Hyperglycemia and acute coronary syndrome: A scientific statement from the American Heart Association Diabetes Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 2008, 117, 1610–1619. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Abel, E.D. Responses of GLUT4-deficient hearts to ischemia underscore the importance of glycolysis. Circulation 2001, 103, 2961–2966. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; DeMarco, V.G.; Sowers, J.R. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat. Rev. Endocrinol. 2016, 12, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Taskin, E.; Tuncer, K.A.; Guven, C.; Kaya, S.T.; Dursun, N. Inhibition of Angiotensin-II Production Increases Susceptibility to Acute Ischemia/Reperfusion Arrhythmia. Med. Sci. Monit. 2016, 22, 4587–4595. [Google Scholar] [CrossRef] [PubMed]
- Pain, T.; Yang, X.M.; Critz, S.D.; Yue, Y.; Nakano, A.; Liu, G.S.; Heusch, G.; Cohen, M.V.; Downey, J.M. Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ. Res. 2000, 87, 460–466. [Google Scholar] [CrossRef]
- Yang, H.; Zeng, X.J.; Wang, H.X.; Zhang, L.K.; Dong, X.L.; Guo, S.; Du, J.; Li, H.H.; Tang, C.S. Angiotensin IV protects against angiotensin II-induced cardiac injury via AT4 receptor. Peptides 2011, 32, 2108–2115. [Google Scholar] [CrossRef]
- Xu, F.; Mao, C.; Hu, Y.; Rui, C.; Xu, Z.; Zhang, L. Cardiovascular effects of losartan and its relevant clinical application. Curr. Med. Chem. 2009, 16, 3841–3857. [Google Scholar] [CrossRef] [Green Version]
- Klishadi, M.S.; Zarei, F.; Hejazian, S.H.; Moradi, A.; Hemati, M.; Safari, F. Losartan protects the heart against ischemia reperfusion injury: Sirtuin3 involvement. J. Pharm. Pharm. Sci. 2015, 18, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Gurevitch, J.; Pevni, D.; Frolkis, I.; Matsa, M.; Paz, Y.; Mohr, R.; Yakirevich, V. Captopril in cardioplegia and reperfusion: Protective effects on the ischemic heart. Ann. Thorac. Surg. 1997, 63, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Babiker, F.; Al-Jarallah, A.; Joseph, S. The Interplay between the Renin Angiotensin System and Pacing Postconditioning Induced Cardiac Protection. PLoS ONE 2016, 11, e0165777. [Google Scholar] [CrossRef]
- Nishimoto, M.; Takai, S.; Sawada, Y.; Yuda, A.; Kondo, K.; Yamada, M.; Jin, D.; Sakaguchi, M.; Asada, K.; Sasaki, S.; et al. Chymase-dependent angiotensin II formation in the saphenous vein versus the internal thoracic artery. J. Thorac. Cardiovasc. Surg. 2001, 121, 729–734. [Google Scholar] [CrossRef]
- Urata, H. Pathological involvement of chymase-dependent angiotensin II formation in the development of cardiovascular disease. J. Renin Angiotensin Aldosterone Syst. 2000, 1, S35–S37. [Google Scholar] [CrossRef] [PubMed]
- Ozhan, O.; Parlakpinar, H.; Acet, A. Comparison of the effects of losartan, captopril, angiotensin II type 2 receptor agonist compound 21, and MAS receptor agonist AVE 0991 on myocardial ischemia-reperfusion necrosis in rats. Fundam. Clin. Pharmacol. 2021, 35, 669–680. [Google Scholar] [CrossRef]
- Shi, X.; Shan, Z.; Yuan, H.; Guo, H.; Wang, Y. The effect of captopril and losartan on the electrophysiology of myocardial cells of myocardial ischemia rats. Int. J. Clin. Exp. Med. 2014, 7, 5310–5316. [Google Scholar]
- Benter, I.F.; Babiker, F.; Al-Rashdan, I.; Yousif, M.; Akhtar, S. RU28318, an aldosterone antagonist, in combination with an ACE inhibitor and angiotensin receptor blocker attenuates cardiac dysfunction in diabetes. J. Diabetes Res. 2013, 2013, 427693. [Google Scholar] [CrossRef]
- Bujak, M.; Dobaczewski, M.; Chatila, K.; Mendoza, L.H.; Li, N.; Reddy, A.; Frangogiannis, N.G. Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. Am. J. Pathol. 2008, 173, 57–67. [Google Scholar] [CrossRef]
- Ferdinandy, P.; Danial, H.; Ambrus, I.; Rothery, R.A.; Schulz, R. Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ. Res. 2000, 87, 241–247. [Google Scholar] [CrossRef]
- Suematsu, N.; Tsutsui, H.; Wen, J.; Kang, D.; Ikeuchi, M.; Ide, T.; Hayashidani, S.; Shiomi, T.; Kubota, T.; Hamasaki, N.; et al. Oxidative stress mediates tumor necrosis factor-alpha-induced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation 2003, 107, 1418–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kantor, P.F.; Lucien, A.; Kozak, R.; Lopaschuk, G.D. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ. Res. 2000, 86, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Frati, G.; Schirone, L.; Chimenti, I.; Yee, D.; Biondi-Zoccai, G.; Volpe, M.; Sciarretta, S. An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy. Cardiovasc. Res. 2017, 113, 378–388. [Google Scholar] [CrossRef]
- Forbes, R.A.; Steenbergen, C.; Murphy, E. Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ. Res. 2001, 88, 802–809. [Google Scholar] [CrossRef]
- Vanden Hoek, T.; Becker, L.B.; Shao, Z.H.; Li, C.Q.; Schumacker, P.T. Preconditioning in cardiomyocytes protects by attenuating oxidant stress at reperfusion. Circ. Res. 2000, 86, 541–548. [Google Scholar] [CrossRef]
- Li, Y.; Yao, Y.; Li, J.; Chen, Q.; Zhang, L.; Wang, Q.K. Losartan protects against myocardial ischemia and reperfusion injury via vascular integrity preservation. FASEB J. 2019, 33, 8555–8564. [Google Scholar] [CrossRef] [PubMed]
- Marques-Neto, S.R.; Ferraz, E.B.; Rodrigues, D.C.; Njaine, B.; Rondinelli, E.; Campos de Carvalho, A.C.; Nascimento, J.H. AT1 and aldosterone receptors blockade prevents the chronic effect of nandrolone on the exercise-induced cardioprotection in perfused rat heart subjected to ischemia and reperfusion. Cardiovasc. Drugs Ther. 2014, 28, 125–135. [Google Scholar] [CrossRef]
- Badalzadeh, R.; Mohammadi, M.; Najafi, M.; Ahmadiasl, N.; Farajnia, S.; Ebrahimi, H. The additive effects of ischemic postconditioning and cyclosporine-A on nitric oxide activity and functions of diabetic myocardium injured by ischemia/reperfusion. J. Cardiovasc. Pharmacol. Ther. 2012, 17, 181–189. [Google Scholar] [CrossRef]
- Przyklenk, K.; Maynard, M.; Greiner, D.L.; Whittaker, P. Cardioprotection with postconditioning: Loss of efficacy in murine models of type-2 and type-1 diabetes. Antioxid. Redox Signal. 2011, 14, 781–790. [Google Scholar] [CrossRef]
- Babiker, F.; Al-Jarallah, A.; Al-Awadi, M. Effects of Cardiac Hypertrophy, Diabetes, Aging, and Pregnancy on the Cardioprotective Effects of Postconditioning in Male and Female Rats. Cardiol. Res. Pr. 2019, 2019, 3403959. [Google Scholar] [CrossRef]
- Babiker, F.A.; van Golde, J.; Vanagt, W.Y.; Prinzen, F.W. Pacing postconditioning: Impact of pacing algorithm, gender, and diabetes on its myocardial protective effects. J. Cardiovasc. Transl. Res. 2012, 5, 727–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhtar, S.; Yousif, M.H.; Chandrasekhar, B.; Benter, I.F. Activation of EGFR/ERBB2 via pathways involving ERK1/2, P38 MAPK, AKT and FOXO enhances recovery of diabetic hearts from ischemia-reperfusion injury. PLoS ONE 2012, 7, e39066. [Google Scholar] [CrossRef]
- Babiker, F.A.; Lorenzen-Schmidt, I.; Mokelke, E.; Vanagt, W.Y.; Delhaas, T.; Waltenberger, J.; Cleutjens, J.P.; Prinzen, F.W. Long-term protection and mechanism of pacing-induced postconditioning in the heart. Basic Res. Cardiol. 2010, 105, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Jung, B.H.; Yoo, K.Y.; Han, J.W.; Um, H.S.; Chang, B.S.; Lee, J.K. Determination of the critical diabetes duration in a streptozotocin-induced diabetic rat calvarial defect model for experimentation regarding bone regeneration. J. Periodontal Implant. Sci. 2017, 47, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yuan, D.; Yao, W.; Zhu, Q.; Liu, Y.; Huang, F.; Feng, J.; Chen, X.; Huang, Y.; Chi, X.; et al. Hyperglycemia Aggravates Hepatic Ischemia Reperfusion Injury by Inducing Chronic Oxidative Stress and Inflammation. Oxid. Med. Cell. Longev. 2016, 2016, 3919627. [Google Scholar] [CrossRef]
- Shi-Ting, W.; Mang-Hua, X.; Wen-Ting, C.; Feng-Hou, G.; Zhu-Ying, G. WITHDRAWN: Study on tolerance to ischemia-reperfusion injury and protection of ischemic preconditioning of type 1 diabetes rat heart. Biomed. Pharmacother. 2010, 1, 56–60. [Google Scholar] [CrossRef]
- Qiu, Y.; Shil, P.K.; Zhu, P.; Yang, H.; Verma, A.; Lei, B.; Li, Q. Angiotensin-converting enzyme 2 (ACE2) activator diminazene aceturate ameliorates endotoxin-induced uveitis in mice. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3809–3818. [Google Scholar] [CrossRef]
- Dianat, M.; Hamzavi, G.R.; Badavi, M.; Samarbafzadeh, A. Effects of losartan and vanillic Acid co-administration on ischemia-reperfusion-induced oxidative stress in isolated rat heart. Iran. Red Crescent Med. J. 2014, 16, e16664. [Google Scholar] [CrossRef]
- Maulik, S.K.; Kumari, R.; Maulik, M.; Manchanda, S.C.; Gupta, S.K. Captopril and its time of administration in myocardial ischaemic-reperfusion injury. Pharmacol. Res. 2001, 44, 123–128. [Google Scholar] [CrossRef]
- Warnholtz, A.; Nickenig, G.; Schulz, E.; Macharzina, R.; Brasen, J.H.; Skatchkov, M.; Heitzer, T.; Stasch, J.P.; Griendling, K.K.; Harrison, D.G.; et al. Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: Evidence for involvement of the renin-angiotensin system. Circulation 1999, 99, 2027–2033. [Google Scholar] [CrossRef]
- Zalba, G.; Beaumont, F.J.; San Jose, G.; Fortuno, A.; Fortuno, M.A.; Etayo, J.C.; Diez, J. Vascular NADH/NADPH oxidase is involved in enhanced superoxide production in spontaneously hypertensive rats. Hypertension 2000, 35, 1055–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Real, J.T.; Martinez-Hervas, S.; Tormos, M.C.; Domenech, E.; Pallardo, F.V.; Saez-Tormo, G.; Redon, J.; Carmena, R.; Chaves, F.J.; Ascaso, J.F.; et al. Increased oxidative stress levels and normal antioxidant enzyme activity in circulating mononuclear cells from patients of familial hypercholesterolemia. Metabolism 2010, 59, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, X.; Zhang, W.; He, J.; Xu, B.; Lei, B.; Wang, Z.; Cates, C.; Rousselle, T.; Li, J. Activation of AMPK inhibits inflammatory response during hypoxia and reoxygenation through modulating JNK-mediated NF-kappaB pathway. Metabolism 2018, 83, 256–270. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, S.; Jiang, W.; Li, Y. MiR-484 Protects Rat Myocardial Cells from Ischemia-Reperfusion Injury by Inhibiting Caspase-3 and Caspase-9 during Apoptosis. Korean Circ. J. 2020, 50, 250–263. [Google Scholar] [CrossRef]
- Zhang, W.; Xing, B.; Yang, L.; Shi, J.; Zhou, X. Icaritin Attenuates Myocardial Ischemia and Reperfusion Injury Via Anti-Inflammatory and Anti-Oxidative Stress Effects in Rats. Am. J. Chin. Med. 2015, 43, 1083–1097. [Google Scholar] [CrossRef]
- Tian, Y.; Li, H.; Liu, P.; Xu, J.M.; Irwin, M.G.; Xia, Z.; Tian, G. Captopril Pretreatment Produces an Additive Cardioprotection to Isoflurane Preconditioning in Attenuating Myocardial Ischemia Reperfusion Injury in Rabbits and in Humans. Mediat. Inflamm. 2015, 2015, 819232. [Google Scholar] [CrossRef]
- Lekli, I.; Szabo, G.; Juhasz, B.; Das, S.; Das, M.; Varga, E.; Szendrei, L.; Gesztelyi, R.; Varadi, J.; Bak, I.; et al. Protective mechanisms of resveratrol against ischemia-reperfusion-induced damage in hearts obtained from Zucker obese rats: The role of GLUT-4 and endothelin. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H859–H866. [Google Scholar] [CrossRef]
- Ramasamy, R.; Hwang, Y.C.; Whang, J.; Bergmann, S.R. Protection of ischemic hearts by high glucose is mediated, in part, by GLUT-4. Am. J. Physiol. Heart Circ. Physiol. 2001, 281, H290–H297. [Google Scholar] [CrossRef]
- Ismaeil, A.; Babiker, F.; Al-Sabah, S. Discrepancy between the Actions of Glucagon-like Peptide-1 Receptor Ligands in the Protection of the Heart against Ischemia Reperfusion Injury. Pharmaceuticals 2022, 15, 720. [Google Scholar] [CrossRef]
- Khalaf, A.; Babiker, F. Discrepancy in calcium release from the sarcoplasmic reticulum and intracellular acidic stores for the protection of the heart against ischemia/reperfusion injury. J. Physiol. Biochem. 2016, 72, 495–508. [Google Scholar] [CrossRef]
- Al-Herz, W.; Babiker, F. Acute Intravenous Infusion of Immunoglobulins Protects Against Myocardial Ischemia-Reperfusion Injury Through Inhibition of Caspase-3. Cell Physiol. Biochem. 2017, 42, 2295–2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
+dP/dt | -dP/dt | |||
---|---|---|---|---|
Treatment | Ischemia | Reperfusion | Ischemia | Reperfusion |
Hyperglycemia | ||||
Ctr | 55.309 ± 6.23 | 56.81 ± 4.68 | 56.81 ± 4.68 | 58.86 ± 6.31 |
Ctr + Captopril | 54.18 ± 13.00 | 86.38 ± 3.29 *† | 58.61 ± 6.78 | 95.50 ± 8.82 *† |
Ctr + Losartan | 55.58 ± 2.91 | 87.20 ± 7.40 *† | 56.93 ± 1.85 | 90.67 ± 8.29 *† |
Ctr + Captopril and Losartan | 53.40 ± 4.88 | 75.88 ± 4.12 *† | 58.57 ± 4.06 | 94.17 ± 9.91 *† |
Four weeks diabetic heart | ||||
Ctr | 50.32 ± 3.32 | 48.73 ± 4.56 | 54.81 ± 3.97 | 55.05 ± 3.76 |
Ctr + Captopril | 53.29 ± 4.13 | 87.16 ± 5.31 *† | 55.51 ± 4.24 | 78.57 ± 8.09 *† |
Ctr + Losartan | 54.68 ± 5.55 | 70.69 ± 4.33 *† | 57.12 ± 3.87 | 83.99 ± 5.46 *† |
Ctr + Captopril and Losartan | 53.08 ± 5.68 | 88.96 ± 3.82 *† | 48.89 ± 5.78 | 74.11 ± 5.35 *† |
Six weeks diabetic heart | ||||
Ctr | 51.95 ± 3.61 | 54.83 ± 6.54 | 50.60 ± 1.16 | 52.04 ± 2.77 |
Ctr + Captopril | 54.71 ± 4.36 | 89.28 ± 5.40 *† | 50.24 ± 4.22 | 81.70 ± 8.32 *† |
Ctr + Losartan | 50.87 ± 6.59 | 94.64 ± 6.37 *† | 54.64 ± 6.37 | 82.61 ± 7.46 *† |
Ctr + Captopril and Losartan | 48.60 ± 4.42 | 80.52 ± 2.12 *† | 53.43 ± 2.65 | 82.18 ± 5.49 *† |
Treatment | Troponin C (IU/L) | p Value |
---|---|---|
Hyperglycemia | ||
Ctr | 0.45 ± 0.06 | - |
Ctr + Captopril | 0.15 ± 0.02 | 0.01 |
Ctr + Losartan | 0.15 ± 0.02 | 0.01 |
Ctr + Captopril and Losartan | 0.18 ± 0.04 | 0.01 |
Four weeks diabetic | ||
Ctr | 0.43 ± 0.03 | - |
Ctr + Captopril | 0.07 ± 0.003 | 0.001 |
Ctr + Losartan | 0.11 ± 0.02 | 0.001 |
Ctr + Captopril and Losartan | 0.14 ± 0.03 | 0.001 |
Six weeks diabetic | 0.27 ± 0.003 | - |
Ctr | 0.14 ± 0.04 | 0.01 |
Ctr + Captopril | 0.05 ± 0.01 | 0.001 |
Ctr + Losartan | 0.18 ± 0.03 | 0.01 |
Ctr + Captopril and Losartan |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Kouh, A.; Babiker, F.; Al-Bader, M. Renin–Angiotensin System Antagonism Protects the Diabetic Heart from Ischemia/Reperfusion Injury in Variable Hyperglycemia Duration Settings by a Glucose Transporter Type 4-Mediated Pathway. Pharmaceuticals 2023, 16, 238. https://doi.org/10.3390/ph16020238
Al-Kouh A, Babiker F, Al-Bader M. Renin–Angiotensin System Antagonism Protects the Diabetic Heart from Ischemia/Reperfusion Injury in Variable Hyperglycemia Duration Settings by a Glucose Transporter Type 4-Mediated Pathway. Pharmaceuticals. 2023; 16(2):238. https://doi.org/10.3390/ph16020238
Chicago/Turabian StyleAl-Kouh, Aisha, Fawzi Babiker, and Maie Al-Bader. 2023. "Renin–Angiotensin System Antagonism Protects the Diabetic Heart from Ischemia/Reperfusion Injury in Variable Hyperglycemia Duration Settings by a Glucose Transporter Type 4-Mediated Pathway" Pharmaceuticals 16, no. 2: 238. https://doi.org/10.3390/ph16020238
APA StyleAl-Kouh, A., Babiker, F., & Al-Bader, M. (2023). Renin–Angiotensin System Antagonism Protects the Diabetic Heart from Ischemia/Reperfusion Injury in Variable Hyperglycemia Duration Settings by a Glucose Transporter Type 4-Mediated Pathway. Pharmaceuticals, 16(2), 238. https://doi.org/10.3390/ph16020238