Development of Halogenated-Chalcones Bearing with Dimethoxy Phenyl Head as Monoamine Oxidase-B Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. MAO Inhibition Assays
2.3. Kinetic Study
2.4. Reversibility Studies
2.5. In Vitro Toxicity Evaluation
2.6. Computational Studies
3. Materials and Methods
3.1. Synthesis
3.2. MAO Assays
3.3. Kinetics Studies
3.4. Inhibition Reversibility of DM2 and DM18
3.5. Cytotoxicity Study
3.6. Computational Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Twelves, D.; Perkins, K.S.; Counsell, C. A systematic review of incidence studies of Parkinson’s disease. Mov. Disord. 2011, 18, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Miller, I.N.; Cronin-Golomb, A. Gender differences in Parkinson’s disease: Clinical characteristics and cognition. Mov. Disord. 2011, 25, 2695–2703. [Google Scholar] [CrossRef] [PubMed]
- Rumayor, M.A.; Arrieta, O.; Sotelo, J. Female gender but not cigarette smoking delays the onset of Parkinson’s disease. Clin. Neurol. Neurosurg. 2009, 111, 738–741. [Google Scholar] [CrossRef] [PubMed]
- Schrag, A.; Horsfall, L.; Walters, K.; Noyce, A.; Petersen, I. Prediagnostic presentations of Parkinson’s disease in primary care: A case-control study. Lancet Neurol. 2015, 14, 57–64. [Google Scholar] [CrossRef]
- Zhou, C.; Huang, Y.; Przedborski, S.; Ann, N.Y. Oxidative stress in Parkinson’s disease: A mechanism of pathogenic and therapeutic significance. Acad. Sci. 2008, 1147, 93–104. [Google Scholar] [CrossRef]
- Logroscino, G. The role of early life environmental risk factors in Parkinson disease: What’s the evidence? Environ. Health Perspect. 2005, 113, 1234–1238. [Google Scholar] [CrossRef] [PubMed]
- Spatola, M.; Wider, C. Genetics of Parkinson’s disease: The yield. Parkinsonism Relat. Disord. 2014, 20, S35–S38. [Google Scholar] [CrossRef]
- Singleton, A.B.; Farrer, M.J.; Bonifati, V. The genetics of Parkinson’s disease: Progress and therapeutic implications. Mov. Disord. 2013, 28, 14–23. [Google Scholar] [CrossRef]
- Santiago, J.A.; Scherzer, C.R.; Potashkin, J.A. Network analysis identifies SOD2 mRNA as a potential biomarker for Parkinson’s disease. PLoS ONE 2014, 9, e109042. [Google Scholar] [CrossRef]
- Chen, J.J.; Swope, D.M. Parkinson’s disease. In Pharmacotherapy: A Pathophysiologic Approach; Dipiro., J.T., Talbert, R.L., Yee, G.C., Eds.; Lippincott Williams & Wilkins, Inc.: Philadelphia, PA, USA, 2014; Volume 9, pp. 1–8. [Google Scholar]
- Lim, S.Y.; Fox, S.H.; Lang, A.E. Overview of the extranigral aspects of Parkinson disease. Arch. Neurol. 2009, 66, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Wolters, E.C.; Braak, H.; Riederer, P.; Reichmann, H.; Youdim, M.B.H.; Gerlach, M. Parkinson’s disease and related disorders. J. Neural. Transm. 2006, 70, 1–9. [Google Scholar]
- Postuma, R.B.; Aarsland, D.; Barone, P. We are identifying prodromal Parkinson’s disease: Pre-motor disorders in Parkinson’s disease. Mov. Disord. 2012, 27, 617–626. [Google Scholar] [CrossRef]
- Siderowf, A.; Lang, A.E. Premotor Parkinson’s disease: Concepts and definitions. Mov. Disord. 2012, 15, 608–616. [Google Scholar]
- Willis, G.L.; Moore, C.; Armstrong, S.M. Breaking from dopamine deficiency is an essential new direction for Parkinson’s disease. Rev. Neurosci. 2012, 23, 403–428. [Google Scholar] [CrossRef]
- Jellinger, K.A. Neuropathology of sporadic Parkinson’s disease: Evaluation and changes of concepts. Mov. Disord. 2012, 27, 8–30. [Google Scholar] [CrossRef] [PubMed]
- Galvan, A.; Wichmann, T. Gabaergic circuits in the basal ganglia and movement disorder. Prog. Brain Res. 2017, 160, 287–312. [Google Scholar]
- Chu, J.; Wagle-Shukla, A.; Gunraj, C.; Lang, A.E.; Che, R. Impaired presynaptic inhibition in the motor cortex in Parkinson disease. Neurology 2019, 72, 842–849. [Google Scholar] [CrossRef]
- Braak, H.; Braak, E. Pathoanatomy of Parkinson’s disease. J. Neurol. 2000, 247, II3–II10. [Google Scholar] [CrossRef]
- Kovari, E.; Horvath, J.; Bouras, C. Neuropathology of lewy body disorders. Brain Res. Bull. 2009, 80, 203–210. [Google Scholar] [CrossRef]
- Beaulieu, J.M.; Gainetdinov, R.R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 2011, 63, 182–217. [Google Scholar] [CrossRef]
- Fox, S.H.; Katzenschlager, R.; Lim, S.Y. The movement disorder society evidence-based medicine review update: Treatments for the motor symptoms of Parkinson’s disease. Mov. Disord. 2011, 26, 2–14. [Google Scholar] [CrossRef]
- Connolly, B.S.; Lang, A.E. Pharmacological treatment of Parkinson disease: A review. JAMA 2014, 311, 1670–1683. [Google Scholar] [CrossRef] [PubMed]
- Lang, A.E.; Marras, C. Initiating dopaminergic treatment in Parkinson’s disease. Lancet 2014, 384, 1164–1166. [Google Scholar] [CrossRef]
- Dézsi, L.; Vécsei, L. Safinamide for the treatment of Parkinson’s disease. Expert Opin. Investig. Drugs. 2014, 23, 729–742. [Google Scholar] [CrossRef]
- Saura, M.J.; Kettler, R.; Da Prada, M.; Richards, J.G. Molecular neuroanatomy of MAO-A and MAO-B. J. Neural. Transm. Suppl. 1990, 32, 49–53. [Google Scholar]
- Knoll, J.; Ecsery, Z.; Magyar, K.; Sátory, E. Novel (-) deprenyl-derived selective inhibitors of B-type monoamine oxidase. The relation of structure to their action. Biochem. Pharmacol. 1978, 27, 1739–1747. [Google Scholar] [CrossRef]
- Teo, K.C.; Ho, S.L. Monoamine oxidase-B (MAO-B) inhibitors: Implications for disease-modification in Parkinson’s disease. Transl. Neurodegener. 2013, 2, 19–25. [Google Scholar] [CrossRef]
- Cohen, G.; Pasik, P.; Cohen, B.; Leist, A.; Mitileneou, C.; Yahr, M.D. Pargyline and (–) deprenyl prevent the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP) in monkeys. Eur. J. Pharmacol. 1984, 106, 209–210. [Google Scholar] [CrossRef]
- Kamakura, K.; Mochizuki, H.; Kaida, K.; Hirata, A.; Kanzaki, M.; Masaki, T. Therapeutic factors causing hallucination in Parkinson’s disease patients, especially those given selegiline. Parkinsonism Relat. Disord. 2004, 10, 235–242. [Google Scholar] [CrossRef]
- Montastruc, J.L.; Chaumerliac, C.; Desboeuf, K. Adverse drug reactions to selegiline: A review of the french pharmacovigilance database. Clin. Neuropharmacol. 2000, 23, 271–275. [Google Scholar] [CrossRef]
- Klein, C.; Kompf, D.; Pulkowski, U. A study of visual hallucinations in patients with Parkinson’s disease. J. Neurol. 1997, 244, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Lees, A.J. Comparison of therapeutic effects and mortality data of levodopa and levodopa combined with selegiline in patients with early, mild Parkinson’s disease. BMJ 1995, 311, 1602. [Google Scholar] [CrossRef]
- Ben-Shlomo, Y.; Whitehead, A.S.; Smith, D.G. Parkinson’s, Alzheimer’s, and motor neuron disease: Clinical and pathological overlap may suggest common genetic and environmental factors. BMJ 1996, 312, 724. [Google Scholar] [CrossRef]
- Katzenschlager, R.; Head, J.; Schrag, A.; Ben-Shlomo, Y.; Evans, A.; Lees, A.J. Fourteen-year final report of the randomized PDRG-UK trial comparing three initial treatments in PD. Neurology 2008, 71, 474–480. [Google Scholar] [CrossRef]
- Matos, M.J.; Vazquez-Rodriguez, S.; Uriarte, E.; Santana, L. Potential pharmacological uses of chalcones: A patent review (from June 2011–2014). Expert Opin. Ther. Pat. 2015, 25, 351–366. [Google Scholar] [CrossRef]
- Guglielmi, P.; Mathew, B.; Secci, D.; Carradori, S. Chalcones: Unearthing their therapeutic possibility as monoamine oxidase B inhibitors. Eur. J. Med. Chem. 2020, 205, 112650. [Google Scholar] [CrossRef]
- Kar Mahapatra, D.; Asati, V.; Bharti, S.K. An updated patent review of therapeutic applications of chalcone derivatives (2014-present). Expert Opin. Ther. Pat. 2019, 29, 385–406. [Google Scholar] [CrossRef]
- Mathew, B.; Mathew, G.E.; Ucar, G.; Joy, M.; Nafna, E.K.; Lohidakshan, K.K.; Suresh, J. Monoamine oxidase inhibitory activity of methoxy-substituted chalcones. Int. J. Biol. Macromol. 2017, 104, 1321–1329. [Google Scholar] [CrossRef]
- Robinson, S.J.; Petzer, J.P.; Petzer, A.; Bergh, J.J.; Lourens, A.C. Selected furanochalcones as inhibitors of monoamine oxidase. Bioorg. Med. Chem. Lett. 2013, 23, 4985–4989. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.; Li, Y.; Qiang, X.; Xu, R.; Zheng, Y.; Cao, Z.; Luo, L.; Yang, X.; Sang, Z.; Su, F. Design, synthesis and biological evaluation of 4′-aminochalcone-rivastigmine hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. 2017, 25, 1030–1041. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Yang, J.; Xu, R.; Song, Q.; Zhang, X.; Liu, H.; Qiang, X.; Li, Y.; Tan, Z.; Deng, Y. Design, synthesis and evaluation of 4′-OH-flurbiprofen-chalcone hybrids as potential multifunctional agents for Alzheimer’s disease treatment. Bioorg. Med. Chem. 2018, 26, 1102–1115. [Google Scholar] [CrossRef] [PubMed]
- Shalaby, R.; Petzer, J.P.; Petzer, A.; Ashraf, U.M.; Atari, E.; Alasmari, F.; Kumarasamy, S.; Sari, Y.; Khalil, A. SAR and molecular mechanism studies of monoamine oxidase inhibition by selected chalcone analogs. J. Enzyme Inhib. Med. Chem. 2019, 34, 863–876. [Google Scholar] [CrossRef] [PubMed]
- Rehuman, N.A.; Oh, J.M.; Nath, L.R.; Khames, A.; Abdelgawad, M.A.; Gambacorta, N.; Nicolotti, O.; Jat, R.K.; Kim, H.; Mathew, B. Halogenated coumarin-chalcones as multifunctional monoamine oxidase-B and butyrylcholinesterase inhibitors. ACS Omega 2021, 6, 28182–28193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Lv, Y.; Bai, R.; Xie, Y. Structural exploration of multifunctional monoamine oxidase B inhibitors as potential drug candidates against Alzheimer’s disease. Bioorg. Chem. 2021, 114, 105070. [Google Scholar] [CrossRef] [PubMed]
- Moya-Alvarado, G.; Yañez, O.; Morales, N.; González-González, A.; Areche, C.; Núñez, M.T.; Fierro, A.; García-Beltrán, O. Coumarin-chalcone hybrids as inhibitors of MAO-B: Biological activity and in silico studies. Molecules 2021, 26, 2430. [Google Scholar] [CrossRef]
- Iacovino, L.G.; Pinzi, L.; Facchetti, G.; Bortolini, B.; Christodoulou, M.S.; Binda, C.; Rastelli, G.; Rimoldi, I.; Passarella, D.; Di Paolo, M.L.; et al. Promising non-cytotoxic monosubstituted chalcones to target monoamine oxidase-B. ACS Med. Chem. Lett. 2021, 12, 1151–1158. [Google Scholar] [CrossRef]
- Chimenti, F.; Fioravanti, R.; Bolasco, A.; Chimenti, P.; Secci, D.; Rossi, F.; Yáñez, M.; Orallo, F.; Ortuso, F.; Alcaro, S. Chalcones: A valid scaffold for monoamine oxidases inhibitors. J. Med. Chem. 2009, 52, 2818–2824. [Google Scholar] [CrossRef]
- Mathew, B.; Mathew, G.E.; Uçar, G.; Baysal, I.; Suresh, J.; Vilapurathu, J.K.; Prakasan, A.; Suresh, J.K.; Thomas, A. Development of fluorinated methoxylated chalcones as selective monoamine oxidase-B inhibitors: Synthesis, biochemistry and molecular docking studies. Bioorg. Chem. 2015, 62, 22–29. [Google Scholar] [CrossRef]
- Hammuda, A.; Shalaby, R.; Rovida, S.; Edmondson, D.E.; Binda, C.; Khalil, A. Design and synthesis of novel chalcones as potent selective monoamine oxidase-B inhibitors. Eur. J. Med. Chem. 2016, 114, 162–169. [Google Scholar] [CrossRef]
- Mathew, B.; Adeniyi, A.A.; Joy, M.; Mathew, G.E.; Pillay, A.S.; Sudarsanakumar, C.; Soliman, M.E.S.; Suresh, J. Anti-oxidant behavior of functionalized chalcone-a combined quantum chemical and crystallographic structural investigation. J. Mol. Struct. 2017, 1146, 301–308. [Google Scholar] [CrossRef]
- Vishal, P.K.; Oh, J.M.; Khames, A.; Abdelgawad, M.A.; Nair, A.S.; Nath, L.R.; Gambacorta, N.; Ciriaco, F.; Nicolotti, O.; Kim, H.; et al. Trimethoxylated halogenated chalcones as dual inhibitors of MAO-B and BACE-1 for the treatment of neurodegenerative disorders. Pharmaceutics 2021, 13, 850. [Google Scholar] [CrossRef] [PubMed]
- Maliyakkal, N.; Baysal, I.; Tengli, A.; Ucar, G.; Almoyad, M.A.A.; Parambi, D.G.T.; Gambacorta, N.; Nicolotti, O.; Beeran, A.A.; Mathew, B. Trimethoxy crown chalcones as multifunctional class of monoamine oxidase enzyme inhibitors. Comb. Chem. High Throughput Screen. 2022, 25, 1314–1326. [Google Scholar] [CrossRef] [PubMed]
- Mathew, B.; Carradori, S.; Guglielmi, P.; Uddin, M.S.; Kim, H. New aspects of monoamine oxidase B inhibitors: The key role of halogens to open the golden door. Curr. Med. Chem. 2021, 28, 266–283. [Google Scholar] [CrossRef] [PubMed]
- Ternavisk, R.R.; Camargo, A.J.; Machado, F.B.C. Synthesis, characterization, and computational study of a new dimethoxy-chalcone. J. Mol. Model. 2014, 20, 2526. [Google Scholar] [CrossRef]
- Jeong, G.S.; Kang, M.G.; Lee, J.Y.; Lee, S.R.; Park, D.; Cho, M.L.; Kim, H. Inhibition of butyrylcholinesterase and human monoamine oxidase-B by the coumarin glycerol and liquiritigenin isolated from Glycyrrhiza uralensis. Molecules 2020, 25, 3896. [Google Scholar] [CrossRef]
- Jeong, G.S.; Kang, M.G.; Han, S.A.; Noh, J.I.; Park, J.E.; Nam, S.J.; Park, D.; Yee, S.T.; Kim, H. Selective inhibition of human monoamine oxidase B by 5-hydroxy-2-methyl-chroman-4-one isolated from an endogenous lichen fungus Daldinia fissa. J. Fungi. 2021, 7, 84–91. [Google Scholar] [CrossRef]
- Alagöz, M.A.; Oh, J.M.; Zenni, Y.N.; Özdemir, Z.; Abdelgawad, M.A.; Naguib, I.A.; Ghoneim, M.M.; Gambacorta, N.; Nicolotti, O.; Kim, H.; et al. Development of a novel class of pyridazinone derivatives as selective MAO-B inhibitors. Molecules 2022, 27, 3801. [Google Scholar] [CrossRef]
- Baek, S.C.; Lee, H.W.; Ryu, H.W.; Kang, M.G.; Park, D.; Kim, S.H.; Cho, M.L.; Oh, S.R.; Kim, H. Selective inhibition of monoamine oxidase A by hispidol. Bioorg. Med. Chem. Lett. 2018, 15, 584–588. [Google Scholar] [CrossRef]
- Fotakis, G.; Timbrell, J.A. In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Lett. 2006, 160, 171–177. [Google Scholar] [CrossRef]
- Jambunathan, N. Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. Methods Mol. Biol. 2010, 639, 292–298. [Google Scholar]
- Binda, C.; Wang, J.; Pisani, L.; Caccia, C.; Carotti, A.; Salvati, P.; Edmondson, D.E.; Mattevi, A. Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: Safinamide and coumarin analogs. J. Med. Chem. 2007, 50, 5848–5852. [Google Scholar] [CrossRef] [PubMed]
- Venkidath, A.; Oh, J.M.; Dev, S.; Amin, E.; Rasheed, S.P.; Vengamthodi, A.; Gambacorta, N.; Khames, A.; Abdelgawad, M.A.; George, G.; et al. Selected class of enamides bearing nitro functionality as dual-acting with highly selective monoamine oxidase-B and BACE1 inhibitors. Molecules 2021, 26, 6004. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Lee, J.P.; Kang, M.-G.; Lee, J.Y.; Oh, J.M.; Baek, S.C.; Leem, H.H.; Park, D.; Cho, M.-L.; Kim, H. Potent inhibition of acetylcholinesterase by sargachromanol I from Sargassum siliquastrum and by selected natural compounds. Bioorg. Chem. 2019, 89, 103043. [Google Scholar] [CrossRef]
- Heo, J.H.; Eom, B.H.; Ryu, H.W.; Kang, M.-G.; Park, J.E.; Kim, D.Y.; Kim, J.H.; Park, D.; Oh, S.R.; Kim, H. Acetylcholinesterase and butyrylcholinesterase inhibitory activities of khellactone coumarin derivatives isolated from Peucedanum japonicum Thurnberg. Sci. Rep. 2020, 10, 21695. [Google Scholar] [CrossRef]
- Abdelgawad, M.A.; Oh, J.M.; Parambi, D.G.T.; Kumar, S.; Musa, A.; Ghoneim, M.M.; Nayl, A.A.; El-Ghorab, A.H.; Ahmad, I.; Patel, H.; et al. Development of bromo- and fluoro-based α, β-unsaturated ketones as highly potent MAO-B inhibitors for the treatment of Parkinson’s disease. J. Mol. Struct. 2022, 1266, 133545. [Google Scholar] [CrossRef]
Compounds | Residual Activity at 10 µM (%) | IC50 (µM) | SI b | ||
---|---|---|---|---|---|
MAO-A | MAO-B | MAO-A | MAO-B | ||
DM1 | 57.23 ± 1.91 | 17.56 ± 0.74 | 15.393 ± 1.969 | 0.927 ± 0.021 | 16.61 |
DM2 | 41.53 ± 1.59 | −2.85 ± 1.02 | 6.293 ± 0.432 | 0.067 ± 0.002 | 93.88 |
DM3 | 43.27 ± 1.20 | 7.89 ± 0.63 | 5.733 ± 0.142 | 0.130 ± 0.023 | 44.08 |
DM4 | 38.77 ± 3.40 | 18.59 ± 1.04 | 4.482 ± 0.152 | 0.589 ± 0.055 | 7.61 |
DM5 | 54.52 ± 4.32 | 10.57 ± 1.88 | 12.383 ± 0.872 | 0.161 ± 0.020 | 77.02 |
DM6 | 62.70 ± 1.32 | 5.50 ± 0.64 | 12.755 ± 1.569 | 0.148 ± 0.087 | 86.49 |
DM7 | 40.28 ± 1.05 | 15.55 ± 1.78 | 4.733 ± 0.005 | 0.844 ± 0.023 | 5.60 |
DM8 | 56.35 ± 7.34 | 11.10 ± 1.44 | 13.420 ± 0.820 | 1.126 ± 0.033 | 11.90 |
DM9 | 50.58 ± 0.82 | 10.77 ± 0.23 | 11.252 ± 1.057 | 0.246 ± 0.074 | 45.93 |
DM10 | 53.91 ± 7.17 | 23.22 ± 0.37 | 16.037 ± 1.467 | 1.965 ± 0.065 | 8.14 |
DM11 | 64.61 ± 0.72 | 14.58 ± 3.48 | 14.293 ± 1.829 | 2.188 ± 0.098 | 6.54 |
DM12 | 88.70 ± 9.40 | 8.98 ± 0.92 | >40 | 1.225 ± 0.250 | >32.65 |
DM13 | 75.63 ± 0.88 | 7.49 ± 0.12 | >40 | 4.700 ± 0.320 | >8.51 |
DM14 | 98.75 ± 1.77 | 9.45 ± 2.88 | >40 | 0.833 ± 0.087 | >48.02 |
DM15 | 77.50 ± 7.07 | 10.25 ± 0.17 | >40 | 0.716 ± 0.056 | >55.87 |
DM16 | 76.88 ± 0.88 | 11.83 ± 5.27 | >40 | 1.113 ± 0.260 | >35.94 |
DM17 | 96.88 ± 0.88 | 13.76 ± 0.61 | >40 | 0.146 ± 0.041 | >273.97 |
DM18 | 100.00 ± 0.01 | 8.87 ± 1.08 | >40 | 0.118 ± 0.036 | >338.98 |
DM19 | 93.67 ± 7.16 | 3.94 ± 1.76 | >40 | 0.450 ± 0.071 | >88.89 |
DM20 | 97.47 ± 8.95 | 3.70 ± 0.00 | >40 | 0.483 ± 0.077 | >83.82 |
Toloxatone | 1.080 ± 0.025 | - | |||
Lazabemide | - | 0.110 ± 0.016 | |||
Clorgyline | 0.007 ± 0.001 | - | |||
Pargyline | - | 0.140 ± 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehuman, N.A.; Oh, J.M.; Abdelgawad, M.A.; Beshr, E.A.M.; Abourehab, M.A.S.; Gambacorta, N.; Nicolotti, O.; Jat, R.K.; Kim, H.; Mathew, B. Development of Halogenated-Chalcones Bearing with Dimethoxy Phenyl Head as Monoamine Oxidase-B Inhibitors. Pharmaceuticals 2022, 15, 1152. https://doi.org/10.3390/ph15091152
Rehuman NA, Oh JM, Abdelgawad MA, Beshr EAM, Abourehab MAS, Gambacorta N, Nicolotti O, Jat RK, Kim H, Mathew B. Development of Halogenated-Chalcones Bearing with Dimethoxy Phenyl Head as Monoamine Oxidase-B Inhibitors. Pharmaceuticals. 2022; 15(9):1152. https://doi.org/10.3390/ph15091152
Chicago/Turabian StyleRehuman, Nisha Abdul, Jong Min Oh, Mohamed A. Abdelgawad, Eman A. M. Beshr, Mohammed A. S. Abourehab, Nicola Gambacorta, Orazio Nicolotti, Rakesh Kumar Jat, Hoon Kim, and Bijo Mathew. 2022. "Development of Halogenated-Chalcones Bearing with Dimethoxy Phenyl Head as Monoamine Oxidase-B Inhibitors" Pharmaceuticals 15, no. 9: 1152. https://doi.org/10.3390/ph15091152
APA StyleRehuman, N. A., Oh, J. M., Abdelgawad, M. A., Beshr, E. A. M., Abourehab, M. A. S., Gambacorta, N., Nicolotti, O., Jat, R. K., Kim, H., & Mathew, B. (2022). Development of Halogenated-Chalcones Bearing with Dimethoxy Phenyl Head as Monoamine Oxidase-B Inhibitors. Pharmaceuticals, 15(9), 1152. https://doi.org/10.3390/ph15091152